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ABSTRACT. We investigated the morphological evolution of laboratory snow under isothermal
conditions at —3,—9 and —19°C, using X-ray tomography. We employed a two-point density correlation
function to measure spatial fluctuations of the density of the bicontinuous ice/vapor system at different
length scales. Length scales were derived from the correlation function to distinguish between interfacial
coarsening due to the minimization of surface energy on the smallest scales and anisotropic structural re-
arrangements due to gravity on larger scales. On the smallest scales our data suggest a crossover between
T=-9 and —19°C from evaporation/condensation to surface diffusion as the dominant transport
mechanism. Anomalous growth was found for the slope of the correlation function at the origin, and it
was similar to those reported for the coarsening of fractal clusters. This is consistent with the observed
persistence of dendritic structures throughout an entire year. The dynamics of large-scale morphology
was characterized by the first zero-crossing of the correlation function which displays a nonmonotonic
evolution with a pronounced anisotropy between the direction of gravity and horizontal directions.
Since the correlation function naturally emerges in problems of scattering of radiation in snow, our

results appear to be important for optical and remote-sensing methods.

INTRODUCTION

Snow crystals exhibit a variety of morphological changes
which are driven by fundamentally different thermodynamic
conditions. During growth in the atmosphere the problem
can be well described by an isolated crystal in a supersat-
urated environment, which is a classical problem of single-
crystal growth (Saito, 1996). If the orientation of the crystal is
taken into account, growth velocities can be measured on the
singular surfaces (Libbrecht, 2003) and the snow morphology
or Nakaya diagram (Furukawa and Wettlaufer, 2007) can
be reasonably well explained in terms of temperature,
supersaturation and crystal properties (see Libbrecht, 2005,
for a review). If these non-equilibrium growth forms are
deposited on the ground to form a seasonal snowpack the
crystals no longer evolve in isolation. Structural correlations
may be built up during atmospheric aggregation (Westbrook
and others, 2004) or during deposition on the ground (Léwe
and others, 2007). The subsequent evolution of the deposit
is dominated by collective behavior of the crystal packing
on different length scales. A unique characteristic of this
packing is its bicontinuous nature, where both phases (ice
and vapor) occupy a singly connected region in space.
Gravity does not permit isolated ice crystals or isolated pores,
i.e. vapor bubbles do not emerge until bubble close-off at
volume fractions of ~0.9 (Arnaud and others, 2000). The
simplest cases of thermodynamic conditions are isothermal
conditions where the relaxation to equilibrium is commonly
referred to as isothermal metamorphism.

Previous work on isothermal metamorphism focused on
possible transport mechanisms for the origin of interfacial
relaxation (see Blackford, 2007, for a review). It is widely
believed that evaporation/condensation of vapor is the
dominant process of mass transport (Dominé and others,
2003; Legagneux and others, 2004; Legagneux and Dominé,
2005). The dynamical evolution of ice morphology is then
usually characterized in terms of specific surface area,
which is the interfacial area of the ice/vapor interface
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per ice volume (Dominé and others, 2003; Flin and
others, 2003; Legagneux and others, 2004; Kaempfer and
Schneebeli, 2007). Sometimes an ice thickness is used
(Kaempfer and Schneebeli, 2007), which is derived from
a pore-size distribution of the ice phase. Another quantity
monitored during isothermal metamorphism is the mean
curvature (Flin and others, 2003, 2004). The evolution of
the aforementioned quantities is then related to grain growth
(Legagneux and others, 2004), sintering theory (Kaempfer
and Schneebeli, 2007) or a mean-field approach (Legagneux
and Dominé, 2005), which is closely related to the Lifshitz—
Slyozov-Wagner (LSW) theory of Ostwald ripening (Lifshitz
and Slyozov, 1961; Wagner, 1961).

The majority of concepts put forward for isothermal
metamorphism have two main shortcomings. First, LSW-
type approaches usually employ a geometry which consists
of spheres and neglects the bicontinuous nature of the ice
matrix in snow. This makes it difficult to relate deviations
of experiments from theory, either to deficiencies of the
ice-phase geometry or to deficiencies of the physics which
underlies LSW. Second, neither of the quantities employed to
characterize the dynamics can detect anisotropic behavior.
In view of the fact that gravity breaks the symmetry between
vertical and horizontal directions, there is a demand for an
orientation-dependent characterization which addresses the
interplay between gravitational and surface energy. Though
the recent Monte Carlo approach (Vetter and others, 2010)
does not have geometrical limitations, its comparison with
experiments is still based on nondirectional quantities, such
as the surface area or the ice thickness. There is a need to
develop more distinguishing measures of isothermal meta-
morphism to provide a benchmark for theoretical models.

To contribute in this direction, we address isothermal
metamorphism from a different perspective. The focus
of the present paper is an anisotropic, multiple-scale
characterization of isothermal metamorphism by means of
spatial fluctuations of the microscopic density, or phase field,


https://doi.org/10.3189/002214311796905569

500

T
—Seal
45 mm
~——Snow surface/
aluminium plate
5.2 mm} =—Scanning region
13 mm .
Evaluation cube

18.4 mm

Fig. 1. Schematic of the cylindrical tomography sample holder.

@(x, 1), as a function of position, x, and time, t. We employ X-
ray tomography to measure ¢(x, t) with high spatial resolution
throughout an entire year for different temperatures, and take
the novel approach of characterizing the dynamics by the
anisotropic two-point correlation function. To strictly control
the initial conditions, we use laboratory snow with crystals
grown from vapor which are subsequently deposited into
sample holders by sieving. By comparing the evolution of
various length scales we are able to identify relevant scales
and their interaction from different relaxation mechanisms
during metamorphism.

