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Abstract

We introduce a modified Galton–Watson process using the framework of an infinite
system of particles labelled by (x, t), where x is the rank of the particle born at time t .
The key assumption concerning the offspring numbers of different particles is that they
are independent, but their distributions may depend on the particle label (x, t). For the
associated system of coupled monotone Markov chains, we address the issue of pathwise
duality elucidated by a remarkable graphical representation in which the trajectories of
the primary Markov chains and their duals coalesce to form forest graphs on a two-
dimensional grid.
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1. Introduction

The Galton–Watson (GW) process is a basic stochastic model for the generation size in a
population of reproducing particles (see, e.g. [3]). Slightly modifying the framework of [5],
we define a GW process in terms of an infinite system of particles uniquely labelled by pairs
(x, t) ∈ N × Z, where t refers to the generation number and x is the rank of the particle within
this generation. Given a set of independent and identically distributed (i.i.d.) N0-valued random
variables (here, N0 = {0} ∪ N)

{ut (x)}(x,t)∈N×Z, (1)

a GW process stemming from Za particles at time a ∈ Z is the Markov chain {Zt }t≥a

characterized by the branching property

Zt+1 =
Zt∑

x=1

ut (x), (2)

where ut (x) represents the number of offspring of the particle (x, t). Relation (2) induces the
following rank-inheritance rules:

• each particle (x, t + 1) has a unique parent (x′, t), and

• if x < y, and (x′, t) and (y′, t) are the respective parents of (x, t + 1) and (y, t + 1),
then x′ ≤ y′.
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For example, if ut (1) = k ≥ 1 then k children of the rank-1 particle get the ranks 1, . . . , k

among the particles born at time t + 1. The ranks of particles play no role in the standard GW
setting; however, Bertoin [5] used them in studying GW processes with neutral mutations.

In this paper we introduce a new modification of the GW model by allowing the rank of
a particle to determine its reproduction law. In a general rank-dependent GW setting, the
independent offspring numbers ut (x) have distributions that vary over the birth times t and
particle ranks x. To illustrate, consider a linear-fractional reproduction law

E[sut (x)] = 1 − qt (x) + qt (x)
pt s

1 − (1 − pt )s
, pt ∈ (0, 1], qt (x) = 1{x∈{1,3,5,...}},

where the dependence on the particle rank takes effect via qt (x), the probability of having
nonzero offspring. Here, particles with odd ranks always produce k ≥ 1 offspring with
probability (1 − pt )

k−1pt , while particles of even ranks have no offspring. Note that in the
time-homogeneous case with pt ≡ p and qt (x) ≡ q(x), the corresponding rank-dependent
GW process cannot be treated as a two-type GW process, since the number of even-ranked
children for the rank-3 particle depends on the number of children of the rank-1 particle.

The standard GW process has many extensions, usually motivated by biological applications
(see [11] and [16]). Some of these extensions can be viewed as examples of rank-dependent
GW processes: in Section 4 the scope of the rank-dependent GW setting is highlighted by
referring to bounded GW processes, GW processes with immigration and emigration, duals
to birth–death GW processes in a varying environment, as well as GW processes embedded
in continuous-time linear birth–death processes in a varying environment. In particular, if the
reproduction law E[sut (x)] = ft is not influenced by the particle rank, then the rank-dependent
GW process is a GW process in a varying environment satisfying

E[sZt | Za = z] = (fa ◦ · · · ◦ ft−1(s))
z,

where f ◦ g(s) denotes f (g(s)) (see [12], and also [4], [6], and [15], for recent treatments
involving this model). In the rank-dependent GW setting, the last relation does not hold in
general, making analysis more complicated.

The main results of the paper are collected in Section 3; proofs are given in Section 5. In
Proposition 1 we consider the rank-dependent GW processes along with their pathwise dual
processes, whose definition in Section 2 is based on Siegmund’s duality; see [13], [27], and [28].
It shows, in particular, that the dual to the dual of a rank-dependent GW process is a shifted copy
of the original rank-dependent GW process. In the literature on dual processes, the common
setting involves time-homogeneous Markov processes. A notable exception is [2] treating a
class of stationary processes. Our approach handles time-inhomogeneous Markov chains, and
can even be adapted to the non-Markov setting, when, for example, the offspring number ut (x)

depends on the offspring number ut−1(x
′) of the parent.

