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A comprehensive model for viscoplastic flows
in channels with a patterned wall: longitudinal,
transverse and oblique flows
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We develop a comprehensive model for the creeping Poiseuille Bingham flow in channels
equipped with a patterned wall, i.e. decorated with grooves or stripes that may represent
a superhydrophobic (SH) or a chemically patterned (CP) surface, respectively, with
longitudinal, transverse and oblique groove (stripe) orientations with respect to the applied
pressure gradient. We rely on the Navier slip law to model the boundary condition
on the slippery grooves. We develop semi-analytical, explicit-form and complementary
computational fluid dynamics models, with solutions that have reasonable agreement. In
contrast to its Newtonian analogue, a distinct solution for the oblique configuration, with
an a priori unknown transform matrix, must be developed due to the viscoplastic nonlinear
rheology. Our focus is to systematically analyse the effects of the Bingham number (B),
slip number (b), groove periodicity length (�), slip area fraction (ϕ) and groove orientation
angle (θ ), on the slip velocities, effective slip length (χ ), slip angle difference (θ − s),
mixing index (IM), flow anisotropy and flow regimes. In particular, we demonstrate that,
as B increases, the maximum values of the shear component of χ , θ − s and IM occur
progressively at smaller values of θ , compared with their Newtonian counterparts.

Key words: plastic materials, microfluidics

1. Introduction

Viscoplasticity refers to the nonlinear behaviour of materials with a yield stress, above
which these materials typically exhibit viscous deformation, whereas below which they
usually behave as rigid solids (Bonn et al. 2017; Thompson, Sica & de Souza Mendes
2018). Examples of such materials are frequent in our daily life (e.g. butter, jam and
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toothpaste), various industries (e.g. waxy crude oils, cement slurries, cosmetics and food
products) and even many biological systems (e.g. human blood and mucus) (Balmforth,
Frigaard & Ovarlez 2014; Horner, Wagner & Beris 2021). The flow dynamics of
viscoplastic fluids are influenced by the wall characteristics of their conduit, such as
waviness (Putz, Frigaard & Martinez 2009), slipperiness (Panaseti & Georgiou 2017)
and superhydrophobicity (Rahmani & Taghavi 2022); the latter is commonly enabled
by micro-scale protrusions that trap air within surface cavities, inducing liquid slippage
on the entrapped air layer (Lee, Choi & Kim 2016). Thanks to advancements in
micro- and nanotechnology (Lee, Charrault & Neto 2014; Lee et al. 2016), groovy
protrusions represent a prevalent superhydrophobic (SH) surface configuration. In
addition, concerning a chemically patterned (CP) surface, arrays of hydrophobic (slippery)
and hydrophilic (non-slippery) stripes can be periodically positioned on solid walls,
leading to the heterogeneity of wall boundary conditions (Qian, Wang & Sheng 2005;
Wang, Qian & Sheng 2008; Lee et al. 2014). In this context, the current article aims to
analyse viscoplastic flows in SH and CP channels whose lower wall is patterned by arrays
of slip and no-slip condition, while possessing longitudinal, transverse and oblique groove
(stripe) orientations.

SH and CP surfaces have a variety of macro- and micro-scale applications, with
examples such as drag reduction and flow manipulation (Belyaev & Vinogradova 2010;
Lee et al. 2014, 2016; Qi et al. 2019). At the micro-scale, Newtonian and non-Newtonian
fluids (e.g. viscoplastic materials) may flow through a microfluidic system, for which a
considerable drag reduction can be achieved via SH coating of the walls (Belyaev &
Vinogradova 2010; Asmolov & Vinogradova 2012). Considering the flow/drop handling
and particle fractionation and focusing applications, SH and CP surfaces may be also
used to manipulate the flow dynamics (Lee et al. 2014; Asmolov et al. 2015; Qi et al.
2019; Nizkaya et al. 2020). As an example, these surfaces can be designed and used in
microfluidic systems to optimise synthesis of human blood (which exhibits a yield stress)
for disease diagnosis and prognosis, e.g. separating circulating tumour cells from cancer
patients’ blood (Burinaru et al. 2018). At the macro-scale, on the other hand, industries
often transport viscoplastic materials through pipelines, e.g. in underwater transportation
of waxy crude oil, with patterned wall coatings offering potential drag reduction solutions
(Ijaola, Farayibi & Asmatulu 2020). In addition, such coatings can protect the pipeline
system against corrosion, icing and bio-fouling (Ijaola et al. 2020).

Although the problem of Newtonian flows in contact with SH and CP wall surfaces has
been studied extensively over the last two decades (Lauga & Stone 2003; Qian et al. 2005;
Sbragaglia & Prosperetti 2007; Wang et al. 2008; Vinogradova & Belyaev 2011; Lee et al.
2014; Asmolov, Nizkaya & Vinogradova 2020), their non-Newtonian counterparts have
received less attention; however, there have been a few studies limited to shear-thinning
fluids over SH surfaces (Crowdy 2017a; Haase et al. 2017; Patlazhan & Vagner 2017;
Gaddam et al. 2021). Previous studies have mainly considered, analytically, numerically
and experimentally, Newtonian flows with SH groovy and CP wall surfaces, for both thick
and thin channels (Ou & Rothstein 2005; Qian et al. 2005; Davies et al. 2006; Wang
et al. 2008; Teo & Khoo 2009; Belyaev & Vinogradova 2010; Feuillebois, Bazant &
Vinogradova 2010; Schmieschek et al. 2012; Lee et al. 2014; Kirk, Hodes & Papageorgiou
2017). These studies have typically taken into account longitudinal and transverse groove
(stripe) configurations, while assuming an ideal Cassie state, with a flat liquid/air interface
for the SH surfaces. On the other hand, non-Newtonian flows with SH wall surfaces have
been considered through perturbative corrections, e.g. for Carreau–Yasuda fluids (Crowdy
2017a), and numerically for transverse and longitudinal grooves (Haase et al. 2017;
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2Ĥ

L̂

x̂
–grad P̂

ŷ
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Figure 1. Schematic of oblique Poiseuille flow of a Bingham fluid in an SH channel (for the CP channel the
groove would be replaced by a flat slippery stripe). Pressure gradient is in ẑ′ direction at an angle θ with ẑ axis.
Right panel shows s as the a priori unknown angle between slip velocity vector and groove direction. Here and
throughout the text, the dimensional parameters and variables are shown with the hat sign (̂·) whereas for the
dimensionless parameters and variables the hat sign is dropped (unless otherwise stated).

Patlazhan & Vagner 2017; Gaddam et al. 2021). Very recently, some studies have begun to
model viscoplastic material flows with SH wall surfaces, for both thick and thin channel
limits, as well as creeping and inertial flows, albeit limited only to transverse groove
orientations (Rahmani & Taghavi 2022, 2023; Rahmani et al. 2023; Rahmani, Larachi &
Taghavi 2024). Regarding the flow stability picture, stability analyses have been conducted
for Newtonian flows on SH surfaces, with a focus on the longitudinal groove orientation
(Yu, Teo & Khoo 2016; Tomlinson & Papageorgiou 2022), leading to finding new modes
of instabilities. On the other hand, relevant stability analyses for viscoplastic flows have
been limited only to those in contact with hydrophobic walls (Rahmani & Taghavi 2020),
i.e. with homogeneous wall slip conditions, revealing stabilising/destabilising effects of
streamwise/spanwise slip conditions.

For fluid flows in contact with SH and CP surfaces having longitudinal or transverse
groove (stripe) orientations (i.e. with respect to the flow direction), the pressure
gradient and the slip velocity vectors are unidirectional (Belyaev & Vinogradova 2010;
Vinogradova & Belyaev 2011). However, a secondary flow stream is generated normal to
the pressure gradient direction in an oblique groove configuration, in which the direction
of the grooves makes an angle 0 < θ < 90◦ with respect to the direction of the applied
pressure gradient (see figure 1); this is due to the directional anisotropic slip properties of
the surface (Stone, Stroock & Ajdari 2004; Bazant & Vinogradova 2008; Vinogradova &
Belyaev 2011). Therefore, such an oblique configuration leads to unique flow features that
can be exploited for many applications, e.g. passive mixing and flow/particle manipulation
(Stroock et al. 2002a,b; Asmolov et al. 2018; Vagner & Patlazhan 2019; Nizkaya et al.
2020).

Our article presents a novel contribution to the analysis of viscoplastic flows in channels
with longitudinal, transverse and most importantly oblique groove (stripe) orientations.
Unlike the oblique flow of a Newtonian fluid, whose model equations can be solved via a
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linear vector transformation of known longitudinal and transverse flow variables (Bazant &
Vinogradova 2008; Vinogradova & Belyaev 2011), the oblique flow of a viscoplastic fluid
requires a distinct solution due to its nonlinear viscosity, implying that the transform matrix
is unknown a priori. To address this challenge, here we consider the creeping Poiseuille
flow of a Bingham fluid in thick patterned channels (where the half-channel height Ĥ is
much larger than the pattern (i.e. groove or stripe) period L̂, as illustrated in figure 1).
In addition, we consider flow slippage on the patterned wall, assuming a flat liquid/air
interface pinned at the groove edges for the SH wall and a flat slippery stripe for the
CP wall, while employing the Navier slip law and the no-slip condition to account for
the patterned wall condition. Using perturbation analysis, Fourier expansion method and
dual trigonometric series solution (Sneddon 1966), we develop a comprehensive model for
viscoplastic flows in SH and CP channels; this includes semi-analytical, explicit-form and
computational fluid dynamics (CFD) models, which allow us to systematically analyse the
flow parameters effects on the key characteristics of our complex flow dynamics.

The present article is structured as follows. In § 2, we introduce the flow governing
equations, followed by § 3 where we develop our mathematical models for calculating the
perturbation and slip velocities. In § 4, we discuss additional flow features, such as the
total velocity profile, effective slip length tensor, slip angle and flow mixing index. The
numerical simulation setup is described in § 5. In § 6, we present the results and, in § 7, we
provide a summary of the main findings of our work.

2. Governing equations

2.1. Equations of motion
This section presents our plane Poiseuille flow of a Bingham fluid with an SH (or CP)
lower wall, including the governing continuity and momentum balance equations, in a
Cartesian coordinate system (x, y, z) (see figure 1). Motivated by practical considerations,
we consider a channel where the lower boundary is a groovy wall and the upper boundary
has a no-slip condition; this is because, in practice, the construction of a channel with
two symmetrically aligned patterned walls, typically on the micro- or nano-scale, is
challenging (Schmieschek et al. 2012) (we later discuss the extension of our models for the
channels with two patterned walls in Appendix F). Considering a creeping flow motion,
the dimensionless forms of the continuity and momentum balance equations are

∇ · U = 0, (2.1)

−∇P + ∇ · τ = 0, (2.2)

where t is the time, U = Uex + Vey + Wez is the dimensionless velocity vector, P is the
pressure and the deviatoric stress tensor is denoted by τ . The pressure gradient is in the
z′ direction, which is at an angle θ with the z axis (see figure 1). The dimensionless form
of the equations of motion is obtained by considering the half-channel height (Ĥ) as the
characteristic length and the average velocity (Ûave) as the velocity scale. In addition, the
characteristic viscous stress, i.e. μ̂p(Ûave/Ĥ) where μ̂p is the plastic viscosity, is used to
obtain the dimensionless form of the pressure and stress terms.

The Bingham constitutive equation is considered to model the viscoplastic rheology,
which in dimensionless form is presented as⎧⎨⎩τ =

(
1 + B

γ̇

)
γ̇ , τ > B,

γ̇ = 0, τ ≤ B,
(2.3)
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where the strain rate tensor is shown by γ̇ = ∇u + (∇u)T, and the norms (magnitudes) of
the stress and strain rate tensors are τ = √

τijτij/2 and γ̇ = √
γ̇ ijγ̇ ij/2, respectively (here,

i and j refer to the coordinate axes, i.e. x, y and z). The ratio of the yield stress (τ̂0) to the
characteristic viscous stress is represented by the Bingham number and defined as

B = τ̂0Ĥ

μ̂pÛave
. (2.4)

Based on (2.3), formation of plug zones are expected for a viscoplastic flow when the
applied stress is smaller than the yield stress. For example, formation of an unyielded plug
zone in the channel centre is a characteristic of the creeping Poiseuille flow of viscoplastic
materials. Based on (2.3), at the yield surfaces and inside the plug, the strain-rate tensor
and its norm vanish.

2.2. No-slip base flow
Given the symmetry condition for the no-slip base flow, i.e. with the no-slip condition at
both walls, the base flow pressure (Pb

0) and velocity (Ub
0) for the lower half of the channel

can be easily derived as

Pb
0 = −τwz′ + constant, (2.5)

Ub
0(y) =

{
C1y + C2y2, 0 ≤ y ≤ h0,

C3, h0 ≤ y ≤ 1,
(2.6)

where C1 = τw − B, C2 = −(τw/2), C3 = (τw − B)2/2τw and h0 denotes the location of
the lower yield surface. The wall shear stress, τw, at y = 0 corresponds to the largest
positive root of the following equation:

2τ 3
w − (3B + 6)τ 2

w + B3 = 0. (2.7)

Subsequently, one can find the location of lower yield surface as

h0 = 1 − B
τw
. (2.8)

Since the Ub
0 vector is in the z′ direction, the base no-slip velocity has two components in

the x and z directions, i.e. U0 = Ub
0 sin θ and W0 = Ub

0 cos θ , respectively.

2.3. Slip model
The linear Navier slip law is considered to account for the Bingham fluid slippage on the
interface. Therefore, the following relation for the slip velocities in the z (ws) and x (us)
directions is derived for the Bingham fluid:

{ws, us} = b{τyz, τxy}y=0, (2.9)

where b represents the dimensionless slip number, defined as b = b̂μ̂p/Ĥ. Here, b̂ is the
dimensional slip number, correlating the dimensional values of the slip velocity and shear
stress.

Based on the analyses developed for the Newtonian flows (Schönecker & Hardt 2013;
Nizkaya, Asmolov & Vinogradova 2014; Schönecker, Baier & Hardt 2014), in general,
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b̂ can be related to the air viscosity (μ̂a) and the groove aspect ratio (Ar = d̂/δ̂). In
addition, b̂ (and, hence, b) has been proven to show a tensorial form for SH surfaces, i.e.
with different values of the local slip length (number) in the longitudinal and transverse
directions. For large values of the local slip length, where the flow condition on the
liquid/air interface approaches the no-shear condition, the tensorial form of b̂ (and, hence,
b) becomes less important and can be effectively replaced by a scalar form, i.e. an equal
value can be considered for the slip number in both the longitudinal and transverse
directions (Schönecker & Hardt 2013; Nizkaya et al. 2014; Schönecker et al. 2014). On the
other hand, for the CP surfaces, the local slip length can be identical in the longitudinal
and transverse conditions, rendering a scalar form of the slip number (Qian et al. 2005;
Wang et al. 2008; Lee et al. 2014). Since the tensorial form of the slip number has not yet
been explored for the viscoplastic flows (refer to the discussion in § 7), here we assume a
scalar form of the slip number, i.e. a similar value of b̂ (and, hence, b) for longitudinal,
transverse and oblique configurations. However, assuming a tensorial slip number, i.e. any
functionality of b̂ (and, hence, b) with respect to the angle θ , the models developed in
this study would remain valid (see preliminary tensorial form analysis of the local slip
number in Appendix D). We may expect that the assumed scalar form for the slip number
can provide us with reasonably accurate predictions of the flow dynamics over the CP
surfaces, while capturing leading physical trends for the flow over SH surfaces at large
values of the slip number. In addition, the upcoming solutions may provide some insight
about the viscoplastic flow dynamics over the liquid-infused (LI) surfaces; however, to
provide accurate results for this case, the exact tensorial form of the slip number must be
employed and the corresponding scalar form is not valid (Schönecker et al. 2014).