This paper is organized as follows: The experimental set-
up is described in the next section. In the following section
we describe our conceptual starting point. Subsequently
we provide definitions of the correlation function and a
thickness distribution and define various length scales. The
measurement results for all quantities are then presented,
followed by conclusions and suggestions for future work in
the final section.

EXPERIMENTS

Our general experimental set-up for the X-ray tomography
follows Kaempfer and Schneebeli (2007), with two important
differences for the sample handling: (1) the isothermal
storage was further improved to minimize the effect of
predominant temperature gradients and (2) laboratory-
generated new snow was used to guarantee similar initial
conditions for the snow samples at different temperatures.
Details are given below.

Snow sample preparation

All snow samples were prepared from laboratory snow which
was produced in a simple snowmaker, with a design that
basically follows Nakamura (1978). A heated water reservoir
is kept at a temperature of T = 30°C in a cold room
environment at T = —25°C. The humid air above the
water surface is continuously advected by a fan into a
box at ambient temperature, where the vapor precipitates
on thin nylon wires which serve as growth nuclei. By
varying air and water temperature the method is able to
qualitatively reproduce growth modes and crystal habits
predicted by the Nakaya diagram (Furukawa and Wettlaufer,
2007). The ambient temperature in the vicinity of the wires
was T ~ —18°C and under these conditions growth is
mainly dendritic. Snow crystals are periodically harvested
from the wires by automatic vibration. The manufactured
snow powder compact had a density p ~ 172kgm~>.
With an ice density pice = 917kgm™ this amounts to an
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initial volume fraction ¢; = 0.188. The snow was stored for
24 hours at —25°C to allow for moderate, initial sintering
of the crystals. Using a sieve with a mesh size of 2 mm,
the snow was sieved into cylindrical sample holders (Fig. 1)
until they were completely filled. The snow was then slowly
compressed to provide space for the seal and avoid local
densification of the top part when the seal was inserted.
Before sealing, a small (0.2 g) aluminium weight was placed
on top of the sieved snow to provide a reference line for the
snow surface in the sample holder. There was always a gap
between the aluminium plate and the seal, which increased
throughout the experiment due to densification. For the seal
we used a low-density polyethylene cap to avoid sublimation
and obtain a closed system with respect to mass exchange.

Sample storage

Overall, three identical snow samples under three different
isothermal conditions (=3, —9 and —19°C) were examined
using microcomputed-tomography scanning over the course
of 1year. To improve the isothermal conditions, the storage
boxes used by Kaempfer and Schneebeli (2007) were
adapted to reduce thermal gradients. The storage boxes
are constructed using layers of highly insulating and highly
conducting materials. The highly conducting material with
high heat capacity (steel) prevents the build-up of a
temperature inversion in the air, and eliminates temperature
fluctuations. From the inside out, the packaging was
constructed as follows: The sample cylinders were fixed
in a Styrofoam™ mask inside a steel cylinder with 1cm
thick walls. The steel cylinders were capped from both
sides with 1 cm thick steel lids. This steel cover was packed
into a small Styrofoam box with 5cm thick walls. The
box was again surrounded by 5mm thick steel plates and
then enclosed in a vacuum-insulated box. The improvement
over the previous storage box was an additional conducting
layer and the vacuum-insulated box in the packaging. The
temperature was recorded inside each steel cylinder by two
temperature sensors (iButtons DS1922L). These sensors have
an accuracy of £0.5°C (from —10 to +65°C) and a resolution
of 0.0625°C. They were calibrated before the measurements.
Recorded temperatures were almost constant, with mean
values and standard deviations of T = —3.7+0.7°C (sample
1), T=-95+0.1°C (sample 2) and T = —18.6 + 0.8°C
(sample 3). This corresponds to homologous temperatures of
0.99, 0.97 and 0.93.

Tomography

At the beginning of the experiment each sample is measured
at ~3 week intervals. Since the evolution slows down
during the experiment (Kaempfer and Schneebeli, 2007)
we decreased the measuring frequency in the late stage
of the experiment. For measurements the samples were
transported from the storage room in a small Styrofoam
box. The computed-tomography (CT) scanning (micro-CT 80,
Scanco) was done with a nominal resolution (pixel size) of
10 um and a modulation transfer function at 10% contrast
level of 12.4 um. The scanning region was fixed in space at
13 mm height from the bottom of the sample holder (Fig. 1).
The height of the scanning region was 5.2 mm (520 voxels).
The CT chamber was kept close to the nominal storage
temperatures (—3, —9 and —19°C). After measurement the
sample was placed in the transport box and returned to the
storage box.
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From the attenuation image of the scanned region a cube
of 520° voxels = 5.2mm° was extracted (Fig. 1), which
was twice as large as the representative volume of 1-2 mm
for the considered properties (Kaempfer and others, 2005).
The grayscale images were filtered using a Gaussian filter
with a kernel size of 5° and standard deviation of 1.2
voxels to improve the signal-to-noise ratio. A binary image
was then obtained by segmentation of the filtered data. A
single segmentation threshold was used for all images. This
threshold was the average over thresholds determined for
each sample individually such that its density was matched.