The infinite particle system framework permits an illuminating graphical representation
of a system of coupled rank-dependent GW processes and their pathwise duals visualizing
their trajectories as forest graphs. A process dual to an asexual reproduction model, like the
GW process or Wright–Fisher model, is usually interpreted in terms of a coalescent model
[10], [21]. Somewhat counterintuitively, our graphical representation indicates that the dual
to a branching process is a form of branching process with dependencies (see Figure 1). The
graphical representation also works for primary reproduction models with fixed population size,
such as the Wright–Fisher model.
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Figure 1: Graphical representations of the iterated reproduction mappings: (a) coupled trajectories of
a rank-dependent GW process, (b) trajectories of the time-reversed process, (c) shifted trajectories from

panel (a) do not cross with the trajectories from panel (b).

One of the examples in Section 4 shows that, even with a standard GW process, the dual
Markov chain is not necessarily a rank-dependent GW process, because the dual offspring
numbers become dependent on each other. An interesting open problem is to characterize the
class of rank-dependent GW processes, whose dual Markov chain is itself a rank-dependent
GW process. A simpler problem is to characterize the class of GW processes, whose dual
Markov chain is itself a rank-dependent GW process.

We obtain two results addressing the latter problem. Considering the dual of the GW
reproduction law, in Proposition 2 we state that the marginal dual offspring distribution is
always linear fractional. In Theorem 1 we demonstrate that the dual process is GW with an
eternal particle if and only if the primary reproduction law is itself linear fractional. Yet another
example in Section 4 reveals that the dual to a GW process can be a rank-dependent GW process
which is not a GW process with an eternal particle.

2. Coupled rank-dependent GW processes and their duals

Let �0 be the class of monotone functions U : N0 → N0 such that U(0) = 0. If U ∈ �0
and u(x) = U(x) − U(x − 1), then we call U a reproduction mapping with offspring numbers
u(x), x ∈ N. Given a set of random variables (1) which are mutually independent but
not necessarily identically distributed, define a sequence of random reproduction mappings
Ut(x) = ∑x

y=1 ut (y), and consider the family of iterations

Ua,b = Ub−1 ◦ Ub−2 ◦ · · · ◦ Ua for a < b, Ua,a(x) ≡ x.

Setting Zt = Ua,t (Za), we obtain a time-inhomogeneous Markov chain {Zt }t≥a which
satisfies (2) and which we call a rank-dependent GW process. Moreover, using the system of
stochastic iterations

U = {Ua,b}∞<a≤b<∞, (3)

we can define coupled Markov chains {Ua,t (x)}t≥a starting at Ua,a(x) = x for all possible
a ∈ Z and x ∈ N (cf. [7]). We call (3) a rank-dependent GW system with reproduction law

ft,x(s) = E[sut (x)], s ∈ [0, 1], x ∈ N, t ∈ Z.

Definition 1. If U ∈ �0 and V = U−, where

U−(x) = min{y : U(y) ≥ x},
then V ∈ �0 is the pathwise dual of the reproduction mapping U .
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As shown in Section 5, Definition 1 is equivalent to the equality

{(x, y) ∈ N
2
0 : V (x) ≤ y} = {(x, y) ∈ N

2
0 : U(y) ≥ x}, (4)

and therefore it can be referred to as the pathwise Siegmund duality (see [13], [27], and [28]).

Definition 2. Given a rank-dependent GW system (3), define its time reverse by

V = {Vb,a}∞<a≤b<∞, Vb,a = Va ◦ · · · ◦ Vb−1 for a < b, Va,a(x) ≡ x,

where Vt = U−
t are the dual reproduction mappings. Setting Ût = V−t−1, define the pathwise

dual of U by

Û = {Ûa,b}∞<a≤b<∞, Ûa,b = Ûb−1 ◦ · · · ◦ Ûa for a < b, Ûa,a(x) ≡ x.