Before proceeding, it is worth mentioning that both the groove (stripe) period (width)
(Sbragaglia & Prosperetti 2007; Hodes et al. 2017; Game, Hodes & Papageorgiou 2019)
and channel height (or pipe diameter) (Lauga & Stone 2003; Schnitzer & Yariv 2017,
2019; Kirk et al. 2020) have been used within the literature as the characteristic lengths
to make the slip length dimensionless. In this work, for definition of the slip number, i.e.
b = b̂μ̂p/Ĥ, the half-channel height (Ĥ) is used as the characteristic length. Although
employing the groove (stripe) period (L̂) as the characteristic length can be useful when
interpreting the local slip dynamics on the patterned wall, our definition of the slip number
is also physically relevant, as it provides an understanding regarding the overall patterned
wall effects on the channel flow dynamics. In addition, the defined dimensionless slip
number in our work can be simply converted to the slip number that is made dimensionless
using the groove (stripe) period (bL) as bL = b/�. Therefore, one can also use such a
conversion to be able to interpret the results, if required. In addition, the usage of Ĥ as the
characteristic length is prevalent and advantageous in defining the Bingham number (B),
which is a key parameter of our viscoplastic flow.

3. Mathematical modelling

3.1. Perturbation equations
In this work, semi-analytical and explicit-form solutions are developed for the Poiseuille
flow of Bingham fluids in channels with a patterned wall, considering the limiting cases
of longitudinal (θ = 0) and transverse (θ = 90◦) grooves (stripes), as well as the general
case of the oblique (0 < θ < 90◦) flow configuration. These solutions are developed for
the thick channel limit (� = L̂/Ĥ � 1), where the lower yield surface (located at y = h)
remains flat (Rahmani & Taghavi 2022). The solution can be derived by considering
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infinitesimal perturbations induced by the patterned wall (with respect to the no-slip
flow) in the lower yielded zone (−�/2 ≤ x ≤ �/2 and 0 ≤ y < h) and solving for the
leading-order terms. Therefore, the total velocity vector (U) is written as

U = U0 + εu, (3.1)

where U0 = U0ex + W0ez, i.e. (U0, 0,W0), represents the no-slip velocity vector and

u = uex + vey + wez (3.2)

shows the perturbation velocity vector (u, v,w). Here, ε = κ−1 is the perturbation
parameter where κ = 2π/� is the patterned wall wavenumber. Based on this perturbation
method, the effective viscosity of the Bingham fluid (μ) and the stress components are
expanded as follows:

μ(U0 + εu) = μ(U0)+ εξ̇ij(u)
∂μ

∂γ̇ ij
(U0)+ O(ε2), (3.3)

τij(U0 + εu) = τij(U0)+ εσij(u)+ O(ε2), (3.4)

where ξ̇ij and σij represent the component of the perturbation strain-rate and stress tensor,
respectively. Henceforth, for presentation simplicity, we use μ0 = μ(U0).

3.1.1. Longitudinal configuration
For the longitudinal groove (stripe) configuration, the no-slip and perturbation velocity
vectors reduce to (0, 0,W0) and (0, 0,w), respectively. In addition, considering an
infinitely long channel in both x and z directions, the velocity gradients in the z direction
are zero (∂U/∂z = 0, a feature valid for any angle of θ ), only two non-zero perturbation
stress components remain for the Bingham fluid as

σyz = ∂w
∂y
,

σxz = μ0
∂w
∂x
,

⎫⎪⎪⎬⎪⎪⎭ (3.5)

where μ0 = 1 + B/(dUb
0/dy). Therefore, the perturbed momentum balance equation

shrinks to

μ0
∂2w
∂x2 + ∂2w

∂y2 = 0, (3.6)

in which the perturbation parameter is dropped.
In the present study, to facilitate the identification of various orders of perturbed

momentum balance equations for a given flow configuration, a rescaling is introduced
as

εX = x, εY = y, εΨ = ψ, (3.7a–c)

where ψ is the perturbation stream function such that u = ∂ψ/∂y and v = −∂ψ/∂x.
The introduced rescaling is motivated by the decay of perturbations in the y direction,
which renders the perturbation negligible beyond a distance comparable to the groove
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periodicity length. Consequently, the rescaled distance over which the perturbation field is
considerable becomes of order ε0. Thus, we may expand the viscosity over Y = 0 to reach

μ0 = 1 + B
C1

− ε

(
2BC2

C2
1

)
Y, (3.8)

in which coefficients C1 and C2 are given in § 2.2. Therefore, the rescaled form of (3.6)
for the leading-order terms is obtained as

(
1 + B

C1

)
∂2w
∂X2 + ∂2w

∂Y2 = 0, (3.9)

where ε drops from (3.9).
Following the convention in the field (Lauga & Stone 2003; Belyaev & Vinogradova

2010; Vinogradova & Belyaev 2011), we consider our creeping flow to be periodic in the x
direction with a period of �. Accordingly, in the rescaled system, the flow is periodic in the
X direction with a period of 2π. Therefore, the solution for w can be written in the Fourier
series form as

w(X, Y) =
∞∑

n=0

Bnŵn(Y)cos(nX), (3.10)

where Bn are unknown coefficients that will be calculated later with the use of appropriate
patterned wall conditions. Here, the hat sign is used to define the Fourier coefficient (i.e.
ŵn).

Substituting (3.10) into (3.9), one can find the following ordinary differential equation
(ODE):

d2ŵn

dY2 −
(

1 + B
C1

)
n2ŵn = 0. (3.11)

To close the boundary value problem, the following boundary conditions are considered
(n /= 0):

ŵn(κh) = 0,
dŵn

dY
(κh) = 0, (3.12a,b)

where the first and second conditions from left to right ensure zero perturbation velocity
and zero strain-rate magnitude at the lower yield surface (Y = κh), respectively. The zeroth
term (n = 0) has a linear distribution in Y and is discussed later in § 3.2.

3.1.2. Transverse configuration
In the transverse configuration, the no-slip and perturbation velocity vectors reduce
to (U0, 0, 0) and (u, v, 0), respectively. Perturbing the momentum balance equation,
eliminating the pressure, using the definition of Ψ , considering the rescaling, and
expanding μ0, the following partial differential equation is eventually derived at the
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leading order:
∂4Ψ

∂X4 + ∂4Ψ

∂Y4 +
(

2 + 4B
C1

)
∂4Ψ

∂X2∂Y2 = 0, (3.13)

where ε drops from (3.13). Considering the flow periodicity in X, one can write

Ψ (X, Y) =
∞∑

n=0

AnΨ̂n(Y)cos(nX), (3.14)

where An are unknown coefficients and will be obtained later using the patterned wall
condition. Here, the hat sign is used to define the Fourier coefficient (i.e. Ψ̂n).

Substituting (3.14) into (3.13), we find the following ODE:

d4Ψ̂n

dY4 −
(

2 + 4B
C1

)
n2 d2Ψ̂n

dY2 + n4Ψ̂n = 0. (3.15)

To close the boundary value problem, we consider the following conditions (n /= 0)

Ψ̂n(0) = 0, Ψ̂n(κh) = 0,
dΨ̂n

dY
(κh) = 0,

d2Ψ̂n

dY2 (κh) = 0, (3.16a–d)

where the first condition from left to right ensures the no-penetration assumption at the
patterned wall (i.e. V = 0 at Y = 0). The zero perturbation velocity field at the lower yield
surface (Y = κh) is guaranteed using the second and third conditions (from left to right).
Finally, the zero strain-rate magnitude at the lower yield surface is obtained using the
fourth condition. Here, the zeroth term (n = 0) would show a quadratic functionality of Y ,
as discussed in § 3.2.

3.1.3. Oblique configuration
In the oblique configuration, the no-slip and perturbation velocity vectors, i.e. (U0, 0,W0)
and (u, v,w), respectively, have their most general forms. Accordingly, the perturbation
stress components can be obtained as given in Appendix A. Then, using the definition of
Ψ , adopting the rescaling introduced in (3.7a–c), expanding μ0 via (3.8) and performing
considerable algebra, we derive a set of two coupled partial differential equations for Ψ
and w at the leading order:(

1 + B
C1

)(
∂4Ψ

∂X4 + ∂4Ψ

∂Y4 + 2
∂4Ψ

∂X2∂Y2

)
− B

C1

(
∂4Ψ

∂X4 + ∂4Ψ

∂Y4 − 2
∂4Ψ

∂X2∂Y2

)
sin2θ

− B
C1

(
∂3w
∂Y3 − ∂3w

∂X2∂Y

)
sin θ cos θ = 0, (3.17)(

1 + B
C1

)(
∂2w
∂X2 + ∂2w

∂Y2

)
− B

C1

∂2w
∂Y2 cos2θ − B

C1

(
∂3Ψ

∂Y3 − ∂3Ψ

∂X2∂Y

)
sin θ cos θ = 0,

(3.18)

where ε is dropped from the above equations. Equations (3.17) and (3.18) are unique to
viscoplastic Bingham materials, significantly differing from the corresponding equations
for Newtonian fluids. In the case of Newtonian fluids, we have B = 0 (i.e. μ0 = 1;
see (3.8)); consequently, (3.17) and (3.18) decouple, and become independent of θ ,
i.e. reducing to the corresponding equations for the transverse and longitudinal flows,
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respectively. Thus, for Newtonian fluids, it suffices to solve the perturbed equation
only for the longitudinal and transverse configurations, and the solution for the oblique
configuration can be simply obtained via a linear vector transformation through the
transform (or rotation) matrix (Bazant & Vinogradova 2008; Vinogradova & Belyaev
2011). Therefore, it is clear that the nonlinear viscoplastic rheology sets our work apart
from the Newtonian case, and it plays a crucial role in determining the slip dynamics on a
patterned wall, i.e. a feature that we address in this study.

Considering the flow periodicity in the X direction, one can substitute (3.10) and (3.14)
into (3.17) and (3.18) to arrive at the following coupled ODEs:

An

[(
1 + B

C1

)(
d4Ψ̂n

dY4 − 2n2 d2Ψ̂n

dY2 + n4Ψ̂n

)
− B

C1

(
d4Ψ̂n

dY4 + 2n2 d2Ψ̂n

dY2 + n4Ψ̂n

)
sin2θ

]

− Bn
B
C1

(
d3ŵn

dY3 + n2 dŵn

dY

)
sin θ cos θ = 0, (3.19)

− An
B
C1

(
d3Ψ̂n

dY3 + n2 dΨ̂n

dY

)
sin θ cos θ

+ Bn

[(
1 + B

C1

)(
d2ŵn

dY2 − n2ŵn

)
− B

C1

d2ŵn

dY2 cos2θ

]
= 0. (3.20)

The boundary conditions for these equations are the combination of those for the
longitudinal and transverse configurations, i.e. (3.12a,b) and (3.16a–d). In addition, the
zeroth term solutions (n = 0) are treated similar to those of the longitudinal and transverse
configurations and are discussed further in § 3.2.

3.2. Semi-analytical solution
In this section, we attempt to solve the ODEs (3.11), (3.15), (3.19) and (3.20). These ODEs
have constant coefficients; thus, the solutions for Ψ̂n and ŵn would be in the form eΛnY .
In the thick channel limit, since the perturbation field quickly decays in the Y direction,
the contribution of the terms having positiveΛn, i.e.Λn > 0, becomes negligible. In other
words, one can simply show that the terms with positive Λn belong to the higher orders
of perturbations. Therefore, in the following sections, the solutions for Ψ̂n and ŵn are
obtained considering only the terms with negative Λn.

Before proceeding, let us consider the perturbation velocity field as u instead of εu in
the following sections. This consideration leads to having simpler forms of equations, as
the redundant ε symbol disappears.

3.2.1. Longitudinal configuration
For the longitudinal configuration, (3.11) is solved analytically, keeping the term with the
negative Λn, as

ŵn(Y) = exp(−λ‖nY), λ‖ =
√

1 + B
C1
, (3.21a,b)

where the symbol ‖ represents the longitudinal flow, henceforth. The expression obtained
for ŵn would satisfy the conditions of (3.12a,b), since at Y = κh, i.e. the lower yield
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Viscoplastic flows in channels with a patterned wall

surface, ŵn and dŵn/dY become negligible and belong to the higher orders of perturbation.
After solving for ŵn, the solution for w can be written in the following form:

w(X, Y) = B0

(
1 − Y

κh

)
+

∞∑
n=1

Bnŵn(Y) cos(nX), (3.22)

where the zeroth term solution has a linear distribution in Y and satisfies the zero
perturbation velocity condition at the lower yield surface, i.e. Y = κh. The remaining
condition to be satisfied by the zeroth term solution is the zero strain-rate magnitude at
the lower yield surface, which is satisfied through numerical iterations on h, as explained
in § 4.1.1.

For the longitudinal configuration, the boundary conditions at the patterned wall is
obtained as

w(X, 0)− b
(

B + C1 + κ
∂w
∂Y

)
Y=0

= 0, 0 ≤ X ≤ πϕ, (3.23)

w(X, 0) = 0, πϕ ≤ X ≤ π, (3.24)

where ϕ = δ̂/L̂ is called the slip area fraction and represents the fraction of the patterned
wall that undergoes the slip condition. Equations (3.23) and (3.24) together represent the
patterned wall condition that has been already discussed.

After substituting the solution for the perturbation velocity field, i.e. (3.22), into the
patterned wall condition, i.e. (3.23) and (3.24), the following dual trigonometric series
problem emerges:

B0

(
1 + b

h

)
+

∞∑
n=1

Bn

[
ŵn(0)− bκ

dŵn

dY
(0)
]

cos(nX) = b(B + C1), 0 ≤ X ≤ πϕ,

(3.25)

B0 +
∞∑

n=1

Bnŵn(0) cos(nX) = 0, πϕ ≤ X ≤ π. (3.26)

To calculate the unknown coefficients Bn (n = 0, 1, 2, . . .), we first integrate (3.25) in
[0 X] and then multiply it by sin(mX), where m is a positive integer. Afterwards, we
integrate the resulting equation in [0 πϕ]. Second, we multiply (3.26) by cos(mX) and
then integrate it in [πϕ π]. After the summation of the obtained terms, we establish a
system of linear equations (truncated at the Nth term):

N∑
n=0

P‖
mnBn = M‖

m, (3.27)

where the above coefficient and constant matrices are obtained as

P‖
m0 =

(
1 + b

h

)
I3 + I4, (3.28)

P‖
mn = 1

n

[
ŵn(0)− bκ

dŵn

dY
(0)
]

I1 + ŵn(0)I2, n > 0, (3.29)

M‖
m = b (B + C1) I3, (3.30)

984 A32-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.197


H. Rahmani and S.M. Taghavi

where I1, I2, I3 and I4 are the following integrals

I1 =
∫ πϕ

0
sin(nX) sin(mX) dX, (3.31)

I2 =
∫ π

πϕ

cos(nX) cos(mX) dX, (3.32)

I3 =
∫ πϕ

0
X sin(mX) dX, (3.33)

I4 =
∫ π

πϕ

cos(mX) dX. (3.34)

3.2.2. Transverse configuration
Solving the ODE (3.15) while keeping the terms with negative Λn, we find

Ψ̂n (Y) = exp(−λ⊥1 nY)− exp(−λ⊥2 nY),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ⊥1 =

√
C1(2B + C1 + 2

√
B2 + BC1)

C1
,

λ⊥2 =
√

C1(2B + C1 − 2
√

B2 + BC1)

C1
,

(3.35a,b)

where the symbol ⊥ represents the transverse flow henceforth. The solution form
developed previously for Ψ̂n satisfies the no-penetration condition at the patterned wall,
i.e. Ψ̂n(0) = 0, hence v(X, 0) = 0 (see (3.38) further below). At Y = κh, the values
of Ψ̂n, dΨ̂n/dY and d2Ψ̂n/dY2 become negligible and they belong to higher orders of
perturbations; thus, the conditions of zero perturbation velocity and zero strain-rate
magnitude at the lower yield surface are satisfied (for n > 0 in the leading order). The
zeroth term solution (i.e. n = 0) would have a quadratic form for Ψ , leading to a linear
distribution for u (similar to w). Again, the no-penetration condition at Y = 0 and the zero
perturbation velocity at the lower yield surface (Y = κh) is satisfied by the zeroth term
solution. However, the condition of zero strain rate magnitude at the yield surface should
be satisfied through an iterative approach on h, as described in § 4.1.1.

