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X rays are able to penetrate specimens that are centimeters thick, while also delivering tomography 
data with sub-micrometer voxel size. This leads to teravoxel datasets from which one would like 
to obtain a segmented representation to identify and analyze various features.  While there are a 
number of toolkits available for segmentation on gigavoxel datasets that fit within the memory of 
a single computer workstation, for larger datasets one must turn to parallelized segmentation on 
distributed computing systems. 
 
Here, we introduce a distributed data processing pipeline for segmenting teravoxel (and larger) 
image volumes. Our workflow (shown in Fig. 1) involves the splitting of a 3D volume data array 
into a large number of small sub-volumes with overlap, applying a range of classifiers to each of 
the subarrays to identify the features of interest, and then merging the outputs of the classifier to 
obtain a final result on the full 3D volume. To classify each sub-volume, we use ilastik [1], an 
existing open-source toolset that allows the user to interactively annotate a small set of image slices 
as training for segmentation of larger volumes. In our previous work, we have shown that ilastik 
provides a user friendly front-end for robust classification that can be used to segment millimeter-
sized samples of mouse brain cortex [2]. Our results suggest that this workflow based on ilastik 
can be extended to significantly accelerate processing of large-scale X-ray tomography datasets. 
 
While the proposed data processing pipeline can be used in a wide range of distributed computing 
environments, we implemented it on the Cooley cluster of the Argonne Leadership Computing 
Facility (ALCF), which is available via no-cost scientific user proposals. The Cooley cluster has 
126 compute nodes, each with two 2.4 GH Intel E5-2620 v3 processors with 6 cores per processor, 
two NVidia K80 GPUs, and 384 GB of RAM per node.  Depending on data size, different number 
of parallelized processes (ranks) can be allocated for various steps of the workflow. The timings 
for these operations versus data size are shown in Fig. 2 (left), which shows near-ideal linear 
scalability.  The code is publicly available (github.com/xbrainmap). 
 
To demonstrate the utility of our pipeline, we applied it to a publicly available X-ray 
microtomography dataset (github.com/nerdslab/xbrain) collected from a cubic-mm brain sample 
from mouse somatosensory cortex [2]. The size of this entire dataset is 2560x2560x1624 (10.6 
Gigavoxels). To generate a segmented output with our methods, we distributed our workflow on 
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48 Cooley-cores to produce an output in one hour including I/O. Our results demonstrate that this 
workflow can be used to obtain accurate classification and segmentation results (Fig. 2, right) with 
nearly linear scaling as we increase the number of cores (Fig. 2, left).  

 
Figure 1. A 3D volume is divided into a number of overlapping subarrays, each subarray is processed by a single 
core, and then merged to yield full volume arrays of each of the classified features. 

 
Figure 2. (Left) Timings for segmentation of a larger dataset (classifying x-ray tomography data of a mouse brain 
segmented for cell nuclei, blood vessels, and “other”) at three different resolutions. (Right) Segmentation results on a 
small (400 x 400 x 400) brain volume imaged at 0.65 isotropic micron resolution: (A) original X-ray image, (B) 
segmented vessels overlaid), (C) 3D visualization of (B).   
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