The trajectories of a rank-dependent GW system and its time reverse can be represented by
forest graphs on the grid of nodes N0 × Z. As shown in Figure 1(a), the bottom-up lineages
{(Ua,t (x), t), t ≥ a} starting from different levels a ∈ Z and different positions x ∈ N0, merge
into coalescent trees. We call the resulting graph a dual forest. On the other hand, as shown
in Figure 1(b), the top-down lineages {(Vb,t (x), t), t ≤ b} starting from different levels b ∈ Z

and different positions x ∈ N0, build up a graph that we call a primary forest. In Figure 1(c)
we illustrate that the two forests can be conveniently depicted together after the dual forest is
shifted to the right by 1

2 . Drawn this way, the lineages of the primary and dual forests do not
cross. The primary forest describes the genealogical trees of the primary rank-dependent GW
system. A lineage in the dual tree followed up from vertex (z, t) delineates a trajectory of the
Markov chain (2).

The remarkable fact that the dual forests do not cross is formally established as follows. If
x → y is an edge of the dual forest connecting a pair of vertices at levels t and t + 1, then the
two neighbour edges y → x1 and y + 1 → x2 of the primary forest connecting levels t + 1 and
t are such that x1 < x + 1

2 < x2, and, therefore, no edge in the primary forest graph crosses the
shifted edge x + 1

2 → y + 1
2 . To verify the inequalities we have just asserted, observe that, by

Definition 1, the relation y = Ut(x) implies that Vt (y) < x + 1
2 < Vt(y + 1).

3. Propositions 1–2 and Theorem 1

Let the reproduction mappings U, V, Ũ ∈ �0 be related by V = U− and Ũ = V −. Use
the same notation with the time index t .

Proposition 1. Given (3), let Vt = U−
t , Ût = V−t−1, V̂t = Û−

t , and Ũt = V̂−t−1. Alongside
the rank-dependent GW system U , consider its time reverse V and pathwise dual Û as in
Definition 2. Whenever a ≤ b and x, y ∈ N0, the following two events coincide:

{Û−b,−a(x) ≤ y} = {x ≤ Ua,b(y)}.

The reproduction mappings Ũt define a rank-dependent GW system Ũ in a similar way to
the definition given in (3) of the primary rank-dependent GW system U . Ũ is the dual of the
dual Û , and can be obtained as a simple shifted transform of U :

Ũa,b(x) = Ua,b(x − 1) + 1, x ≥ 1, a ≤ b.
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Figure 2: Graphical illustration of Proposition 1. The twofold dual in (c) is a shifted copy of the primary
forest given in (a).

In Figure 2 we illustrate a diagrammatic proof of Proposition 1 using the graphical repre-
sentation. In Figure 2(b) we show an intermediate step in the transformation of the primary
forest in Figure 2(a) into the primary forest in Figure 2(c), representing the twofold dual rank-
dependent GW system Ũ . Since Ûa,b = V−b,−a , we find that the primary forest in Figure 2(b),
representing the genealogical trees of the dual rank-dependent GW system Û , is the dual forest
in Figure 2(a) flipped around the axis t = 0 and shifted to the right by 1 (visually it is shifted by
just 1

2 ). Observe that the rank-1 particle in the dual reproduction flow is necessarily ‘eternal’,
giving birth to at least one offspring. Thus, the unbroken-line forest from (a) flips into the
broken-line forest in (b), then the unbroken-line forest in (b) generates the broken-line forest
in (b), which in turn gives the unbroken-line forest in (c). We see that the primary forest in
Figure 2(c) is a shifted copy of the primary forest in Figure 2(a), as claimed in Proposition 1.

The next result describes the case of a GW reproduction mapping U , that is, a system in
which the corresponding offspring numbers {u(x), x ∈ N} are i.i.d.

Proposition 2. Let V be the dual mapping of the reproduction mapping U as in Definition 1.
Then the mapping U generates the GW reproduction law

P(u(x) = k) = Pk, k ≥ 0, x ≥ 1,

if and only if the dual offspring numbers have representation

(v(1), v(2), . . .) = (ξ1 + 1, 0, . . . , 0︸ ︷︷ ︸
η1

, ξ2 + 1, 0, . . . , 0︸ ︷︷ ︸
η2

, . . .), (5)

where ξ1, η1, ξ2, η2, . . . are mutually independent N0-valued random variables with marginal
distributions

P(ξi = k) = P k
0 (1 − P0), P(ηi = k) = Pk+1

1 − P0
, k ≥ 0, i ≥ 1.