THEORETICAL BACKGROUND
Phase-ordering dynamics

Isothermal metamorphism of snow can be conveniently
described (Legagneux and Dominé, 2005) by coarsening
following the basic principles of the LSW theory of Ostwald
ripening (Lifshitz and Slyozov, 1961; Wagner, 1961). The
LSW idea can be summarized as mass transport between
spheres of different radii, driven by chemical potential
differences due to the Gibbs-Thompson condition. (For
details and variants of LSW see Ratke and Voorhees, 2002.)
The LSW theory assumes an assembly of spheres which
imposes a severe limitation on admissible microstructural
geometries. As a consequence, apparent deviations of
experiments from theory cannot be unambiguously traced
back either to deficiencies of the ice-phase geometry or to
deficiencies of the physics which underlie LSW. It is therefore
desirable to discuss isothermal metamorphism of snow in
a wider context, where the geometrical constraints can be
relaxed.

It has long been recognized that Ostwald ripening is
a particular example of coarsening which can be found
in many systems undergoing phase ordering or phase
separation (see Bray, 1994, and references therein). In this
context the dynamics of phase morphologies is studied
via evolution equations for a so-called ‘order parameter
field” which describes the spatio-temporal distribution of the
phases. For dry snow the phases are solid ice and vapor
and a suitable order parameter is a phase-field function, ¢,
attaining ¢ = 1 in the ice phase and ¢ = —1 in the vapor
phase (Kaempfer and Plapp, 2009). The most prominent
phase-field models are the Cahn-Hilliard or Allen-Cahn
equations, which describe the dynamics of a conserved
or nonconserved order parameter, respectively (Balluffi and
others, 2005). The terminology discriminates whether or
not phase changes, as described by an order parameter,
are locally constrained by a conservation law. Though
these models provide a highly idealized starting point, they
essentially contain the same physics as LSW (Wang, 2008)
and can be applied to arbitrary microstructures. Thus results
obtained for these phase-field models are also of relevance
for isothermal metamorphism.

In general, the dynamics of microstructures is character-
ized by evolving length scales. This is often employed via
a growth form, R(t)* — R(0)* = Kt (Gow, 1969; Legagneux
and others, 2004) for the mean radius, R(t), in terms of the
growth rate, K, and an exponent, z (which we refer to as the
‘dynamic exponent’ hereafter). This form is a characteristic
of the LSW analysis, and there is no a priori justification for a
generalization to [(t)* —1(0)* = K't for different length scales,
I, with a different rate, K’, in arbitrary microstructures. We
note, though, that this generalization works reasonably well
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for the ice thickness in the work of Kaempfer and Schneebeli
(2007). Henceforth, however, we restrict ourselves to the
power-law form, [ ~ t'/7 which can be likewise inferred for
long times from the LSW growth law given as R(t) ~ t'/%.

It is widely accepted (Bray, 1994) that the value of the
dynamic exponent, z, is essentially dependent on whether
the order parameter is conserved or nonconserved. In either
case, all length scales, I, will evolve with the same power
law, | ~ t'/7, for long times, where z = 3 for Cahn-Hilliard
(conserved) and z = 2 for Allen-Cahn (nonconserved)
dynamics. These two cases correspond precisely to the two
cases addressed in LSW theory, namely transport limited by
surface kinetics and diffusion in the gas phase. Both cases
are treated by Lifshitz and Slyozov (1961), whereas Wagner
(1961) considers only the kinetics-limited case. A crossover
between these cases can be achieved by a variation of either
the diffusion constant of vapor or the kinetic coefficient
(Libbrecht, 2005) which controls the attachment kinetics of
vapor molecules on the ice surface. The observed crossover
between z=2 and z=3 in the mean-field model (Legagneux
and Dominé, 2005) triggered by a variation of the kinetic
coefficient is thus a direct implication of the underlying
universality classes of conserved or nonconserved dynamics.

It is interesting that both exponents have also been
verified in simulations of the Cahn-Hilliard or Allen—Cahn
equations for coarsening of bicontinuous structures (Kwon
and others, 2007). In both cases the so called ‘dynamic
scaling’ hypothesis has been verified. This means that in
either case the system is truly characterized by a single length
scale, | ~ t'/Z. Given the connection of Cahn-Hilliard or
Allen—-Cahn dynamics to snow metamorphism, three main
implications can be drawn from Kwon and others (2007):
(1) the bicontinuous nature of the ice matrix has no a priori
influence on the exponents (they are not a distinctive feature
of the approximation of the geometry by spheres used in
LSW theory); (2) the evolution of snow should be governed
by z = 2 or z = 3 if no additional mechanisms play a role
besides those contained in LSW; (3) any of the commonly
investigated quantities, such as specific surface area, mean
or Gaussian curvature or ice thickness, can be used in the
same way as the characteristic length scale. All should evolve
with the same power-law exponent, z.

Indeed we expect that snow displays deviations from this
idealized dynamics. This is a consequence of emerging,
competing length scales. The origin of additional scales can
roughly be distinguished by the following cases: (1) transient
behavior from initial conditions which may involve a wide
distribution of persistent length scales and (2) the emergence
of additional physical mechanisms beyond LSW. Signatures
of different competing length scales can easily be detected
by the behavior of length distribution functions. If these
distributions are rescaled by their time-dependent mean but
fall onto a single master curve (data collapse), different length
scales must evolve under different dynamics. This has been
observed by Legagneux and Dominé (2005) for the curvature
distribution in snow. This breakdown of dynamic scaling
may, however, be due to either case 1 or 2 mentioned above.

