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SUMMARY
Navigation and path analysis in a cluttered environment is a challenging task over the last few
decades. In this paper, a behavior-based neural network (BNN) and reactive control architecture have
been presented for navigation of the mobile robot. Two different reactive behaviors have been taken
as inputs function. Obstacle position is the first reactive behavior given by u(o), whereas obstacle
angle u(n) according to the target position is the second reactive behavior. The angular velocity and
steering angle are the output of the controller. The backpropagation architecture reduces the errors
of weight function and records the best weight data that match the BNN controller. Using the BNN
algorithm, the robot reacts quickly as compared to other developed techniques. To validate the per-
formance of the controller, simulation and experimental results have been compared in the common
platforms. The deviation in results for both the scenarios is found to be within 10%. The results of the
BNN algorithm have also been compared with other existing techniques. Effectiveness of the pro-
posed technique is measured in terms of smoothness of the realistic path, collision point detection,
path length, and performance time.

KEYWORDS: Behavior-based neural network (BNN); Navigation; Path planning; Obstacle avoid-
ance; Robot localization.

1. Introduction
To develop a robust navigational control algorithm for the mobile robot, a vast number of researches
have been carried out in the last decade. The majority of the research defines a particular problem
state. The aim of the mobile robot navigation system is to design and mainframe a mobile-based
platform that helps to execute the tasks from start to the goal autonomously and robustly. The out-
put of navigational control enhances the ability of the mobile robot, to plan and explain practically
collision-free motion within the environment, where the environment may be rough, nonstructured,
and maze. To enhance the ability of the navigational control system, a robust intelligent technique is
required. The implementation of artificial intelligent (AI) technique helps the robot to understand the
structures of the environment and execute the navigational tasks accordingly. Literature on different
events, which have been performed by the mobile robot during the target search, has been presented
in the upcoming paragraph.

Fierro and Lewis1 presented a research paper on control of a nonholonomic2 mobile robot using
a neural network (NN). They have shown a combination of kinematic and torque control law devel-
oped using backstepping and stability theory that includes Lyapunov concept. An idea on multisensor
system integration for positioning and navigation instruments using an artificial NN is proposed
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by ref. [3]. In this analysis, the inertial navigation system and GPS have been integrated over the
Kalman filter to find the best solution during positioning and velocity calculation of real-time vehi-
cle. Araujo et al.4 presented the full integration of compact educational mobile robotic platform built
using an Arduino controller board with robot operating system (ROS). The ROS provided by driver
enables the use of several tools for data analysis in a mobile platform. Marin et al.5 emphasized local
fusion technique to improve the localization of a mobile robot. It provides the faster execution of
data for the robot when compared to more complex fusion schemes. Wei et al.6 presented a vehi-
cle positioning technique using stereoscopic system, laser range finder, and GPS for localization of
mobile agents inside the search space. Unscented information filter (UIF) combined with sensors to
localize the vehicle and tested with real-time data to validate the real-time kinematic (RTK)-GPS
data in ground level. Mujahed et al.7 proposed the concept of admissible gap (AG) methodology for
reaction-based collision avoidance.8 This AG methodology gave direct shapes and kinematics to the
robot to target the goal. Gualda et al.9 proposed a simultaneous calibration and navigation algorithm
using multiple ultrasonic local positioning systems. This proposal is used to navigate the mobile robot
by estimating the map. The algorithm is based on multiple filters running in a parallel manner that
estimates the global and local trajectories of a mobile robot. Khan et al.10 designed an algorithm for
autonomous navigation of a mobile robot in an indoor environment. They have used ultrasonic sensor
and rational odometer to avoid obstacles and localize the robot, respectively. To improve the naviga-
tion and obstacle avoidance, the authors have used Bug-2 algorithm. Mota et al.11 discussed the use of
radio-frequency identification (RFID) technology to ensure the position of the robot inside the search
space. Petri Net12 dynamics model has been used as the navigation and perception tools. They used
cards with RFID technology, which are placed at each intersection of the structured environment in
ways that transform the information to each other during operation. Toth et al.13 developed a fuzzy-
based indoor navigation for mobile robots using Mamdani architecture. They did the relative study
between developed method and other techniques without conducting real-time experiment. Xu et al.14