In this case, the marginal dual reproduction law has the linear-fractional distribution

E[sv(x)] = 1 − p̂(x) + p̂(x)
P0s

1 − (1 − P0)s
, (6)

where p̂(1) = 1 and the sequence of parameters {p̂(x), x ≥ 2} is defined by its generating
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function

∞∑
x=1

p̂(x + 1)sx = f (s) − f (0)

1 − f (s)
, f (s) =

∞∑
k=0

Pks
k. (7)

A natural question arising in connection with Proposition 2 is whether it is possible for
both the primary and its dual reproduction mappings to be GW? The answer is no, since the
dual law always assigns at least one offspring to the particle of rank 1. The closest to GW
that the dual can be is a GW reproduction with an eternal particle, which, by definition, is a
rank-dependent GW reproduction mapping V whose offspring numbers are such that v(1) ≥ 1
and v(2), v(3), . . . have a common distribution.

The following result extends [18, Proposition 3.6] significantly.

Theorem 1. Let U be a GW reproduction mapping for which E[su(x)] = f (s) for all x ≥ 1.
Its pathwise dual V is a GW reproduction with an eternal particle if and only if

f (s) = 1 − q + q
ps

1 − (1 − p)s
, p, q ∈ (0, 1]. (8)

Then

E[sv(x)] =

⎧⎪⎨
⎪⎩

qs

1 − (1 − q)s
for x = 1,

1 − p + p
qs

1 − (1 − q)s
for x = 2, 3, . . . .

(9)

4. Examples

Example 1. (Pure-death rank-dependent GW.) A distinct forest structure appears in the case
that the offspring numbers are {0, 1}-valued, so

ft,x(s) = pt,x + (1 − pt,x)s, x ∈ N, t ∈ Z.

Each dual lineage followed upwards eventually vanishes without branching. Given pt,x ≡ px ,
the dual reproduction is not rank-dependent GW because of the dependence in the joint
distribution

P(v(1) = k1, . . . , v(m) = km)

= p1 . . . pk1−1(1 − pk1)

m−1∏
l=1

pk1+···+kl+1 . . . pk1+···+kl+1−1(1 − pk1+···+kl+1).

Example 2. (Birth–death GW reproduction.) Consider a GW reproduction law P(u = k) = pk

for which p0 + p1 + p2 = 1. If p2 = 0 then the dual reproduction is GW with the shifted
geometric distribution

P(v(x) = k) = pk−1
0 (1 − p0), k ≥ 1.

If p1 = 0 then the dual reproduction is rank-dependent GW described by the example given in
the introduction, with p = p0. On the other hand, if p0 = 0 then the dual reproduction law is
not rank-dependent GW because of the dependence

P(v(1) = 1) = 1, P(v(2) = 0, v(3) = 1) = p2,

P(v(2) = 1, v(3) = 0) = p1p2, P(v(1) = 0, v(3) = 1) = p2
1 .
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Example 3. (Bounded GW processes.) Let the offspring probability generating functions of a
rank-dependent GW process be given by

ft,x(s) =
{

f (s) for x ∈ [1, Bt ],
1 for x > Bt ,

s ∈ [0, 1], t ≥ 0.

This specifies a version of a truncated GW process with a stationary reproduction f , where the
number of particles allowed to reproduce at time t is bounded by Bt . Zubkov [30] obtained an
interesting result for such processes in the supercritical case.

Example 4. (GW processes with immigration.) Specify a rank-dependent GW process via
ft,1(s) = sgt (s) and ft,x ≡ ft , x ≥ 2. This is a GW process with an eternal particle in
a varying environment. Removing the eternal particle of rank 1 and keeping its offspring as
immigrants yields a GW process with immigration. Such processes are well studied in the case
of a stationary reproduction law ft = f and varying immigration {gt }t≥0 (see [22]). The case
of varying {gt , ft }t≥0 has received less attention in the literature (but see [20]).

Example 5. (GW processes with emigration.) Consider a time-homogeneous GW process with
an eternal particle, such that (8) holds for x ≥ 2, and u(1) ≥ 1 has an arbitrary distribution. Its
dual Markov chain can be interpreted in terms of a GW process with emigration (catastrophes,
disasters), with a random number ηt

D= u(1) − 1 of particles being removed from generation t .
If the current size Yt does not exceed ηt , the population dies out. Vatutin [29] was amongst the
first to address this model, studying the critical case under the assumption that ηt ≡ 1.