Itis thus inevitable that a scale-dependent characterization
of the microstructure must be used, which can be objectively
defined for bicontinuous media. Though interfacial curvature
distributions are popular (Mendoza and others, 2005) and
have been applied to snow (Legagneux and Dominé, 2005),
the interpretation of the observed absence of data collapse
and the inclusion of anisotropic behavior is rather difficult.
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We therefore follow the traditional route of characterizing
heterogeneous systems and investigate the equal-time, two-
point correlation function of the microscopic density which
has been widely used to characterize random media
(Torquato, 2002). The long tradition of using the correlation
function for disordered systems stems from the fact that its
Fourier transform is directly accessible via the scattering
intensity obtained from small-angle scattering (Debye and
Bueche, 1949). This relation to scattering intensity is also
the foundation of the applicability of the correlation function
to optical properties of snow (Vallese and Kong, 1981;
Matzler, 1998; Wang and others, 1998). For snow optics,
the correlation function is required to interpret scattering
from remote-sensing or field measurements. The correlation
function has also been used for stochastic reconstruction of
snow microstructure to study mechanical properties of high-
density snow (Yuan and others, 2010).

Two-point correlation function

For time-dependent, continuous mass distributions the
microscopic density is defined in terms of the phase indicator
function, ¢;(x, t), of the ice phase, which is defined by
@i(x, t) = 1, if at time ¢ the three-dimensional position vector,
x, lies in the ice phase and zero otherwise. The microscopic
mass density, pi(x, t), is related to ¢; by the intrinsic density
of ice (pice = 917 kgm™3) via

pi(x/ t) = Pice ¢i(x/ t) . (1)

The simplest first-order statistical quantity of a two-phase
random medium is its volume fraction

@i(t) = ¢ix, 1), )

where the overbar denotes ensemble averaging. Practically,
we replace ensemble averages with volume averages and
thus implicitly assume a statistically homogeneous system.
The simplest, higher-order statistical quantity of a random,
two-phase medium is given by the equal-time, two-point
correlation function

Cle, ) = (gilx + 1,0 — (1) (dix, ) — ¢i(1),  (3)

which characterizes spatial fluctuations of the density around
the mean. Note that r is a vector, so we explicitly account
for anisotropic behavior. Below we restrict ourselves to the
behavior along different Cartesian-coordinate directions with
unit vector eo, a = x, ¥, z, and define Cu(r, t) = C(req, t).

We note that a link to common microstructure parameters
can be established via the expansion of the correlation
function at the origin. In the isotropic case, for smooth
interfaces the expansion

s s/HZ K\ 5 4
ZF+Z(§—%)I’ +O(r) (4)

is determined by the volume fraction, ¢;, the surface area per
unitvolume, s, the average squared mean curvature, H2, and
the average Gaussian curvature, K (Kirste and Porod, 1962;
Torquato, 2002). Higher-order terms have been omitted in
the expansion, as indicated by the Landau symbol, O(r*). The
expansion reveals that the volume fraction and the specific
surface area can only characterize spatial density fluctuations
for small distances and thus provide only limited insight into
the snow structure.

In order to characterize the dynamics quantitatively, we
derive various length scales from the two-point correlation
function. For purposes that will become clear below,

C(r) = ¢i(1 — ) —
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we follow Lipshtat and Meerson (2002) and employ the
normalized function, C(r,t)/C(0,t), and define a length
scale from its slope at the origin via
—1
) . (5)
r=0

From the expansion of the correlation function (Equation (4))
we can infer that for isotropic media in spatial dimension
d = 3 the length scales, I.(t), are related to the surface

d
la(t) = — (drco‘(r’ t)/Ca(0, 1)

area, s per unit volume, through %Ca(r, t)‘ = —s/4

for « = x,y,z (e.g. Torquato, 2002). Hencrefgrth the Iy
are referred to as interfacial correlation lengths. Since they
determine the behavior of the correlation function at the
origin, we refer to them as a characteristic on the smallest
scales.

If optical properties are considered, the correlation
function of snow is usually only parameterized by a single
length scale (Wang and others, 1998; Matzler, 2002), which
is obtained from a fit of the correlation function to a
single-scale form (e.g. an exponential). In the following
we are instead guided by microstructures of disordered,
bicontinuous systems. During phase ordering (Fratzl and
Lebowitz, 1989) a damped oscillatory form,

C(r)/C0) = exp(—r/I) sin (27r/ly) /@mr/l), — (6)

is predicted. The same form is also found in bicontinuous
microemulsions where it is usually referred to as the
Teubner-Strey form (Teubner and Strey, 1987). In addition
to the interfacial correlation length, I ~ s, it involves
another length scale, ly. The latter determines the first zero-
crossing of the correlation function, C(lp) = 0, which is
usually interpreted as a typical domain size.

In view of the two-scale approximation for bicontinuous
microemulsions (Equation (6)) we additionally define the first
Zero-crossing,

lo,(t) = min {r|Calr, )/ Ca(0, t) = 0}, )

as another characteristic length scale, which is henceforth
referred to as the structural correlation length. Contrary to
the interfacial correlations which determine correlations on
the smallest scales (at the origin), we refer to this structural
correlation length as a characteristic of larger scales.

Finally, we define the ratio of ice volume and surface area
as an additional length scale

Issa(t) = ¢i(t)/5(t) . (8)

This is simply the inverse of the specific surface area, i.e.
the surface area per ice volume, which is commonly used in
studies of snow metamorphism.