Having Ψ̂n, one can now write the solution for Ψ , u and v as

Ψ (X, Y) = A0

(
Y − Y2

2κh

)
+

∞∑
n=1

AnΨ̂n(Y) cos(nX), (3.36)

u(X, Y) = A0

(
1 − Y

κh

)
+

∞∑
n=1

An
dΨ̂n

dY
(Y) cos(nX), (3.37)

v(X, Y) =
∞∑

n=1

AnΨ̂n(Y)n sin(nX). (3.38)
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The patterned wall condition for the transverse configuration holds

u(X, 0)− b
(

B + C1 + κ
∂u
∂Y

)
Y=0

= 0, 0 ≤ X ≤ πϕ, (3.39)

u(X, 0) = 0, πϕ ≤ X ≤ π. (3.40)

Substituting (3.37) into (3.39) and (3.40) leads to a dual trigonometric series problem:

A0

(
1 + b

h

)
+

∞∑
n=1

An

[
dΨ̂n

dY
(0)− bκ

d2Ψ̂n

dY2 (0)

]
cos(nX) = b(B + C1), 0 ≤ X ≤ πϕ,

(3.41)

A0 +
∞∑

n=1

An
dΨ̂n

dY
(0) cos(nX) = 0, πϕ ≤ X ≤ π, (3.42)

where (3.41) and (3.41) can be solved for An, using the same method described for the
longitudinal flow configuration. Thus, the following system is obtained

N∑
n=0

P⊥
mnAn = M⊥

m , (3.43)

where the coefficient and constant matrices for (3.43) are calculated as

P⊥
m0 = P‖

m0, (3.44)

P⊥
mn = 1

n

[
dΨ̂n

dY
(0)− bκ

d2Ψ̂n

dY2 (0)

]
I1 + dΨ̂n

dY
(0)I2, n > 0, (3.45)

M⊥
m = M‖

m. (3.46)

3.2.3. Oblique configuration
Considering the solution for ŵn and Ψ̂n to be in the form of eΛnY , the ODEs (3.19) and
(3.20) lead to the following relation:(

Ω11 Ω12
Ω21 Ω22

)(
An
Bn

)
= 0, (3.47)

where

Ω11 =
(

1 + B
C1

)
(Λ2

n − n2)2 − B
C1
(Λ2

n + n2)2 sin2 θ, (3.48)

Ω22 =
(

1 + B
C1

)
(Λ2

n − n2)− B
C1
Λ2

n cos2 θ, (3.49)

Ω12 = − B
C1
(Λ2

n + n2)Λn sin θ cos θ, (3.50)

Ω21 = Ω12. (3.51)

In order to have non-zero solution for An and Bn, the determinant of the coefficient
matrix in (3.47) should be zero; thus, Ω11Ω22 −Ω12Ω21 = 0. This condition leads to
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finding six solutions for Λn, with three being negative. Keeping the terms with negative
Λn, the solution for ŵn and Ψ̂n can be written as (for n > 0)

ŵn(Y) = exp(−λ∠1 nY)+ Γ (1)n exp(−λ∠2 nY)+ Γ (2)n exp(−nY), (3.52)

Ψ̂n(Y) = Δ(1)n exp(−λ∠1 nY)− exp(−λ∠2 nY)+Δ(2)n exp(−nY), (3.53)

where the symbol ∠ represents the oblique flow, henceforth, and

λ∠1 =

√√√√C1

(
2B + C1 − 3

2
Bcos2θ + 2

√
B2 + BC1 + 9

16
B2cos4θ − Bcos2θ

(
3
2

B + C1

))
C1

,

(3.54)

λ∠2 =

√√√√C1

(
2B + C1 − 3

2
Bcos2θ − 2

√
B2 + BC1 + 9

16
B2cos4θ − Bcos2θ

(
3
2

B + C1

))
C1

.

(3.55)

The solution for each ŵn and Ψ̂n contains three terms; thus, for each solution, two
coefficients are required in order to determine the contribution of each term to that
solution, i.e. Γ (1)n and Γ (2)n for ŵn and Δ(1)n and Δ(2)n for Ψ̂n. Since the no-penetration
condition should be satisfied at Y = 0, one finds Δ(2)n = 1 −Δ

(1)
n . It is worth mentioning

that the forms of solution written in (3.52) and (3.53) are comparable with those of the
longitudinal and transverse configurations (3.21a,b) and (3.35a,b), as one might expect
that when θ → 0, Γ (1)n → 0 and Γ (2)n → 0; however, when θ → 90◦, Δ(1)n → 1 and,
hence, Δ(2)n → 0. One should also note that when θ → 0, λ∠1 → λ‖ and once θ → 90◦,
λ∠1 → λ⊥1 and λ∠2 → λ⊥2 .

Substituting the solution terms for ŵn and Ψ̂n with identical Λn, e.g. exp(−λ∠1 nY) and
Δ
(1)
n exp(−λ∠1 nY), into (3.20), one can obtain following relations:

Δ(1)n = −
(

Bn

An

)(
Ω22

Ω12

)
Λn=−λ∠1 n

, (3.56)

Γ (1)n =
(

An

Bn

)(
Ω12

Ω22

)
Λn=−λ∠2 n

, (3.57)

Γ (2)n = (Δ(1)n − 1)
(

An

Bn

)(
Ω12

Ω22

)
Λn=−n

. (3.58)

The numerical procedure for calculating the above-mentioned coefficients is discussed at
the end of this section (i.e. § 3.2.3).

The solutions provided in (3.52) and (3.53) are for n > 0. Indeed, the solution form
for n = 0 of the oblique flow is identical to those of the longitudinal and transverse flow
(i.e. the zero mode of the perturbation velocity is a linear function of Y). In fact, when
considering n = 0 in (3.52) and (3.53), the exponential forms vanish and the solutions
for n = 0 become similar to those obtained for the longitudinal and transverse flows (see
(3.22) for w0 and (3.36) for Ψ0).

984 A32-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.197


Viscoplastic flows in channels with a patterned wall

In the oblique configuration, the patterned wall conditions are as follows:

w(X, 0)− b

⎡⎢⎢⎢⎢⎣
(B + C1) cos θ

+
(

1 + B
C1

sin2θ

)
κ
∂w
∂Y

− B
C1

sin θ cos θκ
∂u
∂Y

⎤⎥⎥⎥⎥⎦
Y=0

= 0, 0 ≤ X ≤ πϕ, (3.59)

w(X, 0) = 0, πϕ ≤ X ≤ π. (3.60)

u(X, 0)− b

⎡⎢⎢⎢⎢⎣
(B + C1) sin θ

+
(

1 + B
C1

cos2θ

)
κ
∂u
∂Y

− B
C1

sin θ cos θκ
∂w
∂Y

⎤⎥⎥⎥⎥⎦
Y=0

= 0, 0 ≤ X ≤ πϕ, (3.61)

u(X, 0) = 0, πϕ ≤ X ≤ π. (3.62)

These coupled patterned wall conditions for the oblique configuration highlight the strong
effects of the nonlinear viscoplastic rheology, since new terms emerge in the shear stress
components originated from the nonlinear viscosity.

Substituting the solutions in the form of (3.22) and (3.37) into the patterned wall
conditions, i.e. (3.59), (3.60), (3.61) and (3.62), the following dual trigonometric series
problems emerge:

B0

(
1 + b(C1 + Bsin2θ)

C1h

)
− A0

(
bB sin θ cos θ

C1h

)

+
∞∑

n=1

Bn

[
ŵn(0)− b

(
1 + B

C1
sin2θ

)
κ

dŵn

dY
(0)
]

cos(nX)

+
∞∑

n=1

Anb
B
C1

sin θ cos θκ
d2Ψ̂ n

dY2 (0) cos(nX)

= b(B + C1) cos θ, 0 ≤ X ≤ πϕ, (3.63)

B0 +
∞∑

n=1

Bnŵn(0) cos(nX) = 0, πϕ ≤ X ≤ π, (3.64)

A0

(
1 + b(C1 + Bcos2θ)

C1h

)
− B0

(
bB sin θ cos θ

C1h

)

+
∞∑

n=1

An

[
dΨ̂ n

dY
(0)− b

(
1 + B

C1
cos2θ

)
κ

d2Ψ̂ n

dY2 (0)

]
cos(nX)

+
∞∑

n=1

Bnb
B
C1

sin θ cos θκ
dŵn

dY
(0) cos (nX)

= b(B + C1) sin θ, 0 ≤ X ≤ πϕ, (3.65)
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A0 +
∞∑

n=1

An
dΨ̂n

dY
(0) cos(nX) = 0, πϕ ≤ X ≤ π. (3.66)

Note that for a Newtonian fluid, as B = 0, the dual series problems given above become
decoupled and, since the solutions for ŵn and Ψ̂n are identical to those of the longitudinal
and transverse flow, respectively, we would simply have B∠

n = B‖
n cos θ and A∠

n = A⊥
n sin θ

for n = 0, 1, 2, . . .. However, in a viscoplastic material, the dependence of ŵn and Ψ̂n
solutions on θ and the coupling between the ODEs and the patterned wall conditions make
the problem different and more challenging.

Using the method developed for the longitudinal and transverse configurations, one can
find the following coupled system of linear equations:

N∑
n=0

Pw∠
mn Bn = Mw∠

m −
N∑

n=0

Ew∠
mn An, (3.67)

N∑
n=0

Pu∠
mnAn = Mu∠

m −
N∑

n=0

Eu∠
mnBn, (3.68)

where

Pw∠
m0 =

(
1 + b

h

[
1 + B

C1
sin2θ

])
I3 + I4, (3.69)

Ew∠
m0 = −b

h
B
C1

sin θ cos θ I3, (3.70)

Pw∠
mn = 1

n

[
ŵn(0)− b

(
1 + B

C1
sin2θ

)
κ

dŵn

dY
(0)
]

I1 + ŵn(0)I2, n > 0, (3.71)

Ew∠
mn = b

n
B
C1

sin θ cos θκ
d2Ψ̂ n

dY2 (0)I1, n > 0, (3.72)

Mw∠
m = b(B + C1) cos θ I3 (3.73)

and

Pu∠
m0 =

(
1 + b

h

[
1 + B

C1
cos2θ

])
I3 + I4, (3.74)

Eu∠
m0 = Ew∠

m0 , (3.75)

Pu∠
mn = 1

n

[
dΨ̂ n

dY
(0)− b

(
1 + B

C1
cos2θ

)
κ

d2Ψ̂ n

dY2 (0)

]
I1 + dΨ̂ n

dY
(0)I2, n > 0, (3.76)

Eu∠
mn = b

n
B
C1

sin θ cos θκ
dŵn

dY
(0)I1, n > 0, (3.77)

Mu∠
m = b(B + C1) sin θ I3. (3.78)

Regarding the numerical procedure, in the first iteration, an initial guess for Δ(1)n , Γ (1)n

and Γ (2)n is considered, e.g. Δ(1,0)n = 1, Γ (1,0)n = 0 and Γ (2,0)n = 0. Then, one can find
ŵn and Ψ̂n based on (3.52) and (3.53). Therefore, in the first iteration, one can form the
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Viscoplastic flows in channels with a patterned wall

system of linear equations (3.67) and (3.68), while ignoring the rightmost term on the
right-hand side of these linear systems (i.e. Ew∠

mn An and Eu∠
mnBn), and solve for An and Bn.

In the next iteration, the new values of An and Bn should be used to update the coefficients
Δ
(1)
n , Γ (1)n and Γ (2)n based on (3.56), (3.57) and (3.58), and, hence, to update ŵn and Ψ̂n

through (3.52) and (3.53). Then, the system of linear equations (3.67) and (3.68) can be
solved, while using the new values of An and Bn in order to calculate the rightmost term
on the right-hand side of these linear systems (i.e. Ew∠

mn An and Eu∠
mnBn), leading to finding

updated values for An and Bn. This iterative procedure continues until reaching converged
values for Δ(1)n , Γ (1)n and Γ (2)n , which ensures the convergence of An and Bn as well (see
Appendix C for an example of such a convergence).

3.3. Explicit-form solution
Let us attempt to derive an explicit-form solution for the perturbation velocity by means
of analytical solutions to the dual trigonometric series problems, e.g. (3.25) and (3.26),
emerging after applying the patterned wall conditions for the longitudinal, transverse and
oblique flow configurations. To this end, we adopt a technique originally introduced by
Sneddon (1966) and later extended to the study of Newtonian fluids in an SH channel by
Belyaev & Vinogradova (2010) to solve the resulting dual trigonometric series problem.
As the first step, the dual series for the longitudinal and transverse configurations can be
summarised in the following form:

A∗
0

(
1 + b

h

)
+

∞∑
n=1

A∗
n[1 + bκλ∗n] cos(nX) = bS∗, 0 ≤ X ≤ πϕ, (3.79)

A∗
0 +

∞∑
n=1

A∗
n cos(nX) = 0, πϕ ≤ X ≤ π, (3.80)

where

for longitudinal :

⎧⎪⎪⎨⎪⎪⎩
A∗

0 = B0,

A∗
n = Bn,

λ∗ = λ‖,
S∗ = B + C1,

(3.81)

for transverse :

⎧⎪⎪⎨⎪⎪⎩
A∗

0 = A0,

A∗
n = An(λ

⊥
2 − λ⊥1 )n,

λ∗ = λ⊥1 + λ⊥2 ,
S∗ = B + C1.

(3.82)

To obtain the dual series form (3.79) and (3.80) for the oblique configuration, further
approximations are required. First, using the estimation (see Appendix B for more details)

Bn

An
≈ −αn cot θ, α > 0, (3.83)
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along with (3.56), (3.57) and (3.58) leads to the following approximations:

Δ(1)n ≈ Δ1 = α
(B + C1)((λ

∠
1 )

2 − 1)− B(λ∠1 )
2cos2θ

B((λ∠1 )
2 + 1)λ∠1 sin2θ

, (3.84)

Δ(2)n ≈ Δ2 = 1 −Δ1, (3.85)

Γ (1)n ≈ Γ1 = − 1
α

B((λ∠2 )
2 + 1)λ∠2 sin2θ

(B + C1)((λ
∠
2 )

2 − 1)− B(λ∠2 )
2cos2θ

, (3.86)

Γ (2)n ≈ Γ2 = 2
α
(Δ1 − 1) tan2 θ, (3.87)

where, as should be expected, Γ1, Γ2 → 0 once θ → 0. Knowing the fact that Δ1 → 1
once θ → 90◦, one can find

α = B((λ⊥1 )
2 + 1)λ⊥1

(B + C1)((λ
⊥
1 )

2 − 1)
. (3.88)

These approximations enable us to obtain a reasonable estimate for the solution of ŵn and
Ψ̂n based on (3.52) and (3.53).

Using the estimation mentioned for Bn/An and also estimating B0/A0 ≈ cot θ , which
stems from a weak secondary flow stream in the x′ direction for the thick channel limit, we
are able to make the patterned wall conditions (3.63), (3.64), (3.65) and (3.66) decoupled
to find

for oblique :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for w :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A∗
0 = B0, A∗

n = Bn(1 + Γ1 + Γ2),

λ∗ = λ∗w =
Υ1

(
1 + B

C1
sin2θ

)
− Υ2

B
αC1

sin2θ

1 + Γ1 + Γ2
,

S∗ = (B + C1) cos θ,

for u :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A∗
0 = A0, A∗

n = An(−Δ1λ
∠
1 + λ∠2 − 1 +Δ1)n,

λ∗ = λ∗u =
Υ2

(
1 + B

C1
cos2θ

)
− Υ1

αB
C1

cos2θ

Δ1λ
∠
1 − λ∠2 + 1 −Δ1

,

S∗ = (B + C1) sin θ,

(3.89)

where
Υ1 = (λ∠1 + Γ1λ

∠
2 + Γ2),

Υ2 = (Δ1(λ
∠
1 )

2 − (λ∠2 )
2 + 1 −Δ1).