Grey [9] showed that if the GW reproduction is supercritical and the numbers of emigrants
{ηt }t≥0 are independent copies of η, then the GW process with emigration goes extinct with
probability 1 if and only if E[log(η + 1)] = ∞. On the other hand, a well-known result in [1]
is that a subcritical GW process with immigration has a stationary distribution if and only if
E[log(η + 1)] < ∞, where η

D= u(1) − 1 denotes the number of immigrants.

Example 6. (Rank-dependent GW process with a carrying capacity.) Consider the time-
homogeneous case, ft,x = fx , in which the reproduction law is variable along the spatial
position. Our setting is suitable for modelling population size-dependent reproduction in a way
which is different from that of [17] and [19]. Let mx = f ′

x(1) be the mean offspring number
for the particle of rank x. Suppose that m1 > 1, that mx decreases monotonically with x, and
that, for some K ∈ N,

m1 + · · · + mx ≥ x, x ≤ K, m1 + · · · + mx < x, x > K.

Then K can be viewed as the carrying capacity of a population of individuals producing on
average fewer than 1 child per individual when the size of the population exceeds K .

Example 7. (Embeddable rank-dependent GW processes.) Embeddability of basic GW pro-
cesses into continuous-time Markov branching processes is not a fully resolved issue [3,
Chapter III.12]. Several explicit examples of embeddable GW processes can be found in [24].
One known class of embeddable GW processes in varying environments is the case of linear-
fractional reproduction addressed in Theorem 1.

Consider a continuous-time linear birth–death process {Z(t), t ≥ t0} with variable birth
and death rates {λ(t), μ(t)}t∈R per individual. It is well known that such a process has linear-
fractional distributions. By [14], with ρ(t0, t) = ∫ t

t0
[μ(u) − λ(u)] du,

E[sZ(t) | Z(t0) = 1] = 1 − q(t0, t) + q(t0, t)
p(t0, t)s

1 − (1 − p(t0, t))s
,
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Figure 3: Graphical representation of birth–death processes. Arrows to the left mean the death at the end
position of the line of arrows. Arrows to the right mean splitting at the origin of the line of arrows.

where

q(t0, t) = 1

1 + ∫ t

t0
eρ(t0,u)μ(u) du

, p(t0, t) = eρ(t0,t)q(t0, t).

A linear-fractional GW process with varying parameters (qt , pt ) in (8) has

qt = 1

1 + ∫ t

t−1 eρuμ(u) du
, pt = eρt qt , ρu := ρ(t − 1, u) =

∫ u

t−1
[μ(v) − λ(v)] dv,

and can be embedded in a birth–death process. In Figure 3 we illustrate the graphical repre-
sentation for such an embedding. See also a recent result [8] presenting a different approach
to dual random forests in a continuous-time setting.

Example 8. (Defective rank-dependent GW.) For any V ∈ �0, the limit V̄ = limx→∞ V (x)

is either finite or infinite. We call a random reproduction mapping U ∈ �0 defective if its
dual V satisfies P(V̄ < ∞) > 0. In the defective case, a particle can produce infinitely many
offspring. GW processes with a defective reproduction law were studied in a recent paper [25].

Turning to nonlinear birth–death processes (see, e.g. [26]), observe that, in general, the
embedding discussed in the previous example does not yield a rank-dependent GW process,
because the numbers of offspring may depend on each other. An interesting exception is
the pure-death processes producing the embedded pure-death rank-dependent GW processes
mentioned in Example 1. Let the time-homogeneous death rates μx depend on the ranks
x ≥ 1 of individuals and be such that

∑∞
x=1 (μ1 + · · · + μx)

−1 < ∞; the result is a pure-death
process coming down from infinity (see, e.g. [23]). Observe that in this case the dual Markov
chain gives a defective reproduction model which is not a rank-dependent GW process.

5. Proofs of Propositions 1–2 and Theorem 1

Let reproduction mappings U , V , Ũ ∈ �0 be related via V = U− and Ũ = V −. Denote
the corresponding offspring numbers by u(x), v(x), and ũ(x).