proposed a multisensory self-supervised framework for navigation of mobile robot in the indoor envi-
ronment.15 To improve human supervision during operation, they combined the sensor policy with
recording policy to evaluate accuracy in tasks during navigation without human interface. Navigation
using sensor fusion data (acceleration, angular rate, and geometric fields attitude) collected by the
mobile robot was proposed by Lee et al.16 in the outdoor environment. In this analysis, magneti-
cally disturbed environment (ferromagnetic objects) has also been considered during navigation of
the mobile robot using compensated heading angle methodology. The Kalman filter algorithm17 was
developed in a way that detects and rejects the magnetic disturbances of the geometric field. In the
case of heading accuracy, the peak-to-peak errors were reduced by 32.9%. To collect the garbage on
the grass, Bai et al.18 designed a novel garbage pickup robot. Deep learning NN control architecture
was used to develop the controller. Using ground segmentation-based NN controller, the robot detects
the garbage autonomously on the grass. Experimental results presented the effectiveness (garbage
recognition rate 95%) of the controller without path planning. Speck et al.19 explored the application
of Shakey the robot that had an impressive capability of navigation without mobile manipulation. In
this research, authors rebuilt Shakey with modern robotics technology. The rebuilt Shakey 2016 sys-
tem has been applied on real robotics platform by testing with object rearranging trials. Kunze et al.20

presented a survey based on AI for long-term robot autonomy. Autonomous agent, AI-based method,
and long-term autonomy were the main objectives of this survey. They further categorized the appli-
cation of robotics, which was used previously in the field of space, marine, air, and road services. Lui
and Sukhatme21 modified the standard Markov decision process to time-varying Markov decision
process (TVMDP) and proposed its capability to handle future transition model over the horizon.
To validate the framework, a marine robotics platform was used with spatiotemporal ocean data. The
Bellman backup mechanism and Kolmogorov equation were used for computing work with TVMDP.
Pierson et al.22 proposed path planning for multiple agents in a bounded convex environment. They
used a distributed AI algorithm and area minimization technique for the cooperative search of mul-
tiple evades and multiple followers. 2D and 3D environment were taken to conduct the simulation
experiments. Based on the comparison results, it was concluded that the human controlled evader is
unable to avoid capture, whereas autonomous evader negotiated with capture. Zhang et al.23 devel-
oped the automated base path planning architecture for the industrial robot24 using improved Rapidly
Exploring Random Tree algorithm in a complex environment. Over-search-creation and unnecessary
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Fig. 1. The robot changes pose from the initial position to the new position.

iteration were eliminated, and search was refined using regression mechanism. Arango et al.25 devel-
oped and implemented the hyperspherical algorithm for path planning of terrestrial robot. The path
planning events were conducted using the homotopy continuation method (HCM). Parameters that
affect the behavior of HCM was discussed and opted optimum values. Based on the experiments,
the proposed methodology turned out to be faster when compared to other Spontaneous Bacterial
Peritonitis algorithm. Motivation part of literature is not limited to safe navigation and shortest path
planning using AI techniques having different sensory modules. However, how to adapt and learn
from the environmental events is another required study field for mobile robotics research, which is
already discussed in the literature section.

2. Dynamic Modeling of the Wheeled Mobile Robot
In Fig. 1, the motion of mobile robot has been shown in the global framework. Velocity (v) defines the
velocity of the robot toward the target. The robot changes local position from pose (x, y) to the global
pose (xnew,ynew) using local theta (θ) angle to the global theta dot (θ̇ ) angle. At that time, angular
velocity (Av) changes with from ‘t’ to ‘t + δt’ and the velocity of wheels changes independently.
Now, the velocity of left and right wheels can be expressed as:

vl = Av

(
R − l

2

)
or vr = Av

(
R + l

2

)
(1)

where ‘Av’ is the angular velocity of wheels and ‘R’ is the radius from the Instantaneous Center (ICC)
to the local center point of the robot given in Fig. 1. To calculate the values of ‘R’ and ‘Av,’ Eqs. (2)
and (3) have been used.