}
(3.90)

In (3.89), the terms corresponding to w-equations (u-equations) represent (3.63) and (3.64)
((3.65) and (3.66)) when written in the form of (3.79) and (3.80). One should note also
that, θ → 0 (θ → 90◦), A∗

n, λ∗ and S∗ for w-equations (u-equations) converge to those
shown in (3.81) for the longitudinal ((3.82) for the transverse) flow.

Note that, in (3.79), the location of the lower yield surface in X − Y coordinate, i.e.
Y = κh, is approximated with the corresponding value for the no-slip flow, i.e. κh ≈ κh0.
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Viscoplastic flows in channels with a patterned wall

As demonstrated by Rahmani & Taghavi (2022), with an increase in the slip number,
before any plug formation at the liquid/air interface, h only slightly deviates from h0.

According to Sneddon (1966), to solve the dual series problem (3.79) and (3.80), one
can write

A∗
0 +

∞∑
n=1

A∗
n cos(nX) = cos

(
X
2

)∫ πϕ

X

�(t) dt√
cos(X)− cos(t)

, 0 ≤ X ≤ πϕ (3.91)

and, therefore, A∗
0 and A∗

n are obtained as

A∗
0 = 1

π

(
π√

2

∫ πϕ

0
�(t) dt

)
, (3.92)

A∗
n = 2

π

(
π

2
√

2

∫ πϕ

0
�(t)[Pn(cos(t))+ Pn−1(cos(t))]dt

)
, (3.93)

where Pn is the Legendre polynomial.
Integrating (3.79) in [0 X], while substituting (3.91) and (3.93), one can derive

bκλ∗
∫ πϕ

0

�(t)√
2

∞∑
n=1

[Pn(cos(t))+ Pn−1(cos(t))] sin(nX) dt

=
(

bS∗ − A∗
0b

h0

)
X −

∫ X

0
cos

(
X
2

)∫ πϕ

X

�(t) dt√
cos(X)− cos(t)

dX. (3.94)

The rightmost term on the right-hand side of (3.94) represents an integral of the slip
velocity in [0 X], where X ∈ [0 πϕ]. The aforementioned term poses a challenge in
obtaining an exact solution for the dual trigonometric series problem (Sneddon 1966).
In Belyaev & Vinogradova (2010), this term was split into two integrals, and only one
of them was considered in the solution, whereas the other was neglected (see Belyaev &
Vinogradova (2010) for details). Here, we instead make an approximation for this integral
as follows: ∫ X

0
cos

(
X
2

)∫ πϕ

X

�(t) dt√
cos(X)− cos(t)

dX ≈ X
ϕ

A∗
0. (3.95)

Such an approximation is based on the fact that the integral of the slip velocity in [0 X]
may be linearly estimated based on the X/πϕ fraction of the true integral, which is πA∗

0,
where A∗

0 represents the average slip velocity in [0 π].
Substituting (3.95) in (3.94), according to Sneddon (1966), �(t) has the solution in the

form of

�(t) = 2
π

d
dt

∫ t

0

sin
(
ξ

2

)
√

cos(ξ)− cos(t)

⎡⎢⎢⎣
(

bS∗ − A∗
0

(
1
ϕ

+ b
h0

))
bκλ∗

ξ

⎤⎥⎥⎦ dξ . (3.96)

Subsequently, using (3.92) and (3.96), A∗
0 can be obtained:

A∗
0 =

2S∗ ln
[
sec
(πϕ

2

)]
κλ∗ + 2

(
1

bϕ
+ 1

h0

)
ln
[
sec
(πϕ

2

)] . (3.97)

In addition, having �(t), A∗
n (for n /= 0) should be calculated using (3.93).
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Considering the fact that A∗
0 represents the average slip velocity (in the X or z direction),

(3.97) can be used to explicitly reveal the slip dynamics for any flow configuration type
(0 ≤ θ ≤ 90◦), thick channel geometry (� � 1, 0 < ϕ < 1), liquid/air interface or slippery
stripe dynamics (various b) and Bingham fluid rheology (various B).

4. Flow features

In this section, we discuss some of the flow features of interest, including the total velocity
field, plug formation at the SH wall, effective slip length, slip angle and flow mixing. In
this section, the aforementioned features are presented in the main coordinate system, i.e.
x, y and z.

4.1. Total velocity
The superimposition of the no-slip and perturbation velocities provides the total velocity
profile. Since the perturbation field alters the position of the lower yield surface (y =
h), impacting the velocity profiles, in general an iterative numerical scheme is needed to
determine h, as discussed in § 4.1.1. Adhering to the no-slip boundary conditions at the
upper wall and continuity of the velocity profile at y = h, we simply obtain the ensuing
distribution for the total velocity:

U(x, y) =
⎧⎨⎩[C1y + C2y2] sin θ + u(x, y), 0 ≤ y ≤ h,

[C1h + C2h2] sin θ, h ≤ y ≤ hu,

[C5(2 − y)+ C6(2 − y)2] sin θ, hu ≤ y ≤ 2,
(4.1)

V(x, y) =
⎧⎨⎩v(x, y), 0 ≤ y ≤ h,

0, h ≤ y ≤ hu,
0, hu ≤ y ≤ 2,

(4.2)

W(x, y) =
⎧⎨⎩[C1y + C2y2] cos θ + w(x, y), 0 ≤ y ≤ h,

[C1h + C2h2] cos θ, h ≤ y ≤ hu,

[C5(2 − y)+ C6(2 − y)2] cos θ, hu ≤ y ≤ 2,
(4.3)

where U, V and W are total velocity components in the x, y and z directions, respectively.
We remind that hu is the location of the upper yield surface. Note that, after calculating h
(as explained in § 4.1.1), one can calculate hu and the unknown coefficients C5 and C6 (as
discussed in § 4.1.2).

4.1.1. Finding lower yield surface location (h)
In the vicinity of the lower yield surface, i.e. far from the patterned wall, the total
velocity vector is predominantly oriented in the z′ direction, with insignificant higher-order
contributions in the x′ direction. Therefore, in each iteration of the numerical procedure
explained in § 3.2.3, extra iterations are required to determine the point where the gradient
of the total velocity with respect to the y direction vanishes, leading to a vanishing
magnitude of the total strain rate. Thus, one can write

d〈W ′〉
dy

= dUb
0

dy
+ d〈w∠〉

dy
cos θ + d〈u∠〉

dy
sin θ = 0, at y = h, (4.4)
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leading to the following relation for h:

h =
−C1 −

√
C2

1 + 8C2(B0 cos θ + A0 sin θ)

4C2
. (4.5)

The solution can be achieved via a nested iteration, explained as follows. At each iteration,
once coefficients A0 and B0 are updated (in an inner loop), extra iterations are required to
find a converged value of h using (4.5) and the patterned wall condition, while keeping the
former values of ŵn and Ψ̂n. After finding a converged h, ŵn and Ψ̂n, and, hence, A0 and
B0 are updated through the next iteration. Our results (omitted for brevity) reveal that a
converged value of h is typically achieved after few iterations, with a relative error of less
than 10−6.

4.1.2. Finding C5, C6 and hu

The remaining unknowns C5, C6 and hu can be obtained using the following three
conditions, ensuring the velocity profile continuity (4.6) and zero strain-rate magnitude
(4.7) at the upper yield surface, while maintaining the fixed flow rate (4.8)

C5(2 − hu)+ C6(2 − hu)2 = C1h + C2h2, (4.6)

C5 + 2C6(2 − hu) = 0, (4.7)

Uave sin θ + Wave cos θ = 1, (4.8)

where Uave and Wave are the cross-sectional averaged total velocities in the x and z
directions, respectively, and they are calculated through⎡⎢⎢⎢⎣

∫ h

0
(C1y + C2y2) dy +

∫ hu

h
(C1h + C2h2) dy

+
∫ 2

hu
(C5(2 − y)+ C6(2 − y)2) dy

⎤⎥⎥⎥⎦ � cos θ

+
∫ �/2

−�/2

∫ h

0
w(x, y) dx dy = 2�Wave,⎡⎢⎢⎢⎣

∫ h

0
(C1y + C2y2) dy +

∫ hu

h
(C1h + C2h2) dy

+
∫ 2

hu
(C5(2 − y)+ C6(2 − y)2) dy

⎤⎥⎥⎥⎦ sin θ

+
∫ h

0
u(x, y) dy = 2Uave.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

One can simply show that ∫ �/2

−�/2

∫ h

0
w(x, y) dx dy = B0�h/2, (4.10)

and ∫ h

0
u(x, y) dy = A0h/2. (4.11)

Thus, the solution of (4.6), (4.7) and (4.8) provides us with the values of C5, C6 and hu.
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4.2. Onset of SH wall plug formation
For viscoplastic flows over SH surfaces, it is expected that, at some critical value of the
slip number (i.e. bcr, which is relatively large), the no-shear condition becomes locally
met on the liquid/air interface. On the other hand, assuming no formation of nano-bubbles
on the slippery stripes of CP surfaces, herein, we may consider partial-shear condition
on the slippery stripes; thus, we can assume b < bcr for CP surfaces (Lee et al. 2014).
Therefore, on an SH wall, at y = 0 and x = 0 (i.e. the middle of the slip zone), we might
have ∂{W,U}/∂y = 0 (due to the no-shear condition) and ∂{W,U}/∂x = 0 (due to the
symmetry with respect to x = 0 for a creeping flow). These lead to the zero strain rate
magnitude and, hence, formation of an unyielded plug zone on the liquid/air interface,
called the SH wall plug.

Before proceeding, to elaborate more on the fact that our model is capable of capturing
the onset of no-shear condition, let us consider the transverse flow (i.e. θ = 90◦), for which
the Navier slip law (2.9) reduces to

us = bτxy|y=0 = b
[(

1 + B
γ̇

)
γ̇xy

]
y=0

. (4.12)

Based on (4.12), the local slip length on the liquid/air interface is χl = b(1 + B/γ̇ )y=0.
An increase in the slip number (b) leads to a more slippery interface, thus, reducing the
strain-rate magnitude (γ̇ ) on the interface. Therefore, based on the above Navier slip law,
an increase in b and, simultaneously, a decrease in γ̇ lead to growth in the local slip length
(χl). Theoretically, a further increase in b leads to a zero strain-rate magnitude at x = 0
and y = 0 (i.e. the middle of the liquid/air interface); thus, an infinite local slip length
(χl → ∞) is achieved representing the onset of the no-shear condition at the interface.
Therefore, at the onset of the no-shear condition, the local slip length (χl) becomes infinite
and the slip number (b) has a finite value. In the other words, based on the perturbed form
of the Navier slip law for the transverse flow (see (3.39)), an increase in b eventually
leads to the condition ∂U/∂y = κ∂u/∂Y + C1 = 0 at x = 0 and y = 0 (i.e. the no-shear
condition on the liquid/air interface), causing the local shear stress to become τxy = B,
which describes the onset of SH wall plug formation. It is important to emphasise that
our proposed solutions are strictly valid only up to the establishment of the SH wall
plug. In fact, through the Navier slip law used in our work, we are able to apply the
partial-shear (b < bcr) and no-shear (b ≈ bcr) conditions at the liquid/air interface based
on the developed mathematical solutions. To accurately determine the critical slip number
(bcr), which indicates the onset of SH wall plug formation, it is necessary to increase
the slip number until the no-shear condition is attained at x = 0 and y = 0, using the
semi-analytical solution approach. We elaborate more on the flow dynamics close to and
at the no-shear condition in Appendix E.

To obtain an explicit relation for the onset of the SH wall plug formation, we exploit
the nearly uniform distribution of the shear stress/strain at the liquid/air interface of the
SH wall, with the exception of two peaks near the groove edges (Teo & Khoo 2009;
Rahmani & Taghavi 2022). This fact has been employed in Schönecker et al. (2014) to
derive analytical solutions for the flow of Newtonian fluids over micro-structured surfaces
in the Cassie state, with an enclosed second fluid inside the cavities. By assuming a
no-shear condition around the liquid/air interface at the critical slip condition, one can
estimate C1 cos θ ≈ κ∂w/∂Y and C1 sin θ ≈ κ∂u/∂Y at Y = 0 and 0 ≤ X ≤ πϕ. Using
these estimations, integrating (3.59) and (3.61) over the interval [0;πϕ], summing the
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resulting terms, and performing some algebra, one can find the following relation for bcr:

bcr ≈ 〈w∠
s 〉cr + 〈u∠

s 〉cr
Bϕ(sin θ + cos θ)

. (4.13)

Since in (4.13), 〈w∠
s 〉cr and 〈u∠

s 〉cr are themselves functions of bcr, the following equation
could be solved to calculate bcr:

2bcrC1ζ2(bcrϕκC1(λ
∗
u cos θ + λ∗w sin θ)+ 2(sin θ + cos θ)(bcrϕζ2 + ζ1))

B(sin θ + cos θ)(bcrϕκC1λ∗w + 2(bcrϕζ2 + ζ1))(bcrϕκC1λ∗u + 2(bcrϕζ2 + ζ1))
− bcr = 0,

(4.14)
where

ζ1 = C1 ln
[
sec
(πϕ

2

)]
,

ζ2 = (B + C1) ln
[
sec
(πϕ

2

)]
.

⎫⎪⎬⎪⎭ (4.15)

For the longitudinal and transverse flow limits, the solution can be simplified to

b‖
cr=

2C1 ln
[
sec
(πϕ

2

)]
(
κλ‖ + 2

(
1 + B

C1

)
ln
[
sec
(πϕ

2

)])
Bϕ
, (4.16)

b⊥
cr =

2C1 ln
[
sec
(πϕ

2

)]
(
κ
(
λ⊥1 + λ⊥2

)+ 2
(

1 + B
C1

)
ln
[
sec
(πϕ

2

)])
Bϕ
. (4.17)

These relations can be also rewritten in the form

1

{b‖
cr, b⊥

cr}ϕ
= B{λ‖, (λ⊥1 + λ⊥2 )}

2C1

⎛⎜⎝ κ

ln
[
sec
(πϕ

2

)]
⎞⎟⎠+ B

C1

(
1 + B

C1

)
. (4.18)

Before proceeding, let us mention that the above-calculated bcr for the longitudinal and
transverse flows is not affected by the assumption of the scalar slip number, since for each
flow configuration we independently calculate the slip number that causes the no-shear
condition. However, the scalar slip number assumption might affect the distribution of bcr
vs θ for the oblique flows, i.e. the transition of bcr from θ = 0 to θ = 90◦; this feature
is less important compared with the fact that the values of bcr for the longitudinal and
transverse flows can provide us with accurate upper and lower bounds of the critical slip
number.

4.3. Effective slip length
The effective slip length, which characterises the slip dynamics of a flow system, is defined
as the average slip velocity over the average of total velocity gradient normal to the wall
at y = 0. In fact, it can represent an imaginary distance within the slippery wall where the
average total velocity becomes zero, thereby, providing a physical insight into the average
slip behaviour. The tensorial form of the effective slip length can be used to compute
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the slip velocities in different directions. Considering the longitudinal and transverse
configurations, the tensor is expressed as(

〈w‖
s 〉

〈u⊥
s 〉
)

=
(
χ‖ 0
0 χ⊥

)(〈∂y0W‖〉
〈∂y0U⊥〉

)
, (4.19)

where 〈·〉 is the averaging operator in the x direction, from −�/2 to �/2 (i.e. one period
of the patterned wall). In addition, ws = w(x, 0) and us = u(x, 0) are the slip velocities
and, as explained earlier, the symbols ‖ and ⊥ represent the longitudinal and transverse
configurations, respectively. In addition, the symbol ∂y0 is the gradient operator in the
y direction and at y = 0, which is used to mark the total velocity shear gradient at the
SH wall. Accordingly, χ‖ and χ⊥ represent the effective slip length for the longitudinal
and transverse configurations, respectively. From the definition and considering (3.22) and
(3.37), one can write

χ‖= B0

C1 − B0

h

, (4.20)

χ⊥ = A0

C1 − A0

h

. (4.21)

One can correlate the average values of the slip velocities and the total velocity gradients
in the oblique flow configuration (presented by the symbol ∠ throughout the manuscript)
with those of the longitudinal and transverse flow configurations as

〈w∠
s 〉 = 〈w‖

s 〉g1, (4.22)

〈u∠
s 〉 = 〈u⊥

s 〉f1, (4.23)

and

〈∂y0W∠〉 = 〈∂y0W‖〉g2, (4.24)

〈∂y0U∠〉 = 〈∂y0U⊥〉f2. (4.25)

As discussed in § 3.2.3, one can simply show that, for the Newtonian fluids, g1 = g2 =
cos θ and f1 = f2 = sin θ .