Lemma 1. Define (ξi, ηi) by

(u(1), u(2), . . .) = (0, . . . , 0︸ ︷︷ ︸
ξ1

, η1 + 1, 0, . . . , 0︸ ︷︷ ︸
ξ2

, η2 + 1, . . .), ξi , ηi ≥ 0, i ∈ N. (10)
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Then (5) holds and

(ũ(1), ũ(2), . . .) = (1, 0, . . . , 0︸ ︷︷ ︸
ξ1

, η1 + 1, 0, . . . , 0︸ ︷︷ ︸
ξ2

, η2 + 1, . . .). (11)

Proof. From V (x) = min{y : U(y) ≥ x}, it follows that V (0) = 0 and

{x : V (x) = y} = {x : U(y − 1) < x ≤ U(y)}, y ≥ 1, (12)

which implies (5). Similarly, (11) follows from (5). Observe also that (12) entails (4). �
Proof of Proposition 1. Using (4), we obtain consecutively

{Û−b,−a(x) ≤ y} = {Û−a−1 ◦ · · · ◦ Û−b(x) ≤ y}
= {Va ◦ · · · ◦ Vb−1(x) ≤ y}
= {Va+1 ◦ · · · ◦ Vb−1(x) ≤ Ua(y)}
...
= {x ≤ Ub−1 ◦ · · · ◦ Ua(y)}
= {x ≤ Ua,b(y)}.

Observe that Ũt = V −
t , and, by Lemma 1, Ũt (x) = Ut(x − 1) + 1, which yields

Ũa,b(x) = Ũb−1 ◦ · · · ◦ Ũa(x)

= Ũb−1 ◦ · · · ◦ Ũa+1(Ua(x − 1) + 1)

= Ũb−1 ◦ · · · ◦ Ũa+2(Ua+1 ◦ Ua(x − 1) + 1)

= Ua,b(x − 1) + 1. �
Proof of Proposition 2. The random variables u(1), u(2), . . . are independent with common

distribution {Pk}∞k=0 if and only if (10) holds with mutually independent ξ1, η1, ξ2, η2, . . . such
that, for k ≥ 0 and i ≥ 1,

P(ξi = k) = P k
0 (1 − P0), P(ηi = k) = P(u(1) = k + 1 | u(1) ≥ 1), k ≥ 0, i ≥ 1.

By Lemma 1, this proves the first statement of the proposition.
Turning to the second statement concerning the distribution of v(x), let p̂(x) = P(v(x) > 0).

The first statement implies that (6) holds, and, for x ≥ 1,

p̂(x) = P

( ∞⋃
n=0

{1 + n + η1 + · · · + ηn = x}
)

=
x−1∑
n=0

P(η1 + · · · + ηn = x − n − 1).

This implies that p̂(1) = 1, and, for x ≥ 2, using conditioning on η1, we derive the recursion

p̂(x) =
x−1∑
n=1

P(η1 + · · · + ηn = x − n − 1)

=
x−1∑
n=1

x−n∑
k=1

P(η1 = k − 1) P(η2 + · · · + ηn = x − n − k)

= (1 − P0)
−1

x−1∑
k=1

Pk

x−k∑
n=1

P(η2 + · · · + ηn = x − k − n)

= (1 − P0)
−1

x−1∑
k=1

Pkp̂(x − k).
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In terms of the generating function Q(s) = ∑∞
x=1 p̂(x + 1)sx , this recursion gives

Q(s) = f (s) − P0

1 − P0
(1 + Q(s)),

which implies (7), as asserted. �
Proof of Theorem 1. In view of Proposition 2, the pathwise dual V is a GW reproduction

with an eternal particle if and only if p̂(x) = p for all x ≥ 2. In this case, (6) implies (9) with
q = f (0). On the other hand, (7) takes the form

f (s) − q

1 − f (s)
=

∞∑
x=1

psx = ps

1 − s
,

which yields (8). �

Acknowledgements

The authors thank Uwe Rösler for a discussion of an issue concerning duality, as well as an
anonymous referee for valuable comments. The research by Jonas Jagers was supported by the
Royal Swedish Academy of Sciences through the Elis Sidenbladh foundation grant.

References

[1] Asmussen, S. and Hering, H. (1983). Branching Processes. Birkhäuser, Boston, MA.
[2] Asmussen, S. and Sigman, K. (1996). Monotone stochastic recursions and their duals. Prob. Eng. Inf. Sci. 10,

1–20.
[3] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.
[4] Bansaye, V. and Simatos, F. (2015). On the scaling limits of Galton–Watson processes in varying environments.

