## Apolar Triads on a Cubic Curve.

By W. Saddler.

(Received 15th February 1927. Read 5th February 1926.)
Professor W. P. Milne has shown ${ }^{1}$ that if a pencil of plane cubic curves cut in two triads of points which are apolar to the members of the pencil, then the other three points of intersection also form an apolar triad to the pencil. I propose to show how to obtain a simple geometrical construction for the third apolar triad though the cubics in this case are not perfectly general. The method of approach is by means of Grassmann's construction for a cubic curve and the use of apolar theorems established for a curve described in this manner. ${ }^{2}$
§ 1. The locus of a point $\left(x_{1}, x_{2}, x_{3}\right)$, or briefly $x_{i}$, whose joins to three points $A, B, C$ meet three lines

$$
a_{1} x_{1}+\alpha_{2} x_{2}+a_{3} x_{3} \equiv \alpha_{x}=0 \quad \beta_{x}=0 \quad \gamma_{x}=0
$$

in three collinear points is a general cubic curve. Take the points $A, B, C$ as having coordinates $a_{i}, b_{i}, c_{i}$, respectively, and the three lines as the sides of the triangle of reference. Then the cubic curve has the equation,

$$
\begin{array}{r}
f=x_{2}{ }^{2} x_{3}\left(b_{3} c_{1}-b_{1} c_{3}\right) a_{1}+x_{2} x_{3}{ }^{2}\left(b_{1} c_{2}-b_{2} c_{1}\right) a_{1}+x_{1}{ }^{2} x_{3}\left(c_{2} a_{3}-c_{3} a_{2}\right) b_{2} \\
+x_{1} x_{3}{ }^{2}\left(c_{1} a_{2}-c_{2} a_{1}\right) b_{2}+x_{1}{ }^{2} x_{2}\left(a_{2} b_{3}-a_{3} b_{2}\right) c_{3}+x_{1} x_{2}{ }^{2}\left(a_{3} b_{1}-a_{1} b_{3}\right) c_{3} \\
+x_{1} x_{2} x_{3}\left(2 a_{1} b_{2} c_{3}-a_{3} b_{1} c_{2}-a_{2} b_{3} c_{1}\right)=0 . \ldots . \tag{i}
\end{array}
$$

The vertices of the triangle of reference form an apolar triad to the cubic curve if the coefficient of $x_{1} x_{2} x_{3}$ vanishes, namely if,

$$
\begin{equation*}
2 a_{1} b_{2} c_{3}-a_{3} b_{1} c_{2}-a_{2} b_{3} c_{1}=0 \tag{ii}
\end{equation*}
$$

Incidentally, if this holds, then $A B C$ also forms an apolar triad. ${ }^{2}$
Hence if the point $A,\left(a_{i}\right)$ lies on the line,

$$
\begin{equation*}
2 x_{1} b_{2} c_{3}-x_{2} b_{3} c_{1}-x_{3} b_{1} c_{2}=0 \tag{iii}
\end{equation*}
$$

[^0]the cubic curve described, in the Grassmann manner, with the points $A, B, C$ and the sides of the triangle of reference as fundamental elements, will have two triads apolar-namely the triad $A B C$ and the vertices of the triangle of reference.

A ruler construction for this locus (iii) has been obtained ${ }^{1}$.
Now describe a new cubic in a manner analogous to $f$ but interchange the relative positions of the points $B$ and $C$. We thus obtain $f^{\prime}$ where,

$$
\begin{aligned}
& f^{\prime}=x_{2}{ }^{2} x_{3}\left(b_{1} c_{3}-b_{3} c_{1}\right) a_{1}+x_{2} x_{3}{ }^{2}\left(b_{2} c_{1}-b_{1} c_{2}\right) a_{1}+x_{1}{ }^{2} x_{3}\left(b_{2} a_{3}-b_{3} a_{2}\right) c_{2} \\
& +x_{1} x_{3}{ }^{2}\left(b_{1} a_{2}-b_{2} a_{1}\right) c_{2}+x_{1}{ }^{2} x_{2}\left(a_{2} c_{3}-a_{3} c_{2}\right) b_{3}+x_{1} x_{2}{ }^{2}\left(a_{3} c_{1}-a_{1} c_{3}\right) b_{3} \\
& +x_{1} x_{2} x_{3}\left(2 a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}-a_{3} b_{2} c_{1}\right)=0 .
\end{aligned}
$$