Thickness distribution

To compare this study with previous work, we also
employ another commonly used distribution of length scales
for porous media, py(r, t), defined by Hildebrand and
Riegsegger (1997) as a thickness distribution. Its definition
deviates from the common pore-size distribution (Torquato,
2002) and can be written as

Pn(r, ) = 6(r — rmax(x)) ¢i(x, )/$i(t), 9)

where rmax(x) is the radius of the largest sphere that
(1) contains the point x (not necessarily as its center) and
(2) is itself contained completely in the ice phase. Note
that this definition of the distribution provides an implicit
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Fig. 2. Qualitative evolution of a snow cube at T = —3°C, (a) at the
beginning and (b) at the end, after almost 1 year. The length of the
cube is 5.2 mm.

definition of thickness via rmax. An important implication of
the thickness definition is revealed by the following example.
Consider a collection of non-overlapping spheres of radius rp
which indeed implies a Dirac thickness distribution py,(r) =
o(r — rp). If the material contained in the spheres is reshaped
(under volume conservation) to long cylinders of radius rp
which are terminated by hemispherical caps at both ends,
the thickness distribution remains invariant. This property
will be important later when discussing the behaviour of the
thickness distribution.

As a characteristic length scale of the thickness distribution
we use its mean value, given by

ln(t) = / drrpg(r, t). (10)
0

RESULTS
Overview
The structural analysis of the snow samples is evaluated
within the (5.2mm)? cubic subsets (Fig. 1). With a voxel
size of 10 um this leads to lattice sizes of 520> voxels. A
visual impression of the three-dimensional evolution of the

ice matrix is shown in Figure 2. The samples evolve from
bicontinuous, highly branched, fresh snow in the initial
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Fig. 3. Temporal evolution of the volume fraction, ¢;(t), at all
temperatures.

conditions to a bicontinuous, rounded structure. Warmer
samples evolve faster than colder samples.

Density

The evolution of the volume fraction (Equation (2)) of the
samples is shown in Figure 3. Note the log-log scale and
a guide to the eye from fitting given as a reference for a
possible power-law evolution at the late stage. However,
the experimental data suggest deviations from a straight line
caused by modulations.

Two-point correlation function
Scaling

Here we follow Lipshtat and Meerson (2002) and normalize
the correlation function (Equation (3)) by the value at the
origin, Ca(r, t)/Ca(0,t). The evolution of the two-point
correlation function, Cx(r,t), at T = —=3°C is given in
Figure 4. All samples clearly display a cusp at the origin
which indicates linear behavior of Cul(r, t)/Cu(0,t) — 1
on the smallest scales. This is known as the Porod law

Fig. 4. Evolution of Cx(r, t) at T = —3°C for different times (h). On
a linear scale the evolution at all temperatures appears to be similar.
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Fig. 5. Rescaled two-point correlation functions at T = —3°C
for different times (h): (a) horizontal direction, Cx, and (b) vertical
direction, C,. The behavior at T = —9°C is similar.

(Bray, 1994), and indicates a smooth ice/vapor interface
on the scale of 10 um throughout the entire experiment.
The smooth appearance of the interface on these scales has
been confirmed by a comparison between X-ray tomography
and gas absorption derived surface area (Kerbrat and others,
2008). We expect the accuracy of the surface area estimate
at the start of the experiment to be better than the estimates
for fresh snow of Kerbrat and others (2008) since our CT
resolution was higher.

Next we consider the possibly anisotropic, dynamic
scaling and rescale Cy(r, t) by the correlation lengths, /.(t),
which are obtained by fitting the cusp at the origin against
Calr, )/ Ca(0,t) = 1 — r/la(t). These slopes increase over
time, revealing a coarsening of the structure. From the
perspective of dynamic scaling, the results at T = —9°C
cannot be distinguished from those at T = —3°C, so we
concentrate on the comparison between T = -3 and
T = —19°C. In addition, at both temperatures the x- and y-
directions can be regarded as equivalent, so we concentrate
on the comparison between the x- and z-directions. We
explicitly note that z is the direction of gravity.

The results for the rescaled correlation functions at high
temperature, T = —3°C, are given in Figure 5, and for the
low temperature, T = —19°C, in Figure 6. All plots are
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Fig. 6. Rescaled two-point correlation functions at T = —19°C

for different times (h): (a) horizontal direction, Cx, and (b) vertical
direction, C;.

on a log-log scale. On a linear scale it usually remains
unrevealed that the rescaled correlation functions do not
fall onto a single master curve (data collapse). At the largest
scales, the small number of available data points gives rise to
poor statistics and an apparent stochastic behavior. However,
important qualitative conclusions can be immediately drawn
from the overall behavior of the correlation function at
smaller scales. For both temperatures a reasonable data
collapse in the z-direction is established after a short time
and extends beyond the first zero-crossing, which is above
r/la(t) ~ 1. The zero-crossings are located in the first
gap of the data in Figures 5 and 6 in the logarithmic
plot. A quantitative evaluation of the zero-crossings will be
presented subsequently. In contrast to the z-direction, the
data collapse in the x-direction is poor and hardly extends
beyond r/l.(t) = 1. The quality of scaling is only comparable
with that in the z-direction at a very late stage, i.e. after
almost 1 year. The overall rescaling behavior of C is poor in
all cases, indicating the absence of dynamic scaling and the
existence of different relevant length scales.