Electron. J. Prob. 20, 36pp.
[5] Bertoin, J. (2009). The structure of the allelic partition of the total population for Galton–Watson processes

with neutral mutations. Ann. Prob. 37, 1502–1523.
[6] Braunsteins, P. and Hautphenne, S. (2017). Extinction in lower Hessenberg branching processes with

countably many types. Preprint. Available at https://arxiv.org/abs/1706.02919v1.
[7] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41, 45–76.
[8] Felipe, M. D. and Lambert, A. (2015). Time reversal dualities for some random forests. ALEA 12, 399–426.
[9] Grey, D. R. (1988). Supercritical branching processes with density independent catastrophes. Math. Proc. Camb.

Phil. Soc. 104, 413–416.
[10] Grosjean, N. and Huillet, T. (2016). On a coalescence process and its branching genealogy. J. Appl. Prob.

53, 1156–1165.
[11] Haccou, P., Jagers, P. and Vatutin, V. A. (2005). Branching Processes: Variation, Growth and Extinction of

Populations. Cambridge University Press.
[12] Jagers, P. (1974). Galton–Watson processes in varying environments. J. Appl. Prob. 11, 174–178.
[13] Jansen, S. and Kurt, N. (2014). On the notion(s) of duality for Markov processes. Prob. Surveys 11, 59–120.
[14] Kendall, D. G. (1948). On the generalized ‘birth-and-death’ process. Ann. Math. Statist. 19, 1–15.
[15] Kersting, G. (2017). A unifying approach to branching processes in varying environments. Preprint. Available

at https://arxiv.org/abs/1703.01960v6.
[16] Kimmel, M. and Axelrod, D. E. (2015). Branching Processes in Biology, 2nd edn. Springer, New York.
[17] Klebaner, F. C. (1984). On population-size-dependent branching processes. Adv. Appl. Prob. 16, 30–55.
[18] Klebaner, F. C., Rösler, U. and Sagitov, S. (2007). Transformations of Galton–Watson processes and linear

fractional reproduction. Adv. Appl. Prob. 39, 1036–1053.
[19] Klebaner, F. C. et al. (2011). Stochasticity in the adaptive dynamics of evolution: the bare bones. J. Biol.

Dynam. 5, 147–162.
[20] Mitov, K. V. and Omey, E. (2014). A branching process with immigration in varying environments. Commun.

Statist. Theory Meth. 43, 5211–5225.
[21] Möhle, M. (1999). The concept of duality and applications to Markov processes arising in neutral population

genetics models. Bernoulli 5, 761–777.

https://doi.org/10.1017/apr.2018.82 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.82


Rank-dependent Galton–Watson processes 239

[22] Rahimov, I. (1995). Random Sums and Branching Stochastic Processes. Springer, New York.
[23] Sagitov, S. and France, T. (2017). Limit theorems for pure death processes coming down from infinity. J. Appl.

Prob. 54, 720–731.
[24] Sagitov, S. and Lindo, A. (2016). A special family of Galton-Watson processes with explosions. In Branching

Processes and Their Applications (Lecture Notes Statist. 219), Springer, pp. 237–254.
[25] Sagitov, S. and Minuesa, C. (2017). Defective Galton-Watson processes. Stoch. Models 33, 451–472.
[26] Sagitov, S. and Shaimerdenova, A. (2013). Extinction times for a birth-death process with weak competition.

Lithuanian Math. J. 53, 220–234.
[27] Siegmund, D. (1976). The equivalence of absorbing and reflecting barrier problems for stochastically monotone

Markov processes. Ann. Prob. 4, 914–924.
[28] Sturm, A. and Swart, J. M. (2018). Pathwise duals of monotone and additive Markov processes. J. Theoret.

Prob. 31, 932–983.
[29] Vatutin, V. A. (1977). A critical Galton-Watson branching process with emigration. Theory Prob. Appl. 22,

465–481.
[30] Zubkov, A. M. (1970). A condition for the extinction of a bounded branching process. Math. Notes 8, 472–477.

SERIK SAGITOV, Chalmers University of Technology and University of Gothenburg

Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
Email address: serik@chalmers.se

JONAS JAGERS, Chalmers University of Technology

Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
Email address: jagersj@student.chalmers.se

https://doi.org/10.1017/apr.2018.82 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.82

	1 Introduction
	2 Coupled rank-dependent GW processes and their duals
	3 Propositions 1--2 and Theorem 1
	4 Examples
	5 Proofs of Propositions 1--2 and Theorem 1
	Acknowledgements
	References