Hence if the point $A$ be taken as the point of intersection of the two lines,

$$
\begin{aligned}
& 2 x_{1} b_{2} c_{3}-x_{2} b_{3} c_{1}-x_{3} b_{1} c_{2}=0 \\
& 2 x_{1} b_{3} c_{2}-x_{2} b_{1} c_{3}-x_{3} b_{2} c_{1}=0
\end{aligned}
$$

the two triads $A B C, A^{\prime} B^{\prime} C^{\prime}$ will be apolar to both $f$ and $f^{\prime}$, and hence the pencil of cubics will have a third apolar triad in common. Now from the Grassmann figure one common point will be where $B C$ meets $B^{\prime} C^{\prime}$-say $A^{\prime \prime}$. The other two points $S$ and $T$ will be shown to be two points common to two definite conics whose other two points of intersection are $A$ and $A^{\prime}$.

It is easily shown that,
if $(b c x)=\Sigma \pm b_{1} c_{2} x_{3}$, and $F, F^{\prime}$ are the two conics,

$$
\begin{aligned}
& F=2 a_{1} x_{2} x_{3}-a_{3} x_{1} x_{2}-a_{2} x_{1} x_{3}=0, \\
& F^{\prime}=x_{1} x_{3}\left(2 b_{2} c_{2} a_{3}-a_{2} b_{2} c_{3}-a_{2} b_{3} c_{2}\right)+\ldots=0
\end{aligned}
$$

Then $\quad(b c x) . F \equiv f-f^{\prime}$,
and $\quad x_{1} \cdot F^{\prime} \equiv f+f^{\prime}$.
The tangent to $F$ at the point $A^{\prime}(1,0,0)$, being $a_{2} x_{3}+a_{3} x_{2}=0$, is harmonic to $a_{2} x_{3}-a_{3} x_{2}=0$ with respect to the two sides

$$
x_{2}=0\left(\text { or } A^{\prime} B^{\prime}\right) x_{3}=0\left(\text { or } A^{\prime} C^{\prime}\right)
$$

and the line $a_{2} x_{3}-a_{3} x_{2}$ is the line $A^{\prime} A$. Hence this conic $F$ is determined. Similarly for the conic $F^{\prime}$, the lines $A A^{\prime}$ and the

[^1]tangent at $A$ are harmonic with respect to $A B$ and $A C$. This conic passes through the points $A B C A^{\prime}$ and hence is also uniquely determined. These two conics thus intersect in the points $A, A^{\prime}, S, T$, and hence the third apolar triad to the pencil of cubics will be $A^{\prime \prime} S T$. Q.E.D.

A further point in connection with the cubic curve $f$ (or $f^{\prime}$ ) and the locus (iii) seems worthy of remark.

Take the conic passing through the points $B, C, A^{\prime}, B^{\prime}, C^{\prime}$, and let the line (iii), viz. $2 x_{1} b_{2} c_{3}-x_{2} b_{3} c_{1}-x_{3} b_{1} c_{2}=0$, meet the conic in $A_{1}$ and $A_{2}$. Describe the Grassmann cubic with the base points $A_{1} B, C, A^{\prime}, B^{\prime}, C^{\prime}$, and through the same points construct the apolar locus, ${ }^{1}$ viz. the locus of a point whose joins to $A_{1} B C$ apolarly separate $A^{\prime} B^{\prime} C^{\prime}$. For these two cubics both triads are apolar and hence intersect in a third apolar triad. Now the other three points of intersection are collinear; and hence being a collinear apolar triad, their join is tangent to the Cayleyan of the apolar locus and to this Grassmann cubic. ${ }^{1}$

[^2]
[^0]:    ${ }^{1}$ Prof. W. P. Milne. Proc. Edin. Math. Soc., vol. 30 (1911-12).
    2 W. Saddler. Proc. Lond. Math. Soc. (2) 26 (1927), 249-256.

[^1]:    ${ }^{1}$ W. Saddler. loc. cit.

[^2]:    ${ }^{1}$ Milne, loce. cit.