R = l

2
(vl + vr) ÷ (vr − vl) (2)

Av = (vr − vl) ÷ l (3)

If the robot rotates wheels according to the ‘ICC’ during the motion then robot local reference time
‘t’ changes with time ‘δt’. Now, the position of the robot is updated and given by new local pose on
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the global pose. Similarly, theta (θ) can be updated by theta dot (θ̇) and its value is calculated using
Eq. (4):

θ̇ = Avδt + θ (4)

The center of rotation for the mobile robot according to ‘ICC’ is given by Eq. (5):

ICC = [ICCX, ICCY ] =
[

x − l

2
(vl + vr) ÷ (vr − vl) sin θ, Y + l

2
(vl + vr) ÷ (vr − vl) cos θ

]
(5)

Now, the updated pose of the mobile robot from time ‘t’ to ‘t + δt’ in ‘X’ and ‘Y’ direction with
rotation is calculated using Eqs. (6) and (7).

xnew = cos (Avδt) (x − XICC) − sin (Avδt) (y − YICC) + XICC (6)

ynew = sin (Avδt) (x − XICC) + cos (Avδt) (y − YICC) + YICC (7)

where

ICCX = x − Rnew sin θ or ICCy = y + Rnew cos θ (8)

Avδt = (nr − nl) steps ÷ l or Rnew = l

2
(nl + nr) ÷ (nr − nl) (9)

ϕ = tan−1

[
Tary − Rynew:n_steps

Tarx − Rxnew:n_steps

]
(10)

In Eq. (9), ‘n’ is the counter value of the encoder and n: n steps equal to vδt, now ‘v’ becomes
n_steps ÷ δt. Using Eq. (10), the robot decides the angle of steering toward the target. In the next
section, behavior-based navigation approach has been presented using NN.

3. Robot Navigation Using Behavior-Based NN
In this analysis, unknown and wall type obstacle arena has been taken under consideration for the
study of path planning and navigation of a mobile robot. A behavior-based neural network (BNN)
methodology has been used for robot navigation. In a series, the robot has used two behaviors as
inputs. These behaviors have been taken in terms of obstacle distance from the robot position and
obstacle angle from the robot position according to the goal position. Based upon BNN analysis, the
robot has used the minimum threshold value to avoid obstacles and holds the goal position using
negotiating obstacle angle. To minimize the path length according to the goal position and computa-
tional time within the environment is the objective of this analysis. BNN has been implemented as a
control algorithm for the robot localization and navigation. BNN is a computational structure inspired
by the behavioral study of biological neural processing. Using the BNN technique, the mobile robot
learns from different environmental activities and executes the collision-free path in the working
space from the start to the target point smoothly. The designed navigation control algorithm is based
on the trained network. Figure 4 shows the training procedure of the mobile robot and technique that
has been used for the proposed analysis. In the next section, the architecture of BNN technique has
been presented. In Fig. 3, u(0) and u(n) are the two inputs taken using sensory module and explored
by BNN.

3.1. The architecture of BNN
The NN is a combination of weights and strings as the human brain connected with the neurons and
their connecting links. Generally, the NN comprises of three-layer combination of weights, input
layer, hidden layer, and the last layer is called the output layer, from where we find the output data
from the NN. A complete working principle methodically of NN has been shown in Fig. 2.

The processing essences are seen as entities that are akin to the neurons in a human brain and
therefore, they are referred as cells, neuromas, or artificial neurons. The weights used on networks
between dissimilar layers have significance in the working of the NN and the categorization of a
network. There are two actions possible in the NN. First is, start with one set of weights and run the
network without training. Second possible action is, start with one set of weights, run the network,
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Fig. 2. Simple flow diagram of a neural network.

and modify some or all weights. Again, run the network with a new set of weights for accuracy.
Repeat this process until the target is reached. In NN, updation of weight is called a training process
of the network. Changing of weight inside the system takes place internally and rapidly, due to
the desired learning of network. The most important thing in the design and development of the
intelligent mobile system is the navigation problem.