One can then calculate the average of the slip velocities in the z′ and x′ directions as

〈w′∠
s 〉 = 〈u∠

s 〉 sin θ + 〈w∠
s 〉 cos θ, (4.26)

〈u′∠
s 〉 = 〈u∠

s 〉 cos θ − 〈w∠
s 〉 sin θ. (4.27)

Therefore, using (4.22), (4.23), (4.26) and (4.27), one can write(〈w′∠
s 〉

〈u′∠
s 〉
)

=
(

g1 cos θ f1 sin θ
−g1 sin θ f1 cos θ

)(
〈w‖

s 〉
〈u⊥

s 〉
)
. (4.28)

Following the same procedure for the total velocity gradients leads to(〈∂y0W
′∠〉

〈∂y0U
′∠〉
)

=
(

g2 cos θ f2 sin θ
−g2 sin θ f2 cos θ

)(〈∂y0W‖〉
〈∂y0U⊥〉

)
. (4.29)
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Finally, considering (4.19), (4.28) and (4.29), the tensorial form of the effective slip length
is obtained as (〈w′∠

s 〉
〈u′∠

s 〉
)

=
(
χ∠

z′z′ χ∠
z′x′

χ∠
x′z′ χ∠

x′x′

)(〈∂y0W
′∠〉

〈∂y0U
′∠〉
)
, (4.30)

where

χ∠
z′z′ = g1

g2
χ‖cos2θ + f1

f2
χ⊥sin2θ, (4.31)

χ∠
x′x′ = g1

g2
χ‖sin2θ + f1

f2
χ⊥cos2θ, (4.32)

χ∠
x′z′ = −

(
g1

g2
χ‖ − f1

f2
χ⊥
)

sin θ cos θ, (4.33)

χ∠
z′x′ = χ∠

x′z′ . (4.34)

Equations (4.20), (4.21), (4.30), (4.31), (4.32), (4.33) and (4.34) represent the exact form
of the effective slip length tensor. However, using the explicit-form solution, one can also
find

χ‖ =
2
(

1 + B
C1

)
ln
[
sec
(πϕ

2

)]
κλ‖ + 2

(
1

bϕ
− B

C1

(
1 + B

C1

))
ln
[
sec
(πϕ

2

)] , (4.35)

χ⊥ =
2
(

1 + B
C1

)
ln
[
sec
(πϕ

2

)]
κ(λ⊥1 + λ⊥2 )+ 2

(
1

bϕ
− B

C1

(
1 + B

C1

))
ln
[
sec
(πϕ

2

)] , (4.36)

and

g1 =
bϕκC1λ

‖+2(bϕ (B + C1)+ C1) ln
[
sec
(πϕ

2

)]
bϕκC1λ∗w + 2(bϕ (B + C1)+ C1) ln

[
sec
(πϕ

2

)] cos θ, (4.37)

g2 =
bϕκC2

1λ
∗
w − 2(bBϕ (B + C1)− C2

1) ln
[
sec
(πϕ

2

)]
bϕκC2

1λ
‖ − 2(bBϕ (B + C1)− C2

1) ln
[
sec
(πϕ

2

)] g1, (4.38)

f1 =
bϕκC1 (λ

⊥
1 + λ⊥2 )+ 2(bϕ (B + C1)+ C1) ln

[
sec
(πϕ

2

)]
bϕκC1λ∗u + 2(bϕ (B + C1)+ C1) ln

[
sec
(πϕ

2

)] sin θ, (4.39)

f2 =
bϕκC2

1λ
∗
u − 2(bBϕ (B + C1)− C2

1) ln
[
sec
(πϕ

2

)]
bϕκC2

1(λ
⊥
1 + λ⊥2 )− 2(bBϕ (B + C1)− C2

1) ln
[
sec
(πϕ

2

)] f1. (4.40)

It is worth mentioning that, when B → 0, g1, g2 → cos θ and f1, f2 → sin θ , recovering
the effective slip length tensor for the Newtonian fluids, as presented in (Bazant &

984 A32-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.197


H. Rahmani and S.M. Taghavi

Vinogradova 2008; Vinogradova & Belyaev 2011) (with a negative sign difference in χx′z′
due to the choice of the coordinate system).

At the critical slip number, i.e. the no-shear condition, one can find(
χ‖

χ⊥

)
cr

= λ
⊥
1 + λ⊥2
λ‖

, (4.41)

which reveals that, at the no-shear condition, the ratio of the largest effective slip length
(i.e. χ‖ for the longitudinal flow) to the smallest one (i.e. χ⊥ for the transverse flow) is
only a function of the Bingham number. Interestingly, this ratio remains almost equal to 2
for a wide range of Bingham numbers, identical to the corresponding value for Newtonian
fluids, as discussed in more detail in § 6.

4.4. Slip angle
Let us define the slip angle (s) as the angle between the average slip velocity vector and
the z axis. Thus, one can obtain

s = tan−1
( 〈u∠

s 〉
〈w∠

s 〉
)
. (4.42)

Using the developed explicit-form solution, we find

s = tan−1

⎛⎜⎝bϕκC1λ
∗
w + 2(bϕ (B + C1)+ C1) ln

[
sec
(πϕ

2

)]
bϕκC1λ∗u + 2(bϕ (B + C1)+ C1) ln

[
sec
(πϕ

2

)] tan θ

⎞⎟⎠ . (4.43)

Note that the slip angle must be always smaller than θ , since the flow streamlines near
the patterned wall are strongly deviated towards the z axis, i.e. the groove (stripe) direction.
Therefore, we are interested in quantifying such a difference, i.e. θ − s, as a variable
of this study vs our flow parameters. Such an analysis explores the direction where the
flow slippage occurs on the patterned wall, thus, revealing the direction towards which
the average shear force is applied to the patterned wall by the Bingham fluid. Such an
analysis may be of interest for practical applications, such as passive mixing (Stroock et al.
2002b; Vagner & Patlazhan 2019) and particle fractionation and manipulation (Asmolov
et al. 2015, 2018; Nizkaya et al. 2020) in channels with patterned walls, where the flow
streamline structure near the patterned wall is important.

4.5. Flow mixing
Following the literature (Vinogradova & Belyaev 2011), in this section, the ratio between
the flow rates generated in the x′ and z′ directions is used to quantify the mixing capability
for the oblique flow configuration. The study of this phenomenon is important as the
effects of various flow parameters can be analysed on mixing efficiency, leading to
finding the optimum parameter combination corresponding to the maximum mixing. In
our Bingham flow, since mixing occurs in the lower yielded zone, we define a mixing
index (IM) as the ratio between the flow rates in the x′ and z′ directions in the lower yielded
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zone as

IM =
∣∣∣∣Qx′

Qz′

∣∣∣∣ = |A0 cos θ − B0 sin θ |
C1h + 2

3
C2h2 + A0 sin θ + B0 cos θ

. (4.44)

We can simply evaluate the maximum value of IM , representing the optimum mixing
condition, through finding the value of θ where ∂IM/∂θ = 0.

5. Computational fluid dynamics

In order to validate the solutions developed in § 3 and also to gain more knowledge
regarding the flow features and regimes, we rely on the numerical simulation of the flow
(run via parallel processing) using the finite-volume method implemented in OpenFOAM.
Since the flow is creeping, we conduct steady-state simulations through the Semi-Implicit
Method for Pressure Linked Equations (SIMPLE) algorithm and calculate the converged
solutions when the residuals of the velocity field become less than 10−9.

To model the Bingham fluid rheology, we rely on the Papanastasiou regularisation
method through which the dimensionless effective viscosity (μg = μ̂g/μ̂p) of the
Bingham fluid is modelled as

μg = 1 + B(1 − exp(−Mγ̇ ))
γ̇

, (5.1)

where M = m̂Ûave/Ĥ is the regularisation parameter (note that m̂ refers to the dimensional
value of the regularisation parameter). In this work, we choose M = 1000 (unless
otherwise stated), which provides us with precise calculations of the velocity field.

As illustrated in figure 2, the computational domain is considered to cover one period
of the patterned wall (here shown for the SH wall); thus, the cyclic boundary condition
is selected for the pair of the rear (z = 0) and front (z = �) patches, and the pair of
the left (x = −�/2) and right (x = �/2) patches. We should remind the reader that, in
the z direction, the gradients of the velocity field are zero, since we assume there is
an infinitely long channel in the x and z directions. Therefore, the side wall effects can
be ignored, leading to a periodic velocity in the x direction, with zero velocity gradient
in the z direction (e.g. ∂U/∂z = 0). However, there must be pressure gradients in the
x and z directions, whose values are different and depend on the chosen value of θ .
Thus, we can use the cyclic boundary condition for the rear (z = 0) and front (z = �)
patches, to be able to satisfy the zero velocity gradient condition and also to allow the
solver to calculate a pressure gradient in the z direction as well as the x direction. For
the upper wall (y = 2) and the liquid/solid (liquid/non-slippery stripe) contact at the
lower SH (CP) wall (−�/2 ≤ x < −ϕ�/2 and ϕ�/2 < x ≤ �/2), the no-slip condition is
considered. The Bingham fluid slippage on the liquid/air (liquid/slippery stripe) interface
(−ϕ�/2 < x < ϕ�/2) is modelled using the linear Navier slip law, implementing the code
developed for OpenFOAM 2.2.x in Vasudevan (2017).

6. Results

In this section, we analyse the effects of the flow parameters on the main variables of
interest. The typical ranges of such parameters studied in the current work are presented in
table 1. The variables include the total and slip velocities, the effective slip length, the slip
angle difference and the mixing index. In addition, we attempt to describe how the flow
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–grad P

θ

Figure 2. Schematic of the flow computational domain for an SH channel.

Parameter Name Definition Typical range

B Bingham number
τ̂0Ĥ

μ̂pÛave
0.01–100

b Slip number
b̂μ̂p

Ĥ
10−4 − bcr

� Groove (stripe) periodicity length
L̂

Ĥ
0.01–0.2

ϕ Slip area fraction
δ̂

L̂
0.1–0.9

θ Groove (stripe) orientation angle — 0–90◦

Table 1. Flow dimensionless parameters and their ranges in the current study.

anisotropy may be affected by the viscoplastic rheology. Finally, we provide a regime map
to delineate the transition between flows with and without the SH wall plug formation.

As mentioned earlier in § 2.3, herein, to present the results of our models, we rely on a
scalar form of the slip number. Such a scalar slip number is more appropriate for the CP
walls equipped with flat slippery stripes, for which the slip number can be fixed for the
longitudinal, oblique and transverse flows. On the other hand, for the flow in SH channels,
using the scalar slip number, one may capture the flow trends when the slip number is
sufficiently large, i.e. close to bcr when the no-shear condition on the liquid/air interface is
met. Considering that the tensorial form of the slip number for viscoplastic flows over SH
surfaces is yet to be explored, any attempt to understand the tensorial slip dynamics on an
SH surface would be insightful. Therefore, in Appendix D, while exploiting the tensorial
form of the slip number developed for the Newtonian SH flows (Schönecker et al. 2014), we
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Figure 3. Normalised total velocity contours for (a) longitudinal and (b) transverse configurations, at B = 10,
� = 0.2 and ϕ = 0.5. CFD and semi-analytical solutions are illustrated by colours (and white lines), and dashed
magenta lines, respectively.

attempt to briefly analyse the role played by the tensorial slip number on the viscoplastic
SH flow and try to compare the results with those of the scalar slip number.

Regarding the upcoming results, since the scalar slip number is implemented, whenever
the slip number used represents a partial-shear condition (b < bcr), the presented physics
would be more relevant to CP channels. On the other hand, when the slip number is
sufficiently large (b ≈ bcr; e.g. in §§ 6.6 and 6.7), the presented results can reveal the
SH flow trends, since at no-shear condition (i.e. b ≈ bcr) the tensorial slip number effects
are less significant.

6.1. Preliminary evaluation of the models
In this section, the accuracy of the developed models and assumptions are briefly
evaluated. This is carried out, in particular, by comparing the total velocity fields,
calculated using the semi-analytical and CFD solutions, as depicted in figure 3. Via
the comparison shown, the results indicate that the semi-analytical solution can provide
reasonably accurate predictions. In addition, our CFD results confirm that the perturbation
field is only significant near the SH wall, over a distance in the y direction that is
comparable to the groove (stripe) periodicity length (here � = 0.2 and the chosen values
of the slip number are relatively large). We remind that this fact has been the foundation
of the rescaling approach introduced in § 3.

In figure 4, we compare the performance of the semi-analytical and explicit-form models
in predicting the components of the average slip velocity and the effective slip length
tensor. As shown in figures 4(a), 4(b) and 4(c), these two solutions present good agreement
in terms of the average slip velocity and the normal component of the effective slip length
tensor. However, at larger B, the two solutions deviate further, especially in terms of the
shear component (see figure 4d), which is a feature generated due to the secondary flow
stream. Overall, the explicit-form solution has an average error of ∼2 % for the average
slip velocity and the normal component, and an average error of ∼11 % for the shear
component. Such errors are arguably quite reasonable and are mostly due to the linear
approximation used in (3.95). Given the satisfactory performance of the explicit-form
model, when not otherwise specified, we employ it as the default method to generate our
results.
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Figure 4. Comparison between semi-analytical (SA) and explicit-form (EF) solutions in predicting average
slip velocities and effective slip length tensor components. In all panels, the star sign (∗) indicates that the
explicit-form data used for scaling are calculated at � = 0.2 and ϕ = 0.9. The comparisons are made at the
critical slip number.

6.2. Slip velocity
In figures 5 and 6, the slip velocities in the x (i.e. us) and z (i.e. ws) directions are
presented, for the longitudinal, transverse and oblique flows, at two different Bingham
numbers and two different channel thicknesses. In each panel, the slip number value used
is relatively large and, order-wise, it is comparable with the corresponding value of the
critical slip number. The semi-analytical and CFD solutions agree quite well, whereas the
explicit-form solution shows some deviation with respect to the semi-analytical and CFD
results, especially at the middle of the slip zone (i.e. x = 0). Such a deviation is mainly
associated with the linear approximation of the integral of the slip velocity in (3.95). Our
results reveal that, at larger B, the slip velocity has a flatter profile around x = 0. At each
set of B and �, the slip number used for the transverse flow is also employed to plot the slip
velocities of the oblique flow. Via comparing figures 5 and 6, from θ = 90◦ to θ = 30◦,
it can be seen that the slip component in the x direction (us) decreases, whereas the other
component (ws) increases.

Figure 7 presents the average slip velocities for the longitudinal, transverse and oblique
flows. This figure shows good agreement between the semi-analytical and explicit-form
model solutions, which are plotted up to the onset of the SH wall plug formation.
The results for the corresponding homogeneous slip condition at the lower wall are
also displayed in the figure, as a limiting case (i.e. when ϕ → 1; see Rahmani &
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Figure 5. Slip velocity for longitudinal and transverse flow configurations at ϕ = 0.5. The red line, the blue
dashed line and circles mark the semi-analytical, explicit-form and CFD model solutions, respectively, here
and in figure 6.
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Figure 6. Slip velocity for the oblique flow configuration at ϕ = 0.5. The legends mimic those of figure 5,
whereas u∠

s and w∠
s are shown in red and magenta colours, respectively.

