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There has been progress in convection theory in the past decade, mainly in 

the problem of mild convection. Yet, we are still not able to cope with vigorous 

convection such as we face in the envelopes of late-type stars. Most astrophysic­

ists therefore use mixing-length theory and get on with calculating their models. 

As this situation may continue for a while, it may be a good thing to consider 

what mixing-length theory really is and to see whether it can be taken seriously as 

a physical model for stellar convection. 

Different authors mean different things when they speak of mixing-length 

theory. Here, we interpret the theory in terms of the specific model in which a 

star is composed of a background fluid through which discrete, well-defined parcels 

of fluid move. These parcels may be thought of as quasiparticles whose number 

density is sufficiently high that they constitute a second fluid permeating the 

background fluid. The convectlve model is therefore a two-fluid model loosely 

resembling the composite of radiation and matter familiar in astrophysics, except 

that the quasiparticle fluid is more complicated than the photon gas. 

In applying this model we must write down equations of motion for the 

quasiparticles. We have to specify the nature of the quasiparticles, and most 

people, with varying degrees of expllcitness, treat them as idealizations of the 

buoyant thermals described by meteorologists. Fortunately, there is by now some 

guidance provided by laboratory data on the motion of isolated thermals in both 

laminar and turbulent fluids. Turner (1963, 1973) has described these experiments 

and has outlined the simple theory which has been evolved to describe them. In 

particular, he assumes that the thermals are small compared with any scale heights 

so that gradients across them, both inside and just outside, may be neglected. Only 

in their vertical motion do they sense the presence of the ambient temperature 

gradient. 

Turner's description allows for turbulent exchange of heat, momentum, and mass 

between a quasiparticle and the ambient medium. With some slight modifications of 

his discussions we may derive the following set of equations governing the motion 

of quasiparticles. We display these just to give some idea of their form: 
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Here m, x = (x,y,z), u = (u,v,w) and h are the mass, position, velocity and 

specific enthalpy of a thermal, p, p, fi and U are the local means of density, 

pressure, enthalpy and velocity of the ambient medium at x. Z^ and I are cross 

sections for entrainment and erosion (both of the order of the geometrical cross 

section of the thermal), v is the ambient turbulent velocity at x, m is 

ambient mass displaced by thermal, g is the acceleration of gravity corrected for 

the hydrodynamic mass of the thermal, q-1 is a thermal decay time allowing for 

radiative and turbulent exchanges, and u is a similar viscous decay time. 

Evidently these formulae must contain some fudge factors to be obtained by 

comparison with measurements, be they experimental, meteorological, or astrophysical. 

In astrophysical treatments of convection many of the effects modelled in these 

equations have been included. Turbulent exchange of momentum between fluid elements 

and the ambient medium was included in the early theories (e.g. Prandtl 1932, 

Biermann 1932, Siedentopf 1933) and b'pik (1950) allowed for turbulent exchange of 

heat. Ulrich (1970a,b) has adopted the formulation of Morton, Taylor, and Turner 

(1956) in his studies. However, when astrophysicists use these equations of motion 

they generally replace them by algebraic equations; that is they essentially replace 

d/dt by Mils, where I is a length to be specified. This gives rise to the usual 

local mixing-length treatment. Sometimes, some or all of these algebraic equations 

are averaged over height with some arbitrary weight function to produce a nonlocal 

extension of the theory (e.g. Ulrich 1976). 

Such reductions of the dynamical equations for thermals have not been favoured 

in the meteorological literature. Certainly, they are not suitable for use by 

anyone interested in studying the interaction of stellar pulsations with convection. 

An alternative procedure, first attempted by Priestley (1953, 1954, 1959) for 

hydrostatic convective layers, is to solve the differential equations and use them 

together with some hypotheses about the distribution of initial conditions of 

quasiparticles to compute the heat flux. This has also been attempted for linear 

pulsation theory (Gough 1977). But in both instances one has to build in some 

information about the number density of each kind of quaslparticle at each height, 
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generally by specifying creation rates. This becomes quite an undertaking for the 

nonlinear pulsation problem and even the formulation of the calculation has not 

been agreed upon. The manner of incorporating the dynamical equations into the 

convection theory thus poses a major difficulty in applying this kind of model. As 

we have hinted, it requires a prescription of the number of quasiparticles for each 

value of the parameters, and this distribution must be specified in a way that is 

compatible with the dynamics. 

Formulated in this way, the model resembles kinetic theory and, in an 

attempt to capitalize on this, a transport equation was written down as if the 

quasiparticles satisfied Hamiltonian dynamics (Spiegel 1963). Deviations from this 

ideal behaviour were compensated for by introducing a source term in the transport 

equation. A modification was suggested by Castor (unpublished manuscript) who 

renounced the simple form provided by Hamiltonian dynamics and wrote a continuity 

equation for the one-particle distribution in the phase space of the quasiparticles. 