3.2. Mathematical modeling of NN
Status of the neurons is determined by using Eq. (11),

Sk =
k∑

i=1

ui • Wti + G (11)

where Wti is the weight of a neurons, i = 1, 2, 3 . . . . . . .k; G is an offset value; Sk is the result of
summation; and ui is the element of the input vector (input), i = 1, 2, 3 . . . . . . .k of the neurons.
Learning ability during operation is the key of the BNN and behind its use. To train the mobile robot,
for smooth navigation inside the environment, an intelligent robot control algorithm is required.
Therefore, the modified NN algorithm has been used, which collects and optimizes the environmental
map during running time. To collect the environmental data, the robot uses different sensory modules
mounted on the robot body. During training, time controller has been updated many times to generate
smooth path that helps the robot to detect the position inside the environment accordingly. To train
the robot inside the environment, a neural model depicted in Fig. 3 is used. The model is based on
the following equation:

Wtij(n) = Wtij(n − 1) + LRNY(k−1)
i Yk

j (12)

Ao = Input data in ‘cm’ from sensors

100 cm
×180o (13)

where Y(k−1)
i represents the value of the neurons in the output layer of vector i (k − 1), Yk

j represents
the value of the neurons in the output layer of j (k). Wtij(n) is the weight coefficient of neurons at
iteration ‘n’ to (n − 1), respectively. ‘LRN’ is the learning rate of the network between (0, 0.4). In
this analysis, the network has been learned with different examples (Fig. 4). In Fig. 3, input layer,
hidden layers 1 and 2, output layer, and actuator have been represented. Weight functions are the
inputs of the output layer by which motion in the ‘X’ and ‘Y’ directions with theta orientation has
been calculated. Finally, velocity of left wheel, velocity of right wheel, and steering angle have been
obtained. S1,S2,. . . . . . ., Sn in the input data sources have shown the two input behaviors from sensory
module u(0) to u(n), respectively. Sensory module collected the obstacle distances in the front, right,
and left directions of the robot when the robot is navigating toward the target. The minimum collision-
free distance of the robot is obtained using Eq. (13) in degrees. These inputs behavior have been
implemented to simplify the network architecture. ‘S’ in the input layer represents the sensor reading
for each obstacle which is situated in the target path. The active BNN controller has been used to
synchronize the sensory module to calculate both inputs at the run time. The range of the sensor is 10
to 100 cm for detection of obstacles. Based upon these input behaviors, the environment is analyzed.
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Fig. 3. Operational diagram of BNN in this analysis.

Fig. 4. Different reactive behavior of the mobile robot during training time.

The rules have been generated based upon the input data. Furthermore, the output layer decides the
angle toward the target.

Figure 4 shows the different reactive behaviors for the mobile robot during training time. These
types of reactive behavior have been used at the time of training. In this figure, eight types (not
limited) of reactive behavior have been presented for the training of robot inside the environment.
Table I shows the 15 sets of training data for the training. According to the first data from Table I,
if left obstacle (LO) is located at a distance of 60 cm, right obstacle (RO) is located at a distance
of 80 cm, front obstacle (FO) is located at a distance of 20 cm, and the robot is moving toward the
target, then the robot changes its steering angle up to 45◦ toward the left side to generate the possible
path. Similarly, if there is no obstacle within the sensing range (20 cm), then the steering angle is 0◦
and the robot follows the straight path (Table I rule 6 and 8).

In Table I, some cases represent the negative steering angle and it is due to robot detecting target
at the right side. The velocity of both wheels is the same if the steering angle is zero. Similarly,
wheel velocity depends upon the direction of obstacles and the target. If a sensor detects any possible
obstruction inside the environment at that time, the robot starts the BNN control algorithm. Therefore,
the robot has decided the steering angle toward the collision-free path and then updates the target
angle according to the position itself. In Fig. 4, it has been depicted that sensor detects the obstacle
on its path, and then active signal changes the color ‘green’ (inactive mode) to a combination of ‘red’
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Table I. BNN data for the robot training in a disordered environment.

Obstacles distance in ‘cm’

Sl. No. FO LO RO Negotiation angle Direction of turning

1 20 60 80 45 Left
2 100 20 40 55 Left
3 60 80 20 −30 Right
4 80 40 100 0 Straight
5 40 60 60 −60 Right
6 90 40 20 0 Straight
7 100 60 40 10 Left
8 60 90 60 0 Straight
9 80 30 20 −10 Right
10 30 60 90 40 Left
11 80 100 20 20 Left
12 100 20 80 0 Straight
13 90 40 60 −55 Right
14 60 30 80 0 Straight
15 30 80 100 −10 Right

and ‘green’ (active mode). Curve section represents the front side of the robot, whereas square side
represents the rear side (arrow mark) of the robot. In the next section, BNN-based simulation and
experiment results have been discussed as well as compared.