Initial condition and final state
To shed additional light on the initial condition and the
final states obtained after the entire year of coarsening,
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Fig. 7. Rescaled correlation functions for all temperatures (a) at the
beginning and (b) at the end of the experiment.

the correlation functions for both states are compared for
all temperatures in Figure 7. Initially, correlations clearly
exist beyond r/l.(t) = 1 in all three coordinate directions.
The decay can be approximately described by a power law
with exponent C(r/l.(t)) ~ (r/la(t))_/j, with 8 = 1.8. This
behavior is not very striking and extends only over a range
of one order of magnitude. However, it clearly indicates
the presence of structural correlations on scales that are
large compared with [,(t). The origin of these correlations
is revealed by a closer, visual inspection of the sample,
which shows the presence of dendritic structures, (Fig. 8).
For the lowest temperature the structures persist throughout
the entire year. Again by (subjective) visual inspection we
confirm that after Tyear at T = —19°C, dendrites can
only be found in the x-y plane (Fig. 8); we could not
find dendritic structures from views in the x-z or y-z
planes. This is in agreement with the behavior found for
the correlation function (Fig. 6). In the x-direction (also
in the y-direction, not shown) at T = —19°C the initial
power law is still visible in the form of a knee-like feature
prior to the first zero-crossing of the correlation function. In
contrast, in the z-direction any sign of the initial power-law
correlations immediately disappears. Before investigating
the time evolution of the correlation lengths in detail, we
consider the distribution of ice thicknesses.
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Fig. 8. Dendritic structures in snow at T = —19°C in the x-y plane.
(a) Initial condition and (b) after 1 year. Note that the structures are
not identical.

Ice-thickness distribution

Scaling

The ice-thickness distribution (Equation (9)) is computed
from the vendor software of the CT device by a distance
transform of the ice phase (Hildebrand and Riegsegger,
1997). The evolution of the rescaled (by the mean /)
thickness distributions is given in figure 9. Since the
thickness is a measure for an approximation of the structure
by spheres, we also compare the thickness distribution
with the classical radius distribution of Lifshitz and Slyozov
(1961), the dashed curve in Figure 9. Up to normalization the
analytical form is given by pisw(y) ~ y> (v +3)77/3(3/2 —
y)~ "3 expl3/Q2y — 3)I. Again we concentrate on the
comparison between T = —3 and —19°C.

Initial and final state

The ice-thickness distribution of the initial and final states
is shown in Figure 10, on a log-linear scale. In contrast
to the correlation function, it is difficult to observe the
existing correlations beyond r//(t) =~ 1 from the dendrites
in the thickness distribution. This is due to the limitation
that the thickness distribution does not capture the length
of the cylindrical filaments (dendrite backbones), as outlined
in ‘Thickness distribution” in the previous section. The


https://doi.org/10.3189/002214311796905569

506

— 1

—5— 432
— 960 |
/1344
—71872
2784
—=—4200 H
—<—5376
—%—7468
—£—8046
- - -LSW

b — 1
O 432
=+ 960 |
/1344
—71872
2784
—=-4200 H
—<—5376
—%— 7468
—£—-8046

-=--LSW

Lin () p o (/1 (2))

Fig. 9. Rescaled ice-thickness distribution functions at (a) T = —3°C
and (b) T = —19°C for different times (in hours).

interpretation of the distribution is therefore difficult. Since
pin(r, t) is an isotropic measure, the emerging anisotropy
detected by the correlation function in different coordinate
directions also remains unrevealed.

Length scales

Finally we compare the time evolution of all length scales
defined in the previous section, which are derived from
C(r, t) and py(r, t).

First we compare the interfacial correlation lengths, /., the
mean thickness, I, and the inverse specific surface area, fsa.
For a better comparison we normalize all lengths by their
initial values, since absolute values of growth rates are not
of interest in the present study. The various length scales are
shown in Figure 11. All of them show reasonable power-law
behavior with two different exponents which are given as
straight black lines as a guide to the eye.

Finally, in Figure 12, we evaluate the first zeros, loq,
of the correlation function in the x- and the z-direction,
again normalized by their initial values. Interestingly, a
completely different, nonmonotonic behavior is observed:
the first zero of Cz(r,t)/C,(0,t) always decreases in the
beginning, reaches a minimum after two time-steps and
increases subsequently. The time at minimum coincides with
the beginning of the onset of data collapse of the correlation
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Fig. 10. Rescaled ice-thickness distribution at (a) the beginning and
(b) the end of the experiment.

function, C,(r,t)/C;(0, t), observed in Figures 5 and 6. In
contrast, the first zeros of Cx(r, t)/Cx(0,t) always display
transient behavior in the beginning, which is difficult to
characterize. After attaining a maximum at intermediate
times, all the x curves seem to follow the slow growth of
the z curves at the very late stage, where all zeros grow
in unison.

DISCUSSION
General behavior of the correlation function

We start our discussion by making some general qualitative
comments on the observed properties of the correlation
function. In the initial state (Fig. 6a), correlations clearly
extend beyond r/I,(0) = 1, signaling a wide distribution
of length scales. The apparent power-law decay beyond
r/1.(0) = 1 (Fig. 7) stems from the initial crystal aggregate,
which contains a wide distribution of particle shapes and
resembles an irregular dendritic, fractal-like morphology.
During metamorphism the correlation function always
evolves to an oscillating form with emerging zero-crossings.
This is independent of temperature and coordinate direction.
Higher-order zero-crossings are visible, but these scales are
not resolved statistically with sufficient accuracy. Thus a
parameterization that is characterized by a single length
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scale (Wang and others, 1998), such as the exponential form
C(r)/C(0) = exp(—r/I), cannot be supported. We rather find
that the slope of the correlation function at the origin and
the first zero-crossing are governed by different dynamics. A
detailed discussion of the distinguished dynamics of these
length scales is given below. The existence of different
scales requires at least a two-scale form similar to other
disordered, bicontinuous systems, which can be reasonably
well described by the Teubner-Strey correlation function
(Equation (6)).