Taghavi 2023). It can be observed in figures 7(a) and 7(b) that, as ϕ increases, the critical
slip number increases, and our solution predictions approach those of the homogeneous
slip flow.

Figures 7(c) and 7(d) depict the components of the average slip velocity in the x (i.e.
〈u∠

s 〉) and z (i.e. 〈w∠
s 〉) directions, for an oblique flow (i.e. θ = 30◦). These panels, in

particular, reveal that 〈u∠
s 〉 < 〈w∠

s 〉, since the flow condition is closer to the longitudinal
configuration at θ = 30◦. Note that, correspondingly, one would find 〈u∠

s 〉 > 〈w∠
s 〉 for

sufficiently large θ , since the flow condition would be closer to the transverse configuration
(results omitted for brevity). Considering a fixed ϕ, figure 7 also suggests an increase in
the critical slip number with a decrease in θ .

Figure 8 provides a more complete picture regarding the changes in the average slip
velocity with respect to the variations of the flow parameters. In Figure 8(a), the average
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Figure 7. Average slip velocity vs slip number for (a) longitudinal, (b) transverse and (c,d) oblique flow
configurations, at B = 1 and � = 0.2. The onset of SH wall plug formation is shown with filled red/blue circles
for semi-analytical/explicit-form solution. The dotted line with varying colours shows the explicit-form solution
predictions at the critical slip condition in the wide range of 0.1 ≤ ϕ ≤ 0.9.

slip velocities in the z′ direction, i.e. 〈w′∠
s 〉 (which is in the pressure gradient direction), and

the x′ direction, i.e. 〈u′∠
s 〉 (which is in the secondary flow direction), are plotted at a fixed

slip number (i.e. b = 0.001), through colours and blue dashed lines, respectively. First,
it is seen that an increase in B generates a larger slip velocity in the x′ and z′ directions,
since the assumed fixed flow rate in our system gives rise to the pressure gradient with
an increase in B. On the other hand, the variation of θ has a non-monotonic effect on
〈u′∠

s 〉. In addition, whereas the secondary average slip (〈u′∠
s 〉) is maximum at θ = 45◦

for a Newtonian fluid (as illustrated by the white dash-dotted line when B → 0), with
increasing B, such a maximum progressively occurs at a smaller θ . Figure 8(b) shows that
increasing ϕ generally increases 〈w′∠

s 〉, especially at larger B, while exerting a slightly
non-monotonic effect on 〈u′∠

s 〉. This observation can be rationalised by considering that
the limiting conditions of ϕ = 0 and ϕ = 1 are characterised with a vanishing secondary
flow and, thus, it would be expected that the secondary flow slip should be maximum at an
intermediate value of ϕ. On the other hand, figure 8(c) reveals that increasing � generally
leads to a rise in 〈w′∠

s 〉, especially at larger B, but continuously decreases 〈u′∠
s 〉. Such

effects of � on the slip velocities could be analysed using (3.97), (4.26) and (4.27). Based
on these equations and at fixed B, b, ϕ and θ , an increase in � (i.e. decrease in κ) leads to
a rise in the slip velocities in the x and z directions, while shifting towards the isotropic
slip dynamics (since the contribution of κλ∗ decreases). Here, one should note that, since
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Figure 8. Variations of averaged main (〈w′∠
s 〉) and secondary (〈u′∠

s 〉) slip velocities vs (a) θ and B, (b) ϕ and B
and (c) � and B, at b = 0.001. Colours represent data for the main slip component (〈w′∠

s 〉), whereas blue dashed
lines show those of the secondary flow component (〈u′∠

s 〉). The white dash-dotted line in panel (a) shows the θ
value at which the maximum of secondary flow slip component occurs.

the averaged secondary slip velocity is calculated as 〈u′∠
s 〉 = 〈w∠

s 〉 sin θ − 〈u∠
s 〉 cos θ , an

increase in � shows a decrease in 〈u′∠
s 〉, although 〈u∠

s 〉 and 〈w∠
s 〉 increases.

6.3. Effective slip length
Figure 9 plots the normal (χz′z′) and shear (χx′z′) components of the effective slip length
tensor (χ ) vs θ , for three slip and two Bingham numbers. Here, the largest slip number used
is the critical slip number at θ = 90◦. The semi-analytical, explicit-form and CFD model
solutions are illustrated, among which an increasing deviation is observed for larger values
of b and B. However, one can still argue that all of our models can predict the overall trends
regarding the changes in the effective slip length tensor components. Increasing b results
in increasing both the normal and shear components. Generally, the normal component is
largest at θ = 0 and it decreases with increasing θ . However, the shear component exhibits
a non-monotonic behaviour; as can be seen, it has a maximum value that depends on b
and B, and a corresponding θ that deviates from θ = 45◦ with increasing B. This is an
interesting deviation from the Newtonian behaviour, for which the maximum shear always
occurs at θ = 45◦ (note that when B → 0, we find f1/f2 → 1 and g1/g2 → 1 in (4.33)).

Figure 10 evaluates the effects of the Bingham number (B), the groove (stripe)
periodicity length (�) and the slip area fraction (ϕ), on the normal (χz′z′) and shear (χx′z′)
components of the effective slip length tensor. It is observed that an increase in B, � and
ϕ generally leads to an increase in χz′z′ , i.e. due to an increased average slip velocity
(i.e. 〈w′

s〉). In addition, χz′z′ slightly decreases with increasing θ . Moreover, this figure
illustrates that the shear component (χx′z′) increases with B (figure 10a) and decreases with
� (figure 10c). However, χx′z′ exhibits a non-monotonic variation with ϕ (figure 10b), with
a maximum that occurs at intermediate values. These findings suggest that the secondary
flow stream is maximum at intermediate values of ϕ, whereas it continuously expands
(shrinks) with an increase in B (�), i.e. an observation consistent with the variations of
〈u′∠

s 〉 in figure 8. Finally, figure 10 indicates that the θ value at which the shear component
is maximised decreases with an increase in B but it remains unaffected by variations in �
and ϕ.

Figure 11 further illustrates the effect of ϕ and � on the variation of the shear component
of the effective slip length tensor (χx′z′), for four values of B. Our results show that an
increase in B leads to an increase in the value of ϕ where χx′z′ becomes maximum. Our
findings also reveal that for any B the maximum value of χx′z′ occurs at the smallest �
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Figure 9. Normal (χz′z′ ) and shear (χx′z′ ) components of effective slip length tensor vs θ , at � = 0.2 and ϕ =
0.5: (a,b) B = 1 and cyan, magenta and red colours represent b = 0.01, 0.03 and 0.0667, respectively; (c,d) B =
10 and cyan, magenta and red colours represent b = 0.004, 0.006 and 0.0081, respectively. Semi-analytical,
explicit-form and CFD model solutions are marked by solid lines, dashed lines and symbols, respectively.
Green dash-dotted line illustrates the value of θ at which the shear component is maximum. The largest slip
number used at each B is the critical value (bcr) for the transverse flow.
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Figure 11. Contours of shear component of effective slip length tensor (normalised by its maximum) vs (a) θ
and ϕ, and (b) θ and �, for four different values of B, at b = 0.001. Each coloured line corresponds to a value
shown in the colour bars.

(i.e. the thickest channel). In addition, for larger B, the maximum value of χx′z′ occurs
progressively further away from θ = 45◦, as also seen in figure 10(a).

6.4. Slip angle difference
The slip angle difference (θ − s) is investigated in this section, as a measure of the strength
of the secondary flow stream. In figure 12, θ − s is plotted vs θ for three slip and two
Bingham numbers, using the semi-analytical, explicit-form and CFD model solutions.
As expected, the deviation between these models increases with an increase in B, but
the trends are reasonably predicted by all of them. The results reveal that the slip angle
difference (θ − s) and the groove (stripe) orientation angle (θ ) where the slip angle
difference maximises both increase with b.

Figure 13(a) presents the contour of θ − s vs B and θ . As shown, θ − s increases
with increasing B, with its maximum occurring at a smaller θ . To complete the picture,
figure 13(b) shows that (θ − s)max and the corresponding θmax, respectively, increase and
decrease with B, for a wide range of slip numbers (b). This figure also shows that, at a
fixed B, an increase in b (up to the critical value) leads to a continuous growth in θmax.

Figure 13(b) also reveals that, at very small B (and large b), one finds that (θ − s)max ≈
20 and θmax ≈ 55. To further analyse this case, one can consider the limit of B → 0,
reducing (4.43) to

s = tan−1

⎛⎜⎝ bϕκ + 2(bϕ + 1) ln
[
sec
(πϕ

2

)]
2bϕκ + 2(bϕ + 1) ln

[
sec
(πϕ

2

)] tan θ

⎞⎟⎠ . (6.1)

Equation (6.1) suggests that the maximum of the slip angle difference and its
corresponding θ are functions of b, κ (in other words �) and ϕ. On the other hand, at
a limit of a very thick channel (κ → ∞), (6.1) further shrinks to

s = tan−1
(

tan θ
2

)
, (6.2)

suggesting that, for a Newtonian fluid, one arrives at (θ − s)max ≈ 19.47◦ corresponding
to θmax = tan−1(

√
2) ≈ 54.73◦. This can help explain the results as B → 0 and b → 1 in
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Figure 12. Slip angle difference, θ − s, vs θ for � = 0.2 and ϕ = 0.5: (a) B = 1 and cyan, magenta and red
colours represent b = 0.01, 0.03 and 0.0667, respectively; (b) B = 10 and cyan, magenta and red colours
represent b = 0.004, 0.006 and 0.0081, respectively. Semi-analytical, explicit-form and CFD model solutions
are marked by solid lines, dashed lines and symbols, respectively. The green dash-dotted line illustrates the
value of θ at which θ − s is maximum. The largest slip number used at each B is the critical value (bcr) for the
transverse flow.
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Figure 13. (a) Contours of θ − s in the plane of B and θ , at b = 0.001, where the dash-dotted line marks the
value of θ at which the maximum of the slip angle difference occurs (i.e. θmax). (b) Maximum value of the
slip angle difference, i.e. (θ − s)max (solid lines), and its corresponding θmax (dashed lines), for different slip
numbers. The lines end at critical values of B where the transverse flow undergoes no-shear condition. In both
panels, � = 0.2 and ϕ = 0.5.

figure 13(b) for � = 0.2, which may represent a sufficiently thick channel; in this case, the
contribution of the terms containing κ would be more significant than the other terms in
(6.1). It is worth reminding that, in a Newtonian fluid (B → 0), whereas one finds θmax ≈
54.73◦ regarding the maximum of the slip angle difference, the shear component of the
effective slip length tensor is always maximum at θ = 45◦.

Figure 14 displays the effects of ϕ and � on (θ − s)max and its corresponding θmax for
different slip numbers. Both variables decrease as ϕ and � increase. Looking back to
figure 8(b), although the initial increase in ϕ causes an increase in the secondary flow slip
velocity (〈u′∠

s 〉), the more dominant increase in 〈w′∠
s 〉 leads to a decrease in (θ − s)max (see
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Figure 14. Plots of (θ − s)max (solid lines) and θmax (dashed lines) vs (a) ϕ and (b) �, for B = 10 and different
slip numbers. In (a,b), the lines are limited to the critical values of ϕ and �, respectively, at which the transverse
flow undergoes no-shear condition.
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Figure 15. Mixing index (IM) vs θ at � = 0.2 and ϕ = 0.5: (a) B = 1 and cyan, magenta and red colours
represent b = 0.01, 0.03 and 0.0667, respectively; (b) B = 10 and cyan, magenta and red colours represent
b = 0.004, 0.006 and 0.0081, respectively. Semi-analytical, explicit-form and CFD model solutions are marked
by solid lines, dashed lines and symbols, respectively. The green dash-dotted line illustrates the value of θ at
which IM is maximum. The largest slip number used at each B is the critical value (bcr) for the transverse flow.

figure 14b). Regarding the effects of �, such a decrease in (θ − s)max with � is expected,
since, with an increase in �, 〈w′∠

s 〉 increases while 〈u′∠
s 〉 decreases (see figure 8c).

6.5. Flow mixing
The analysis of the mixing capability of the oblique flow configuration is presented in this
section. Specifically, figure 15 portrays the mixing index (IM) plotted as a function of θ , for
three slip and two Bingham numbers. An increase in b is found to increase IM . Moreover,
for Bingham fluids (i.e. B /= 0), the θ value corresponding to the maximum mixing is seen
to deviate from θ = 45◦, whereas this deviation is found to intensify with increasing B. Of
note, in the context of Newtonian flows (i.e. B = 0) in a very thick channel, the maximum
mixing would always transpire at θ = 45◦, as discussed by Vinogradova & Belyaev (2011).
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Figure 16. (a) Contours of IM in the plane of B and θ , at b = 0.001, where the dash-dotted line marks the
value of θ at which the maximum of mixing index occurs (i.e. θmax). (b) Maximum value of mixing index, i.e.
(IM)max (solid lines) and its corresponding θmax (dashed lines), for different slip numbers. The solid and dashed
lines are bounded by the critical value of B at which the transverse flow undergoes no-shear condition. In both
panels, � = 0.2 and ϕ = 0.5.

Figure 16(a) presents the contours of the mixing index (IM) vs B and θ . This figure shows
that an increase in B increases IM , enhancing the flow mixing. This observation is due to
the fact that increasing B results in increasing the slip velocities (in particular, 〈u′∠

s 〉),
which in return lead to an increase in IM at a fixed b (note that the flow rate is constant
in our analysis and, thus, increasing B gives rise to the pressure gradient in our system).
However, a better understanding regarding the effects of B on IM may be achieved at the
critical slip condition, i.e. b = bcr, as discussed in § 6.6. Figure 16(b) displays that, when
B → 0, the maximum mixing occurs around θ = 45◦, regardless of the slip number value.
Furthermore, figure 16(b) demonstrates that increasing B results in a higher maximum
IM , with a lower corresponding θmax. Figure 16(b) also shows that the slip number has a
negligible effect on θmax at a fixed B.

Figure 17 evaluates the effects of � and ϕ on (IM)max for different slip numbers.
Figure 17(a) shows that an increase in ϕ has a non-monotonic effect on (IM)max, as a peak
occurs at intermediate values of ϕ. On the other hand, figure 17(b) shows that increasing
� leads to a continuous decrease in (IM)max. Such results are consistent with those for
〈u′∠

s 〉 and χx′z′ (with similar physical interpretations). Moreover, as may be expected, θmax
remains relatively constant with changes in b, ϕ, and �.

6.6. Flow anisotropy
In this section, we attempt to provide an understanding about the viscoplastic fluid flow
anisotropy on the SH surface, in particular, to rationalise how the fluid yield stress affects
the anisotropic slip dynamics. To do so, we focus on the critical slip condition (i.e. the
no-shear condition, b = bcr) and analyse the effects of the yield stress (via the Bingham
number) on the main and secondary average slip, effective slip length, slip angle difference
and mixing index, at this critical condition. We should note that each parameter set (B, �,
ϕ and θ ) corresponds to a specific value for bcr, which represents the no-shear condition
at the liquid/air interface.

The average slip velocities in the x′ and z′ directions are illustrated in figure 18(a). First,
this figure indicates that the critical slip number increases with decreasing B and θ . At
the no-shear condition, increasing B weakens the secondary flow slip component (〈u′∠

s 〉),
984 A32-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.197


Viscoplastic flows in channels with a patterned wall

10–2

10–3

b = 0.0001
0.0005
0.001
0.003
0.005

10–4

(I
M

) m
ax

θ°
m
ax

10–5

10–6

40.0

39.8

39.9

39.8
0.1 0.3 0.5 0.7 0.9

10–2

10–3

10–4

10–5

10–6

0.01 0.05 0.10

�

ϕ = 0.5� = 0.2

ϕ

0.15 0.20

(b)(a)

Figure 17. Plots of (IM)max (solid lines) and its corresponding θmax (dashed lines) vs (a) ϕ and (b) �, for
B = 10 and different slip numbers. In (a,b), the lines are bounded by the critical values of ϕ and �, respectively,
at which the transverse flow undergoes no-shear condition.

whereas the main slip component (〈w′∠
s 〉) continues to grow (i.e. due to the increased

pressure gradient for a larger B since the flow rate is constant). This distinct trend for the
secondary flow slip component with respect to B variations at the critical slip condition
(compared with the fixed slip condition studied in the previous sections) is due to the
dominant role of the change in the slip number. In fact, decreasing B results in increasing
its corresponding critical slip number and continuous growth of the secondary flow slip
component.