4. Results and Discussions
In this section, simulation and real-time experiment results are presented using BNN. The result com-
parison between simulation and real-time experiment has been depicted graphically in terms of path
length and computation time. The time taken in the simulation platform as well as in the experimental
platform has been presented in this section. In addition, path length obtained during the navigation
from start to the goal position is also taken under discussion for both cases (simulation and experi-
mental). The Khepera II mobile robot (Fig. 9) has been used to conduct real-time experiments. In the
upcoming sections, simulation and real-time experiment results have been shown and compared for
error calculations.

4.1. Behavior-based NN on MATLAB simulation platform
In this section, simulation experiments using BNN have been presented. First, simulation experiment
has been conducted on 300*300 MATLAB R2017a-based arena given in Fig. 5. In this experiment,
the mobile robot has successfully completed the navigation and path planning task by avoiding the
wall type environment using BNN methodology. In Fig. 5, the robot has avoided the wall using
minimum threshold value and reached the target safely. The threshold range is the value by which
the robot avoids the obstacles with minimum collision distance or the robot negotiated obstacles with
minimum collision distance. At the end of the wall, the robot directly traces the target and follows the
starting path to reach the target. During navigation and path planning, the robot has obtained different
data from the environment which have been tabulated in Table II. The goal position has been taken
as 150 in the ‘X’ direction and 100 in the ‘Y’ direction. The final distance of the robot from the goal
has been obtained as 0.3175 cm (robot stop). In Table II, initially FO, LO, RO and final FOD, LOD,
ROD have been given. The number of steps counted during navigation is 234 to reach the target in
the environment given by Fig. 5. Initial target angle has been recorded as 8◦.

Finally, 1.595 m and 15.53 s, respectively, have been recorded as path length and computation
time during the navigation using BNN. Similarly, the second scenario has opted as the simulation
experiment given in Fig. 6, and data have been tabulated in Table II. Position of the goal has been
taken as 160 in the ‘X’ direction and 275 in the ‘Y’ direction. The final distance of the robot from
the goal has been obtained as 0.0752 cm, and steps have been counted as 244. Initial target angle
has been counted as 20.77◦. The path length and time taken are calculated as 2.602 m and 12.376 s,
respectively. The collision steps encounter during navigation toward the target are recorded as ‘126’
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Table II. Navigational data during simulation experiment using BNN technique.

Initial obstacle End obstacles Final robot
Path Time distances (cm) distance (cm) POS

Scenario length (m) (S) FO LO RO FO LO RO X Y

Setup 1 (Fig. 5) 1.595 15.536 303.2 43.85 15.96 177.2 118.0 232.7 150.2 100.1
Setup 2 (Fig. 6) 2.601 12.376 159.6 303.2 16.26 72.04 27.33 293.5 159.9 274.9

Fig. 5. First simulation experiment using BNN for Collison-free navigation in the regular wall environment.

Fig. 6. Second simulation using BNN for Collison-free navigation and wall following behavior.
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Table III. Navigational data during real-time experiment using
BNN technique in Figs. 7 and 8.

Scenario Area (X, Y in cm) Path length (m) Time (s)

Setup 1 (Fig. 7) 300, 300 1.76 16.90
Setup 2 (Fig. 8) 300, 300 2.85 13.35

(a) (b)

(c) (d)

(e) (f)

Goal

Khepera II

Simulated Path

Obstacle
Actual Path

Start

Fig. 7. Real-time experimental result using Khepera II mobile robot in the unknown search space as given
in Fig. 5.

and ‘111’ in Figs. 5 and 6, respectively. Finally, improved navigation and path planning behavior has
been presented using the BNN control algorithm. In the next section, real-time experimental results
have been shown graphical (Figs. 7 and 8) in terms of path length and time taken (Table III).