For a quantitative discussion we first resort to the
idealized picture of phase ordering (given in the ‘Theoretical
background’ section) and the usual assumption of dynamic
scaling (Bray, 1994). This would imply a scaling form

Calr, t) = f(r/I(1) (1

for the correlation function at long times independent of
the direction, . Our measured correlation functions clearly
reveal the breakdown of this scaling form during isothermal
metamorphism of snow in all coordinate directions. This
is analogous to the breakdown of scaling observed for the
curvature distribution of Legagneux and Dominé (2005),
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which indicates a coupling between several length scales
that has to be elucidated.

Hierarchy of length scales

Our first result is the existence of different classes of length
scales which can all be described by a power law, but
with different exponents (Fig. 11). This is precisely the
behavior reported by Lipshtat and Meerson (2002) for the
coarsening of fractal clusters simulated via the Cahn-Hilliard
equation. The key ingredient is the presence of power-law
correlations in the initial conditions, which give rise to
an additional relevant length scale during coarsening. In
our case, the initial conditions contain irregular, dendritic
structures. These structures are revealed in the correlation
function by signatures of a power-law tail well above the
interfacial correlation length, r/l.(t) = 1 (Fig. 5). The decay
can roughly be described by C(r,0) ~ r='8 (Fig. 7). These
correlations survive in the form of a ‘knee-like’ feature (a dip)
in the correlation function (Figs 5 and 6) over a long period
of time, as observed by Lipshtat and Meerson (2002). In the
z-direction the knee-like feature almost immediately turns
into a zero-crossing after two time-steps, and the correlation
function shows reasonable data collapse, up to its second
Zero-crossing.

At high temperatures (T = —3°C) the observed exponent
values in Figure 11a are close to 1/z = 0.33 for /s, and
ky, and 1/z = 0.22 for l,. The smaller value for I,(t) is
in agreement with that obtained by Lipshtat and Meerson
(2002). We note that our definition of /.(t) coincides with
the one given in their work, though the correlation function
slightly differs: Lipshtat and Meerson (2002) consider the
two-point correlation function of a single, fractal cluster with
respect to the origin, which decays to zero for large distances.
However, we are dealing with an assembly of these clusters,
which is homogeneous on large scales. Accordingly, the
two-point correlation function, as defined by Lipshtat and
Meerson (2002), will decay to a nonzero value at large
arguments. For comparison we have defined C(r) to be the
covariance of the random microstructure which likewise
tends to zero for large arguments. The larger of our power-
law exponents is close to the LSW value, z = 3.

At low temperatures (Fig. 11b) the scenario is qualitatively
identical to the high-temperature case; only the values of
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the exponents have changed, suggesting different underlying
dynamics. Here, l, and lsa follow an evolution which
is close to 1/z = 1/4, whereas the exponent for the
interfacial correlation lengths I, is again well below this
value. In analogy to the high-temperature case, we attribute
the exponent z obtained from I and lsa to the true
dynamical behavior whereas the dynamics of /() is subject
to anomalous behavior with a larger z, due to the persistence
of initial conditions. A dynamic exponent z = 4 is, in
general, characteristic for surface diffusion (Balluffi and
others, 2005), as previously suggested by Vetter and others
(2010). Some support for this conjecture can be found in the
work of Libbrecht (2003), where the role of surface diffusion
on ice changes at T = —15°C. However, Libbrecht’s work
focused on the dynamics on the principal facets of ice,
whereas our snow still has a round appearance, signaling the
dominance of relaxations on rough orientations. On general
grounds, one may expect that surface diffusion is only an
intermediate dynamical regime of a surface since the | ~
t'/3 growth due to evaporation/condensation will eventually
always dominate over a | ~ t'/* behavior of surface
diffusion. Thus it is likely that even at low temperatures a
terminal LSW value of z = 3 is attained at even later times.

We acknowledge that the low exponents obtained for
low temperatures might also be a consequence of more
pronounced transients at low temperatures, as suggested by
Legagneux and Dominé (2005). However, the absence of
data collapse, as observed for our correlation function or for
the curvature distribution of Legagneux and Dominé (2005),
does not necessarily imply that the exponent is estimated
incorrectly. As a counter-example, during coarsening of
dendritic Pb—Sn microstructures the measured exponent
attains its correct value, while curvature distributions
still show transients (Kammer and Voorhees, 2006). It
is reasonable that the crossover timescale, where initial
conditions have died out, depends on temperature. Likewise,
fitting growth laws in the same interval will lead to effective
(time-dependent) dynamic exponents, z(t) = d In(/)/d In(t)
(Huse, 1986) and an apparently continuous increase of
the measured exponents with decreasing temperature (as
observed by Vetter and others, 2010). To resolve these
apparently contradictory interpretations of the low values of
the exponent at low temperature, experiments are required
which disable the evaporation/condensation mechanism
while enabling surface diffusion. This can be achieved by
replacing the air in the pores by a fluid. Work along these
lines is ongoing.