The contours of the scaled normal and shear components of the effective slip length
tensor are plotted in figure 18(b), at b = bcr. This figure reveals that, for oblique flows
(θ /= 0, 90◦) at the critical slip condition, an increase in B leads to a decrease in the scaled
normal component (shown by the colour bars). However, for θ = 0, this scaled value is
fixed to 2 (i.e. simply calculated from (4.41)) and it is independent of B. On the other hand,
the scaled shear component (marked using the blue dashed lines) continuously decreases
with increasing B, whereas its maximum occurs progressively at smaller θ . In the limit
of B → 0, this maximum value converges to 0.5, which can be simply demonstrated
using (4.33) and (4.41). Overall, these findings imply that, at the critical slip condition,
an increase in B decreases the degree of flow anisotropy on the SH surface.

Our results demonstrate that, with increasing B at b = bcr, the normal and shear
components of the effective slip length tensor decrease, at this critical condition.
Intriguingly, this observation is contrary to the trend depicted in figure 10(a). The
underlying reason for the observed trend may be rationalised as follows. At the critical
slip number (b = bcr) (figure 18b), increasing B increases the shear gradient at the no-slip
zone of SH wall, whereas the slip zone remains at no-shear; this leads to a net increase
in the averaged total shear gradient and, consequently, a decrease in χ . In contrast,
with increasing B at a fixed slip number (figure 10a), the slip zone tends towards the
no-shear condition, whereas the shear gradient increases at the no-slip zone; this, in return,
decreases the averaged total shear gradient and increases χ . The decrease in the shear
component with increasing B could be also associated with the decrease in the secondary
flow slip component (see figure 18a).

Figure 18(c) presents the contours of θ − s vs B and θ , at the critical slip condition
(b = bcr). As can be seen, θ − s decreases with increasing B, with its maximum occurring
progressively at a smaller θ . In addition, as B → 0, the maximum of the slip angle
difference approaches (θ − s)max ≈ 20◦ at θmax ≈ 55◦. For a Bingham fluid, at the critical
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Figure 18. Contour results in the plane of B and θ , at the critical slip condition (b = bcr), for � = 0.2 and
ϕ = 0.5. (a) Average slip velocities and critical slip numbers. Colours mark 〈w′∠

s 〉, blue dashed lines show
〈u′∠

s 〉 and white lines represent bcr. (b) Scaled normal and shear components of effective slip length tensor.
Colours mark χz′z′/χ

⊥ and blue dashed lines show χx′z′/χ
⊥. (c) Slip angle difference. (d) Mixing index. In all

panels, dash-dotted lines represent the point where the presented variable, i.e. 〈u′∠
s 〉, χx′z′/χ

⊥, θ − s and IM ,
respectively, is maximum.

slip condition, for a very thick channel (� → 0) and typical values of ϕ, (4.43) reduces to

s = tan−1
(
βλ∗w + B
βλ∗u + B

tan θ
)
, (6.3)

where β is a function of B and θ , implying that θmax and, hence, (θ − s)max become
functions of B only. In addition, (6.3) describes that, at the critical slip condition, when we
have B → ∞, we find that s → θ , suggesting that the secondary flow stream vanishes.

Figure 18(d) presents the contours of the mixing index (IM) vs B and θ , at the critical
slip condition (b = bcr). This figure shows that, at b = bcr, an increase in B reduces IM ,
while shifting the maximum to a smaller θ . Again, compared with the fixed slip condition,
this opposite trend is due to the decrease in the secondary average slip velocity (〈u′

s〉) with
increasing B (see figure 18a). It is worth noting that when B → 0, the maximum mixing
always occurs at θ = 45◦, regardless of the slip number being fixed (figure 16a) or being
at b = bcr (figure 18d).

6.7. Flow regimes
Two main flow regimes are present for our viscoplastic flows in SH channels, i.e. with and
without SH wall plug formation; therefore, the critical slip number (bcr) can be calculated
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Figure 19. Regime map in terms of the absence/presence of the SH wall plug at the liquid/air interface
(represented by the green/blue colours), for B = 10. Critical transitions for longitudinal and transverse flows
are shown by dashed and solid lines, respectively, based on the semi-analytical (with superimposed dots) and
explicit-form (without superimposed dots) solutions; green/blue markers depict CFD results for the transverse
flow (using regularisation parameter M = 107).

for the longitudinal, transverse and oblique flow configurations to differentiate between
these regimes. Figure 19 distinguishes the two regimes for the longitudinal (dashed line)
and transverse (solid line) flows based on the semi-analytical (with superimposed dots) and
explicit-form (without superimposed dots) solutions. The CFD results for the transverse
flow, marked by the symbols, present a reasonable agreement with the semi-analytical and
explicit-form solutions in predicting the regime with the absence/presence of the SH wall
plug. In this figure, the horizontal axis represents the contribution of � and ϕ (i.e. the
geometrical parameters), whereas, based on (4.18), the slope and the intercept with the
vertical axis are functions of B. The critical lines for the oblique flows (i.e. for a given
value of θ ) would lie between the solid and dashed lines, corresponding to the transverse
and longitudinal flow configurations, respectively; thus, in the light green/blue region,
the flow is yielded/partially unyielded at the liquid/air interface for any pressure gradient
direction.

7. Summary and concluding remarks

The current work considers the transport mechanics of viscoplastic fluids through channels
with a patterned lower wall. In particular, a comprehensive model is developed for the
creeping Poiseuille Bingham flow in plane channels with an SH or CP wall, considering
longitudinal, transverse and oblique groove (stripe) orientations. At the SH wall, air
is trapped inside the grooves, whereas the liquid/air interface is assumed to obey the
Cassie state. On the other hand, for the CP wall, array of slippery and non-slippery flat
stripes are assumed. Accordingly, the flow over the patterned wall is modelled using
arrays of slip and stick conditions, with the former being modelled via the Navier slip
law with a scalar form of the slip number. At the thick channel limit, three models are
developed, i.e. a semi-analytical model, an explicit-form model and a complementary
CFD model. Perturbation theory and Fourier series expansion are employed to derive
the semi-analytical and explicit-form models, whose emerging dual trigonometric series
problems are robustly solved. On the other hand, the CFD model solves the equations in
their full form, using the Papanastasiou regularisation method. The semi-analytical and
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CFD solutions agree well, whereas the explicit-form solution may exhibit some deviation
in extreme parameter ranges but it also reasonably predicts the overall trends. The flow
parameters of the models include the Bingham number (B), the slip number (b), the
groove (stripe) periodicity length (�), the slip area fraction (ϕ) and the groove (stripe)
orientation angle (θ ). Our findings provide a systematic analysis of the detailed effects of
these parameters on the key flow variables of interest, including the slip velocities, the
effective slip length, the slip angle difference, the flow mixing, the flow anisotropy and the
flow regimes.

One particular focus of our study is on the effect of the viscoplastic rheology, specifically
the yield stress, on the flow dynamics over the patterned wall. In fact, the intricate interplay
between the nonlinear rheology and the wall heterogeneity (e.g. superhydrophobicity)
produces novel complexities in our flow. In particular, our analysis reveals the strong
nonlinear effect of the viscoplastic rheology on the flow, which requires us to develop
a distinct solution for the oblique flow configuration. In fact, unlike its Newtonian
counterpart, the oblique viscoplastic flow entails an a priori unknown transform matrix,
due to the coupled governing perturbation equations and patterned wall conditions, with
the resulting Fourier expansion functions depending on θ .

The variation of the slip velocities and their average values vs the flow parameters is
considered in this work. Analysing these slip velocities reveals the existence of a critical
slip number (bcr), as the onset of no-shear flow at the SH wall, where an unyielded plug
zone begins to appear on the liquid/air interface. Therefore, two regimes can be identified,
i.e. the regimes with and without the formation of an SH wall plug, whereas bcr is used
to quantify the transition between them. Our findings reveal that increasing ϕ and � or
decreasing B and θ leads to larger bcr.

The tensorial form of the effective slip length for our Bingham fluids is investigated,
for the first time in this work. Our findings demonstrate that, for small slip numbers
(b � bcr), the normal component of the effective slip length tensor (χz′z′) generally
increases with increasing B, �, ϕ and b, whereas it decreases with increasing θ . The
shear component (χx′z′), on the other hand, continuously increases with increasing B, �
and b, but it non-monotonically varies with ϕ, revealing that the secondary flow stream is
strongest at intermediate values of ϕ. In addition, χx′z′ exhibits non-monotonic behaviour
as θ increases. In fact, the maximum shear component occurs at a value of θ /= 45◦ that
depends on B, nearly independent of b, � and ϕ. This is intriguing since the maximum shear
component for a Bingham fluid occurs at a value less than θ = 45◦, which continuously
decreases with increasing B, unlike for a Newtonian fluid where it is always fixed at
θ = 45◦.

Our work also analyses the secondary flow strength through examining the slip angle
difference (θ − s). The results show that θ − s increases with increasing B and b and
decreasing ϕ and �, but it non-monotonically varies with θ . Importantly, our analysis
indicates that, as B increases, the maximum slip angle difference occurs at a groove (stripe)
angle that is progressively smaller than its corresponding Newtonian analogue, with the
theoretical value of θmax = tan−1(

√
2) ≈ 54.73◦ at the no-shear condition. It is also worth

mentioning that θmax increases with increasing b and decreasing ϕ and �.
In addition, the mixing capability of the oblique flow configuration is studied, via a

mixing index (IM). For example, it is found that an increase in B and b increases IM
(i.e. enhancing the flow mixing). However, IM non-monotonically varies with θ . With
increasing B, the θ value (θmax) corresponding to the maximum mixing index ((IM)max)
deviates from θ = 45◦. However, θmax only slightly varies with changes in ϕ, � and b. In
addition, (IM)max generally increases with increasing B and b, decreases with increasing
�, and non-monotonically varies with ϕ (i.e. reaches a peak at intermediate values).
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Our study also further explores the degree of the flow anisotropy for the viscoplastic
flow in the SH channel, focusing on the effects of B at the critical slip condition (b = bcr,
i.e. the no-shear condition). The results illustrate that increasing B reduces the degree of
flow anisotropy, demonstrated by the weakening of the secondary flow stream, resulting in
decreasing the secondary flow slip component, the shear component of the effective slip
length tensor, the slip angle difference, and the flow mixing.

Whereas this study assumes a scalar slip number on flat liquid/air interfaces to analyse
slip dynamics on SH walls, there exist studies on the tensorial form of the slip length,
albeit for Newtonian fluids (Schönecker & Hardt 2013; Nizkaya et al. 2014; Schönecker
et al. 2014), i.e. indicating different longitudinal and transverse components. Such works
provide reasonably clear picture of the exact tensorial nature of the local slip length for
Newtonian fluid flows over SH surfaces. These works, for example, reveal how air flow
within grooves can affect these components, with counter-rotating air vortices influenced
by the groove aspect ratio (Ar). It is found that the interface distance from the centre of the
first vortex gives an upper bound to the maximum of the slip length distribution, whose
value is correlated to the groove aspect ratio via an error function. Schäffel et al. (2016)
have experimentally validated this tensorial slip length for Newtonian fluids. However,
the tensorial slip length for viscoplastic materials remains quite unexplored and unknown.
Although, inspired by works of Schönecker & Hardt (2013) and Schäffel et al. (2016)
for Newtonian flows, one may be able to attempt to quantify the tensorial slip number
for viscoplastic flows through considering shallow and deep grooves (and studying the
air vortices dynamics inside such grooves), additional complexities are expected to arise
for viscoplastic materials, described as follows. (i) The slip number components also find
functionality vs the Bingham number (i.e. in addition to Ar), as the fluid yield stress may
affect the air vortices dynamics inside the groove, especially for deep grooves where the
interface might undergo the no-shear condition, i.e. when an unyielded plug zone with
a uniform velocity appears on the interface. (ii) The slip number components might be
a function of θ since the effective viscosity is θ -dependent (see Appendix A), which
may render the dependency of the interface velocity field on θ , thus, affecting the air
vortices dynamics. (iii) Experimental measurement of the local slip length for viscoplastic
flows over the liquid/air interface is challenging due to the formation of plug zones on
the interface, i.e. for laser-based techniques, there is a critical problem in particle seeding.
(iv) The liquid/air interface is strongly under influence of the viscoplastic rheology (yield
stress) and an inevitable degree of elasticity (and surfactant effects) caused by the material
used in the experiment. As discussed in Appendix D, until such challenges are addressed,
the assumed scalar local slip number in this study can capture the SH flow trends when the
slip number is sufficiently large (i.e. close to bcr). Therefore, a message of our work may
be that the scalar form of the slip number can accurately model the viscoplastic flow over
CP surfaces, while capturing the physical trends of the flow over the SH surfaces when the
liquid/air interface condition is close to the no-shear condition (b ≈ bcr).

In the present work, we have assumed a flat liquid/air interface that is pinned at the
groove edges for our SH wall. Considering a plane Poiseuille flow in a channel, the flow
pressure near the inlet is large and it continuously decreases towards the channel outlet.
Based on the findings in the literature (Ou, Perot & Rothstein 2004; Carlborg & van der
Wijngaart 2011; Lv et al. 2014; Annavarapu et al. 2019) and some calculations, we can
estimate the deflection of the liquid/air interface for our creeping flow system in the thick
channel limit. For a typical thick channel with 20 grooves, we find that the maximum
deflection of the interface would be less than 0.05� for a large portion of the channel.
In addition, for a portion of the channel (e.g. near the outlet), the Laplace pressure may
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balance with the surface tension at the interface, leading to maintaining the nearly flat
liquid/air interface. Therefore, we believe that the assumed flat interface is effectively
relevant and can lead to finding fairly accurate results and flow trends, e.g. the average
velocity profiles and the effective slip lengths for weakly deflected interfaces (for example,
see the results of Crowdy (2010) and Teo & Khoo (2010) for weakly deflected interfaces).
However, we also believe that the extension of our work towards the conditions with highly
deflected interfaces is necessary and can provide a better understanding about the flow
dynamics. Such extensions can be done through a combination of perturbative corrections
and domain mappings, as recently developed for the Newtonian flows (Crowdy 2017b;
Schnitzer & Yariv 2017; Game et al. 2019). Such future extensions of our work can
potentially make a bridge between the Navier slip number used in our work and some
important features of the flow, i.e. the interface deflection and groove aspect ratio.
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Appendix A. Perturbation stress components of oblique flow

The most general form of the no-slip and perturbation velocity vectors are obtained for
the oblique flow configuration. Based on (3.3) and knowing that U0 = Ub

0 sin θ and W0 =
Ub

0 cos θ (see § 2.2), for an oblique flow, we can expand the effective viscosity as follows:

μ(U0 + εu) = μ(U0)+ ε

(
∂u
∂y

+ ∂v

∂x

)
⎡⎢⎢⎢⎢⎢⎣

−B sin θ(
dUb

0
dy

)2

⎤⎥⎥⎥⎥⎥⎦+ ε

(
∂w
∂y

)
⎡⎢⎢⎢⎢⎢⎣

−B cos θ(
dUb

0
dy

)2

⎤⎥⎥⎥⎥⎥⎦ , (A1)

where μ(U0) = μ0 = 1 + B/(dUb
0/dy).