The phase space was enlarged over the usual six dimensional u-space of position 

and velocity to include the temperature of a single quasiparticle as a phase 

parameter. In doing this one loses the volume-preserving feature of the phase fluid, 

which raises questions about the meaning of the approach, especially when one 

attempts coordinate transformations. Yet it seems to us a useful thing to write a 

continuity equation for the phase space density of quasiparticles and, for the 

present, ignore some of the niceties. We modify Castor's choice and use specific 

enthalpy (rather than temperature) of the quasiparticle as a variable and add an 

additional phase parameter, the quasiparticle mass. We have then an eight-

dimensional phase space in which the density of representative points is 

f(x,u,h,m;t). The continuity equation satisfied by f is: 

f + af <V> + a*" <V> + k ("> + h ™ - (f) , (5) 
i i v coll 

where dots denote differentiation with respect to time and a collision term has 

been Introduced. The collision term is supposed to express the turbulent 

destruction and creation of quasiparticles; through this term we may represent our 

crude understanding of turbulence. It seems inadvisable to use a form like the 

Boltzmann collision integral since the interactions are probably not dominated by 

two-body collisions. Instead, it is perhaps best to include a loss term like -f/x 

to represent the destruction of quasiparticles, where x is a time required for 

the quasiparticle to travel its own diameter. This term then embodies a basic idea 

of mixing-length theory. But what about the creation term? 

The generation of new quasiparticles is not really understood, and to quantify 

it, a specific model is needed. Often one imagines that quasiparticles grow from 

small fluctuations because of the instability mechanism. However, in a turbulent 

medium the fluctuations are not small. In the quasiparticle picture we think of 

the new quasiparticles as decay products of the old ones to represent the turbulent 
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cascade process. Their development through instability is already included in the 

dynamical equations. 

The problem, of course, is that we do not know much about the decay products 

following the destruction of the quasiparticles, and this is the first clear 

difficulty that must be faced in completing the theory. It is becoming increasingly 

clear in turbulence theory that the turbulent spectrum is strongly influenced by 

the number of decay products in the breakup of a quasiparticle, and possible models 

have been discussed which may provide guidance (cf. Frisch 1977). We shall not offer 

any preferences in the present discussion. Our aim instead is to bring out the 

points at which physical assumptions are needed to make the mixing-length model 

cogent. 

Once a form for (3f/3t)Coll is decided, the remaining difficulties are 

computational. This is not to belittle them; they are fierce and a moderately 

reasonable approximation scheme is not immediately apparent. The computational 

methods depend on the way one uses equation (5), and that has to be discussed next. 

We believe that it would be sensible to try to construct moment equations 

from equation (5). For example, multiplication of equation (5) by m followed by 

integration over dgft = d3U dm dh gives 

3P„ JJSL+ , . F = f/|iL\ md a - f a f d o 
3t ~m J\3t/ 5 J m 5 

(6) 

where 

mfd a (7) 

is the mass density of the gas of quasiparticles and 

F = mufdrS2 (8) 
-m j ~ 5 

is the mass flux of the gas. The last term on the right of equation (6) 

represents the mass exchanged with the background fluid by entrainment and erosion. 

One may compute other moment equations, but we shall not do that here. We 

should however mention that the number of moments goes up faster than in ordinary 

kinetic theory or transfer theory. Quantities like fluxes of enthalpy and 
mechanical energy arise and there is the all-important turbulent stress tensor: 

T = [ mu.u.fdcS2 . W 
1J 1 i J 5 

Once a hierarchy of moment equations has been written down [a skeleton version 

has recently been studied by Stellingwerf (private communication)] the problem of 

closing it off must be faced. A possible approach, resembling the moment method, 

is to decide on an approximation for f and use that guess, for that is all it is 

at present, to get approximate expressions for the higher moments in terms of the 

lower moments. Once this is done, a last problem of principle remains. One must 
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still decide how to describe that part of the fluid that does not move in 

quasiparticles. Should this be thought of as a zero fluctuation condensate of the 

quaslparticle gas? Or should one describe the background as an ordinary laminar 

fluid acted on by the stresses and so forth generated by the quasiparticles? The 

latter course seems decidedly preferable to us,especially for treating penetrative 

convection, where most of the matter may be in the background fluid. If that is 

accepted, the next course of action is to write the dynamical equations for the 

background fluid including the mass, momentum, and energy sources indicated by the 

moment equations of the quasiparticle gas. Then, in principle, one has a complete 

set of equations for the dynamics of a star with turbulent convection, but for the 

present without rotation or magnetic field. 

Now we have to come to the key question: is this what has to be done or are 

we to be saved from it by a 'real theory' starting from the full fluid equations? 

We think that the immediate prospects for a sound fluid dynamical approach are not 

bright. And even the approximations to such an approach as are on the horizon 

promise to be far more demanding computationally than the scheme summarized here. 

At present, untold computing hours are being lavished on stellar models using 

a mixing-length theory whose reliability is untested off the main sequence. It 

seems to us that if this situation is to continue it would be well to take the 

mixing-length theory seriously. In particular, one should be clear on the turbulence 

model one is using and not simply alter the standard formulae according to whim, 

as is often done in the literature. We are not saying that alternative general 

structures to that given here may not be preferable. Nor are the procedures we 

outline meant to be rigid. The present version of a mixing-length procedure is a 

synthesis of ingredients existing in the literature and we have done no more than 

put it together to show that a cogent discussion of mixing-length theory is 

possible. We have especially tried to show where the physics is missing and to 

indicate a framework for including it. The resulting equations are in principle 

capable of dealing with many of the problems of current interest, such as the 

nonlinear interaction of pulsation and convection. Those coping with such questions 

are all too familiar with many of the problems we have raised. But they, as we 

ourselves, have sometimes dealt with these problems piecemeal and have not tried to 

put them into context by working with a concrete general model. We are claiming 

here that the specification of such a model is possible and desirable and that if 

one can be constructed, stellar convection theory may begin to seem more rational. 

We thank the SRC and the NSF for supporting our work on this subject. 
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