4.2. Behavior-based NN on real-time experimental platform
In this section, real-time experiments using BNN has been presented. Environments (‘X’ direc-
tion = 300 cm, ‘Y’ direction = 300 cm) have been created according to the simulation experiment
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(a) (b)

(c) (d)

(e) (f)

Simulated Path Actual Path

Start

Khepera II

Goal

O
b

st
ac

le

Fig. 8. Khepera II mobile robot achieving the goal in the unknown real-time environment as given in Fig. 6.

environment. The target and robot position are the same, as illustrated in the simulation environment.
Finally, real-time experiments have been conducted (Figs. 7 and 8) using the Khepera II mobile robot
for validation of simulation (Figs. 5 and 6) results. In the real-time experiment, path length and time
taken by the Khepera II mobile robot have been noted and tabularized in Table III. In Fig. 9, spec-
ification of the Khepera II mobile robot has been shown. It has 11 number of infrared sensors with
a sensing range of 30 cm as well as 5 number of ultrasonic sensors having a range of 4 m. It has a
maximum running speed of 0.5 m/s. Inbuilt RAM is 4 kb for DsPIC microcontroller. The comparison
between simulation and real-time results has been presented in Table IV in terms of percentage devi-
ation. Percentage deviation in case of path length has been calculated as 9.37 for the first scenario
and 8.73 for the second scenario. Similarly, computation time deviation has been recorded as 8.07
for the first scenario and 7.29 for the second scenario. In both of the environments (Figs. 7 and 8),
different obstacles state has been presented. In both environments, the robot navigates and achieves
the target smoothly. Wall following the event by the robot has been observed in terms of angle devi-
ation, and the deviation in angle is recorded very small in case of a straight wall. Due to the use of
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Table IV. Deviation in results for simulation (S) and real-time experiment (E) using BNN.

Sl. No. Tasks Path length (m) Time (s) Deviation (path) Deviation (time)

Setup 1 Fig. 5 S 1.595 15.536 9.37 8.07
Fig. 7 E 1.76 16.90

Setup 2 Fig. 6 S 2.601 12.376 8.73 7.29
Fig. 8 E 2.85 13.35

Fig. 9. Khepera II mobile robot specifications.

BNN methodology, the input functions collected by the robot are more simplified. In addition, the
learning capability of a robot is increased due to the use of behavior-based methodology.

In every step of motion, the robot collects obstacle positions and obstacle angles according to
target angle as inputs. Therefore, every step of the robot has initialized with obstacle positions and
angles, which have been recorded previously. Using BNN methodology, navigation and path planning
events have been enhanced. Figure 10 shows the flow chart of BNN-based navigation. In the next
section, comparisons with other developed techniques have been presented to show the advancement
in BNN-based simulation and real-time navigational results.

In each steps, the robot updates its pose in the local reference coordinates as well as sensors
update the obstacles distances according to the robot global reference coordinate. Therefore, the
robot plans its path smoothly in the real-time experimental platform using BNN technique. Using
the BNN technique, the robot reaction or robot negotiation time with the obstacles is minimized
(due to behavior learning technique). Thus, a reactive delay time has been reduced for the narrow
corridor, which reduces the overall time taken from start to the goal. During the navigation, the robot
encounters collision point very quickly using BNN in both platforms (simulation and experiment).
The distance between the robot and the target is updated for every steps according to the global
reference frame.

5. Comparison of the Results Between the Proposed and Existing Techniques
In this section, comparison between the proposed technique (BNN) and other developed tech-
niques26, 27 has been illustrated. The proposed BNN technique environments are the same as the
other developed techniques. Navigation and path planning events have been successfully completed
in this environment using BNN control algorithm. From Figs. 11 and 12, results have been presented
in Table V for BNN control algorithm. Graphically, it has been shown in these figures that path
created using BNN technique is a more optimized path compared with path developed by fuzzy26

and neuro-fuzzy.27 From both of the figures, it has been observed that the mobile robot successfully
negotiates with obstacles and safely reaches the target. Figures 11(a) and 12(c) illustrate the more
realistic situation when environment is maze and obstacles shape and size are different. Since it is the
case of maze environment, then the frequency to switch the steering angle between obstacles and the
target has been increased that shows the performance of the proposed control algorithm. MATLAB
simulation environments have been explored to design the BNN control algorithm, and the results
have been compared with other developed techniques. In Table V, the proposed navigation entities
have been tabulated, which are collected during the motion planning of the mobile robot using BNN.
In this table, the end pose of the robot in the ‘X’ and ‘Y’ directions represents the final distance of
the robot from ‘X’ and ‘Y’ axis of the goal.

In Table V, different types of navigational entities have been tabulated for the robot. The target and
robot end distance are measured of final distance between robot and the target when robot reaches the

https://doi.org/10.1017/S0263574719001668 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001668


1638 Trajectory planning and the target search by the mobile robot

Table V. BNN reactive entities observed during the navigation (Figs. 11(b), (d) and 12(b), (d)).