The components of the total strain-rate tensor are also obtained as

γ̇ xx = 2ε
∂u
∂x
, (A2)

γ̇ yy = 2ε
∂v

∂y
, (A3)

γ̇ zz = 0, (A4)

γ̇ xz = ε
∂w
∂x
, (A5)
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γ̇ xy = dUb
0

dy
sin θ + ε

(
∂u
∂y

+ ∂v

∂x

)
, (A6)

γ̇ yz = dUb
0

dy
cos θ + ε

∂w
∂y
. (A7)

Considering product of the effective viscosity and the strain-rate tensor along with some
algebra, one can calculate the leading-order perturbation stress components as follows:

σxx = 2μ0
∂u
∂x
, (A8)

σyy = 2μ0
∂v

∂y
, (A9)

σzz = 0, (A10)

σxz = μ0
∂w
∂x
, (A11)

σxy = μ0

(
∂u
∂y

+ ∂v

∂x

)
+ (1 − μ0)

(
∂u
∂y

+ ∂v

∂x

)
sin2θ + (1 − μ0)

∂w
∂y

sin θ cos θ, (A12)

σyz = μ0
∂w
∂y

+ (1 − μ0)

(
∂u
∂y

+ ∂v

∂x

)
sin θ cos θ + (1 − μ0)

∂w
∂y

cos2θ. (A13)

Appendix B. On the explicit-form solution approximations

In this section, we further evaluate the main approximation made in § 3.3 to develop the
explicit-form model solution for the oblique flow configuration. The main approximation
is made in (3.83), which is originated from the physical fact of having a weak secondary
flow. Therefore, we may approximate as u′ ≈ 0, which leads to u cos θ ≈ w sin θ . Thus,
using (3.22) and (3.37), we obtain

A0 cos θ
(

1 − Y
κh

)
+

∞∑
n=1

An cos θ
dΨ̂ n

dY
(Y) cos(nX)

≈ B0 sin θ
(

1 − Y
κh

)
+

∞∑
n=1

Bn sin θ ŵn(Y) cos(nX). (B1)

Regarding the solution of ŵn and Ψ̂n, we can consider the following general forms:

ŵn = exp(−λ∠nY), (B2)

Ψ̂n = βexp(−λ∠nY), (B3)

where β is a constant and λ∠ is an exponent. Therefore, considering a one-by-one balance
between the Fourier modes in (B1), we can write

A0 cos θ ≈ B0 sin θ → B0

A0
≈ cot θ, (B4)

−βλ∠nAn cos θ ≈ Bn sin θ → Bn

An
≈ −αn cot θ, (B5)
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Figure 20. Evaluation of the approximation made for Bn/An in (3.83). (a,b) Comparison of the approximation
with the exact ratio. (c,d) Comparison of the slip velocity profiles obtained based on the approximation with the
semi-analytical solution profiles, for � = 0.2, ϕ = 0.5 and θ = 60◦, at (b) B = 1 and b = 0.04 and (c) B = 10
and b = 0.004. Here, the maximum number of 301 Fourier modes are used to calculate the presented data
(including the zeroth mode).

where α = βλ∠. In § 3.3, we could calculate α based on the fact that Δ1 → 1 once θ →
90◦.

As illustrated figures 20(a) and 20(b), this approximation, i.e. Bn/An ≈ −αn cot θ ,
matches reasonably well with the data obtained from the semi-analytical solution. In
addition, in § 3.3, the coefficients Δ1, Γ1 and Γ2 are introduced using (3.83), (3.56),
(3.57) and (3.58), and they are used in (3.52) and (3.53) to calculate ŵn and Ψ̂n. Then,
the patterned wall conditions are applied through solving the system of linear equations,
i.e. (3.67) and (3.68) to find Bn or An. Therefore, the slip velocity is calculated without any
iterations on An and Bn. The results of such calculations are plotted in figures 20(c) and
20(d) (for two Bingham numbers), showing a good match with those of the semi-analytical
solution, confirming that a reasonable approximation is made in (3.83).

Appendix C. On the semi-analytical solution convergence

An iterative procedure is used to develop the semi-analytical solution for the oblique flow
configuration in § 3.2. In this case, the initial guess for Δ(1)n , Γ (1)n , and Γ (2)n is updated
based on the solution of the patterned wall conditions for An and Bn. A relaxation factor of
10−3 is used in this iterative approach to update the coefficients, ensuring stable numerical
computations and robust convergence. This enables us to compute for the values of θ close
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Figure 21. Convergence of the semi-analytical solution coefficients, for � = 0.2, ϕ = 0.5, θ = 60◦, B = 10
and b = 0.004. Here, 301 Fourier modes are used (including the zeroth mode).

to the singular limits, i.e. θ = 0, 90◦ (note that these limits themselves should be solved
separately as explained in § 3.2). An example of the semi-analytical solution for an oblique
flow configuration is given in figure 21, demonstrating a smooth, robust convergence of the
coefficients.

To elaborate more on the need for the developed iterative procedure for the solution
of the oblique flow, we note that, since An and Bn appear in the governing ODEs for the
oblique flow, i.e. (3.19) and (3.20), the calculated values of An and Bn must satisfy these
ODEs. On the other hand, considering (3.52) and (3.53), the coefficients Δ(1)n , Γ (1)n and
Γ
(2)

n basically determine the contribution of each term in the solution of ŵn and Ψ̂n. For
the oblique flow, such contributions are related to the patterned wall boundary conditions,
i.e. are different for each angle of θ . The developed iterative solution guarantees reaching
converged values for An and Bn (and, hence, Δ(1)n , Γ (1)n and Γ (2)n ) that eventually leads to
satisfaction of both the governing ODEs and the patterned wall boundary conditions.

Appendix D. Flow in an SH channel with a tensorial slip number

In the study conducted by Schönecker & Hardt (2013), a tensorial form of the slip
length was defined for the Newtonian flows over SH surfaces. In this work, the local slip
lengths for the longitudinal and transverse directions were defined as Nγl(x) and Nγt(x),
respectively, where N = μ̂l/μ̂a was the viscosity of liquid over that of air. In addition,
γl(x) and γt(x) were the local slip length distributions in the longitudinal and transverse
directions, respectively, for which an elliptic form was assumed. Schönecker & Hardt
(2013) quantified the maximum of the local slip length distribution (D) as a function of
the groove aspect ratio (Ar) for the longitudinal and transverse flows as follows:

Dl = d0,l · erf
( √

π

2d0,l
Ar

)
, d0,l = 0.347, (D1)

Dt = d0,t · erf
( √

π

8d0,t
Ar

)
, d0,t = 0.124. (D2)

where, to find the above forms, Schönecker & Hardt (2013) considered the two limits of
very shallow (Ar → 0) and deep (e.g. Ar = 10) grooves.

Ignoring distribution of the local slip lengths in x, i.e. assuming uniform values at the
liquid/air interface, the longitudinal and transverse components of the dimensional slip
number for our flow can be written as b̂l = γ̄l/μ̂a and b̂t = γ̄t/μ̂a, respectively, where the
bar sign (·̄) indicates a uniform slip length distribution. Crudely assuming that γ̄t/γ̄l ≈
Dt/Dl, for exploration purposes, let us relate the longitudinal and transverse slip numbers
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Figure 22. Normal (χz′z′ ) and shear (χx′z′ ) components of effective slip length tensor vs θ , at � = 0.2,
ϕ = 0.5 and B = 1. The magenta and red colours represent the longitudinal slip number bl = 0.05 and 0.13,
respectively. The results for the scalar and tensorial slip number conditions are plotted with dashed and solid
lines, respectively. In panel (b), the green and black dash-dotted lines indicate the maximum of χx′z′ for the
scalar and tensorial slip number condition, respectively. Here, the groove aspect ratio is Ar = 0.1 leading to
bt/bl ≈ 0.25. The results are calculated using the explicit-form solution.

as b̂t/b̂l = γ̄t/γ̄l ≈ Dt/Dl. Having b̂t/b̂l = bt/bl; thus, let us define the tensorial form of
the Navier slip law as follows:(

ws
us

)
=
(

bl 0
0 bt

)(
τyz
τxy

)
y=0

where
bt

bl
= Dt

Dl
. (D3)

To extend the solutions developed in §§ 3–5 for the viscoplastic flows in SH channels
with a tensorial slip number, one might use (D3) when applying the SH (patterned) wall
boundary conditions. For example, to extend the semi-analytical solution of the oblique
flows, one should use bl and bt in (3.59) and (3.61) (instead of b), respectively. The
developed explicit-form and numerical solutions can also be simply extended through
differentiating between the slip number components in the longitudinal and transverse
directions, i.e. using bl and bt instead of b.

In figure 22, the normal and shear components of the effective slip length tensor
are plotted for two relatively large values of bl. This figure compares the explicit-form
solution results considering the scalar (i.e. bl = bt) and tensorial (i.e. based on (D3)) slip
number conditions. Although the values are different, the results for the tensorial slip
number condition follow the same trends as those of the scalar slip number condition,
i.e. the normal component is largest for the longitudinal flow (θ = 0) and smallest for
the transverse flow (θ = 90◦), the shear component is maximum at a value of θ smaller
than 45◦, and both components increase with an increase in bl (whereas bt/bl is fixed at
≈0.25). As one might expect, the slip dynamics is more anisotropic for the tensorial slip
number condition compared with the scalar slip number assumption, leading to a larger
shear component (χx′z′) for the tensorial slip number condition.

Similar trends can be also observed for the other flow variables, e.g. the average slip
velocity, the slip angle difference and the mixing index, when the results for the two
conditions of the scalar and tensorial slip number are compared (results omitted for
brevity). Considering that the exact form of the local slip number (length) tensor for the
viscoplastic materials is yet to be developed in the literature (see § 7 for more detailed
discussions), the observed similar trends imply that the presented results within the article
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Figure 23. (a) Slip velocity (at y = 0), (b) axial velocity (at x = 0) and (c) velocity shear gradient (at y = 0),
for � = 0.2, ϕ = 0.5, θ = 90◦ and B = 1. In (b,c), the inset shows an enlarged view of the area near the
liquid/air interface (i.e. near x = 0 and y = 0). In (b), the axial velocity is plotted up to the lower yield surface
location (i.e. y = h).

using the scalar slip number condition, can provide us with physically correct trends for
the viscoplastic flows in SH channels when the slip number is sufficiently large (b → bcr).

Appendix E. SH flow dynamics at no-shear condition

Here, we attempt to briefly analyse the SH flow dynamics at the onset of the no-shear
condition and after its establishment on the liquid/air interface. To do so, we present the
semi-analytical and CFD solution results for the transverse flow at large values of the slip
number in figure 23. The semi-analytical model is used to produce the results close to the
no-shear condition onset (i.e. at b = 0.05). On the other hand, the CFD model results are
shown for larger values of the slip number (b = 0.1, 1 and 10). Figure 23(a,b) demonstrates
that the slip and axial velocity profiles initially increase with the growth in b and eventually
converge to a single profile (see the results for b = 1 and 10). For b = 1 and 10, the plateau
appeared in the slip velocity curves (around x = 0) and the axial velocity profiles normal
to the y = 0 plane (i.e. the SH wall) imply formation of the SH wall plug. This fact can be
better explored by looking at the velocity shear gradients for b = 1 and 10 in figure 23(c).
Ignoring the groove edge effects, figure 23(c) demonstrates that, close to the no-shear
condition onset, the shear gradient is minimum at the middle of the liquid/air interface
(i.e. x = 0 and y = 0). Such a trend is accurately captured by both the semi-analytical
and CFD models. As shown in figure 23(c), the no-shear condition is first achieved at the
middle of the liquid/air interface (i.e. for b = 1) and then it is extended throughout the
interface with an increase in the slip number (i.e. for b = 10). Therefore, the profiles for
b = 10 represent the ultimate no-shear condition throughout the liquid/air interface.

The results provided in this appendix demonstrate the capability of our mathematical
and CFD models in capturing the no-shear condition at the liquid/air interface, i.e. when
the SH wall plug appears. Comprehensive CFD studies at the no-shear condition and
regarding the SH wall plug dynamics can be found in our previous works (Rahmani &
Taghavi 2023; Rahmani et al. 2023).

Appendix F. Channels with two patterned walls

Here, we discuss how the developed semi-analytical and CFD models can be extended
to the condition of having two patterned walls for our viscoplastic channel flow. We first
discuss the extension of the semi-analytical solution and then address the problem for the
CFD model.
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Figure 24. Axial velocity profile (at x = 0) for thick channels with two SH walls when � = 0.2, ϕ = 0.5,
θ = 90◦, B = 1 and b = 0.04. For the channel with aligned grooves, the middle of the liquid/air interface is
located at x = 0 on both walls. For the channel with misaligned grooves, the middle of the liquid/air interface
at the upper wall (y = 2) is located at x = �/2, whereas at the lower wall (y = 0) such a location is fixed at
x = 0.

The developed semi-analytical (and similarly the explicit-form) model can be simply
generalised for the case of thick channels with two patterned walls. Since the perturbation
fields at the lower (0 < y < h) and upper (hu < y < 2) yielded zones are independent,
the developed semi-analytical model can be applied separately for each yielded zone.
Therefore, any combination of b, ϕ, θ and � (as long as the channel remains thick,
i.e. � � 0.5), even with misaligned grooves (stripes), at the SH (CP) walls may find
a semi-analytical solution. In fact, the developed semi-analytical model can be applied
separately for the lower and upper yielded zones, which after iterating on h and hu, leads
to finding solutions for the total velocity field. In this regard, we should ensure about
maintaining the velocity profile continuity across the channel (i.e. equal total velocities at
the lower and upper yield surfaces) and having a fixed flow rate, via additional iterative
processes.

Regarding the CFD model, it can be simply generalised for the channels with two
patterned walls through considering the upper wall as a patterned one with even different
values of b, ϕ and �. We can also conduct the CFD simulations in a periodic domain
if the lower and upper walls have similar θ values or have either longitudinal or
transverse grooves. If the patterned walls have different values of θ between 0 and 90◦,
three-dimensional simulations for a long channel in both x and z directions (including
several grooves or stripes) are required.

As shown in figure 24, considering a typical example, the axial velocity profile at x = 0
is plotted for channels with aligned and completely misaligned transverse grooves at the
SH walls. For both channels, the middle of the liquid/air interface at the lower wall is
fixed at x = 0. Therefore, at the upper wall, the middle of such an interface is fixed at
x = 0 and x = �/2 for the channels with aligned and misaligned grooves, respectively.
The misaligned case, thus, shows the maximum offset between the grooves at the lower
and upper walls. At x = 0, the axial velocity profile for the aligned case shows slip
at both walls, whereas for the misaligned case, the profile shows the no-slip condition
at the upper wall (i.e. representing the solid portion of the upper SH wall). For both
channels with aligned and misaligned grooves, the location of yield surfaces (h and hu)
and the velocity of the centre plug are identical, since the average slip velocity on both
walls are equal, i.e. the centre plug is only affected by the average slip dynamics on the
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walls for thick channels. In figure 24, an excellent agreement is also found between the
semi-analytical and CFD results.

Regarding the mutual features for the flows with one and two patterned walls, in the
limit of thick channels, we might mention the followings (based on the analysis of several
results omitted for brevity). (i) The harmonic modes of the perturbation field are strong
near the patterned walls whereas they decay towards the yield surfaces. (ii) The average
slip velocity, i.e. the zero Fourier mode, controls the location of yield surfaces through
modifying the total velocity field near those surfaces. (iii) The SH wall plug may form
at two SH walls, depending on the SH wall characteristics, e.g. the slip number. (iv) The
lower and upper yield surfaces remain flat in the limit of thick channels when having
either one or two patterned walls. (v) Assuming the groove (stripe) misalignment as the
only difference between the two patterned walls, the perturbation solution at one yielded
zone can be simply achieved through a coordinate change (in the x direction) applied on
the known solution of the other yielded zone. In this case, the equal average slip velocities
at both patterned walls lead to symmetric locations of the yield surfaces with respect to
the channel centreline.
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