Sl. No. Navigation entities Figure 11(b) Figure 11(d) Figure 12(b) Figure 12(d)

01 End pose in the X-direction (cm) 16.9870 2.8024 14.5108 14.4999
02 End pose in the Y-direction (cm) 16.9769 3.4064 14.5022 14.4980
03 Target robot end distance (cm) 0.0265 0.0068 0.0111 0.0020
04 Path length, target to robot (cm) 19.4487 15.8937 20.8597 21.0524
05 Total navigational steps 116 96 129 133
06 Collision points encounters 29 36 41 47
07 End target angel (degrees) 60.6153 68.9309 11.5506 87.8951
08 End obstacles distances (cm) ROD 3.5592 3.0726 16.8065 3.5091
09 End obstacles distances (cm) LOD 6.4808 9.9427 3.6069 14.5031
10 End obstacles distances (cm) FOD 3.6495 3.8304 3.7413 3.6844

Fig. 10. Obstacle negotiating flow diagram of a mobile robot based on the BNN control technique.

target. The path length recorded by the robot is also tabulated in Table V as well as the target angle at
the end has been provided as the end target angle. When the robot reaches the target point at that time,
sensor readings concerning obstacle position in the front direction, right direction, and left direction
of the robot are observed as the end obstacles distances (Table V). The right, left, and front obstacles
distances are tabulated as ROD, LOD, and FOD, respectively. The simulation steps are also provided
in this table, which are calculated by the robot during the navigation toward the target. Table VI
shows the comparison of results in terms of path length between the proposed technique and other
developed techniques. In this comparison, different types of environments have been illustrated in
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Table VI. Comparison of results between the proposed technique and other developed techniques.26, 27

Figure 11 Figure 12

Comparison 1 Comparison 2

(a) (b) (c) (d) (a) (b) (c) (d)
Events Fuzzy BNN Fuzzy BNN Neuro-Fuzzy BNN Neuro-Fuzzy BNN

Path length (m) 23.53 19.44 24.53 15.89 21.33 20.85 23.78 21.05
% Deviation 17.38 35.22 2.25 11.48

Fig. 11. Comparisons of simulation results: (a) and (c) Cherroun and Boumehraz26 Fuzzy behavior-based
results, (b) and (d) results in the current analysis, and BNN control algorithm.

which robot successfully completed the navigational tasks by avoiding the obstacles. The percentage
of deviation is recorded by 17.38%, 35.22%, 2.25%, and 11.48% in terms of navigation path length
between the proposed technique and existing techniques.

In Table VI, collision point encounters during the navigation in each environment have been tabu-
lated (Sl. No. 6). It is the point (sum of the total point) at which sensors recognize moving steps with
the obstacles and record that steps. Figure 12(d) shows the condition of the maze environment, and
the robot records most of the collision steps as ‘47’ in this search space.
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Fig. 12. Comparisons of simulation results: (a) and (c) Mayyahi et al.27 Neuro-fuzzy results, (b) and (d) result
in the current analysis, Behavior-based NN.

6. Conclusions
In this paper, BNN synchronization approach using two behavioral inputs, i.e., obstacle distance u(0)
and obstacle angle u(n) according to the target, has been developed. Based on the simulation and
the real-time experiments, it is observed that the BNN controller has a better ability to solve the path
planning problem in a reasonable time during navigation. To validate the performance of the proposed
controller, the results have been presented and compared with the other developed techniques (fuzzy
and neuro-fuzzy) in terms of path length. During learning stages, the backpropagation technique has
been used to reduce the errors for incoming weights to the neurons that enable the proper learning
for the network. In this model, 80% of data have been used in training and learning, and 20% data
have been used to test the model. The network used hyperbolic tangent function for hidden node
activation. The comparison between the results shows the effectiveness and performance of the BNN
control algorithm during the navigation. Navigational effectiveness of the proposed technique has
been measured in terms of smoothness of the realistic path, number of collision point detection, path
length, and performance time. Using the BNN control algorithm, the robot successfully negotiated
the obstacles and reached the target. The current work considers only a single mobile robot in the
navigational arena. However, research can be done in future to navigate multiple mobile robots in a
common platform using the developed technique.
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