It is illustrative to draw the link between the observed
exponent, z = 3, and the dynamics of a conserved order
parameter. Nominating evaporation/condensation as the
dominant mechanism of mass transport does not immedi-
ately imply conserved dynamics for the order parameter.
It is rather the fact that the evaporation/condensation
dynamics is limited by diffusion in the gas phase, which
ultimately fixes z = 3 (Lifshitz and Slyozov, 1961). If
instead the evaporation/condensation dynamics were limited
by surface kinetics we would find z = 2 (Lifshitz and
Slyozov, 1961; Wagner, 1961), though diffusion is still an
indispensable component of vapor transport between suc-
cessive, rate-limiting evaporation and condensation events.
In the kinetics-limited regime, diffusion can be regarded
as infinitely fast, hence evaporated mass is immediately
available for condensation at remote parts of the structure,
only subject to a global mass conservation. This effectively
translates into an order parameter, which is only globally
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conserved and which still leads to z = 2 (Lifshitz and
Slyozov, 1961), similar to the dynamics in the absence of
any conservation law. The kinetics-limited case requires a
small condensation coefficient (Legagneux and others, 2004;
Libbrecht, 2005) on the interface and thus the result z = 3 is
consistent with diffusion-limited evaporation/condensation.
Despite the absence of dynamic scaling, all length scales
discussed so far display a monotonic increase. They can
be reasonably well described by a power law which is the
same for all coordinate directions. A completely different
behavior is observed for the structural correlation lengths,
lp, ., which are nonmonotonic and anisotropic. Remarkably,
the observed anisotropy between the rescaling properties
of C(r,t) in the z- and the x-direction (Figs 5 and 6) has
no influence on the evolution of the interfacial correlation
lengths, I, in the respective directions (Fig. 11). This implies
that the dynamics on the smallest scales remains isotropic.
In general, one can expect a dependence of the growth
rate of |, on the volume fraction (Ratke and Voorhees,
2002) and thus implicitly a dependence on time. However,
this effect cannot be resolved from our data. The isotropy
on the smallest scales holds true at all temperatures and
suggests that the anisotropy emerges from larger scales. This
is confirmed by the evolution of the first zero-crossing, Iy,
of Cu(r, t)/C(0, t), which displays a complicated, anisotropic
behavior. Since gravity is the only mechanism that breaks
the symmetry between horizontal and vertical directions
it is likely to be the origin of the anisotropy. Usually,
the zero-crossing is interpreted as a typical domain size
(Teubner and Strey, 1987). Hence one can define Q(t) =
(lo,x, o,y Io,z) as an oriented structural unit of the ice network.
The dynamics of Q(t) characterizes the evolution of some
orientational order which does not show any qualitative
differences between different temperatures (Fig. 12). The
z-component of Q(t) always decreases rapidly, followed
by a slow monotonic increase. The rapid decrease might
be caused by some rotational motion under gravity. This
might be corroborated by the fact that after 1 year the long
arm of the dendrite is predominantly found in the x-y
plane. In contrast, the x, y components of € initially show
some transient behavior which is followed by a maximum
where correlations roughly double when compared to
the initial value. The temporal resolution is too coarse
to investigate this phenomenon in quantitative detail, but
the qualitative features of the evolution are present at all
temperatures. A quantitative investigation of these structural
rearrangements, their possible impact on modulations of
the bulk densification rate and their possible initiation by
interfacial-scale coarsening is left for future work.

Relation to curvature distributions of snow

The observed properties of the correlation function can
be discussed in connection with interfacial curvature
distributions which are sometimes used to characterize the
evolution of snow (Flin and others, 2003; Legagneux and
others, 2004). Similar to our case, those authors observe
the absence of scaling of the curvature distribution. It is
likely that their distributions are also influenced by larger-
scale structural rearrangements or the persistence of initial
conditions. Our analysis above suggests that this is an
implication of the structural reorganization at larger scales
and thus cannot be predicted by coarsening mechanisms
alone. Previous work on isothermal metamorphism has
usually focused on the specific surface area and its
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interpretation in terms of modified LSW approaches. The
expansion of Equation (4) unambiguously reveals that the
specific surface area only describes spatial correlations
of snow on the smallest scales. This appears to be
insufficient, due to the existence of different relevant
length scales which are influenced by memory effects
of initial conditions or gravity. A first attempt to include
gravity in isothermal metamorphism has been made using
Monte Carlo simulations (Vetter and others, 2010). Future
effort in this direction is highly desirable. Apparently, the
structural ordering on larger scales leaves the interfacial
phase ordering nearly unaffected. This can be inferred from
Figures 10 and 11. While the interfacial scales already
evolve monotonically (beyond t=2000 hours), the structural
scales still display nonmonotonic and anisotropic behavior.
This suggests an appealing simplification for modeling
macroscopic densification: one might solely focus on how
structural mobility is induced by small-scale interfacial
coarsening, which can be regarded as externally imposed.

Relation to radiative properties of snow

Finally, we comment on a possible application of our results
to field measurements. The Fourier transform of the correl-
ation function naturally emerges in certain approximations
for the scattered intensity of radiation in snow as a random
medium (Vallese and Kong, 1981; Matzler, 1998; Arslan
and others, 2005). Thereby ad hoc assumptions for the
functional form of the correlation function are employed to
match the measured intensity with a single length scale and
microstructural information is commonly required to provide
this length scale. If these steps were to be reversed, more
accurate microstructural information could be obtained from
optical measurements in the field. However, a procedure
analogous to small-angle scattering (Debye and Bueche,
1949) will be difficult, since relevant structural length scales
of snow fall precisely into the wavelengths of the far-infrared
spectrum in which ice strongly absorbs.

CONCLUSIONS

We have employed the density correlatio function to investi-
gate the dynamics of direction-dependent spatial fluctuations
of the microscopic density of snow during isothermal
metamorphism. The observed correlation function always
evolves to a state where the decay of correlations is
modulated by oscillations indicating a certain order, i.e.
alternating arrangement of ice and pores. Thus non-negative,
single-scale parameterizations, such as an exponential form
for the correlation function, seem to be inaccurate. Different
types of dynamics have been revealed by closer inspection
of the slope and the first zero-crossing of the correlation
function. The behavior of the slope of the correlation
function is quantitatively reminiscent of coarsening of fractal
clusters and argued to be a consequence of dendritic
initial conditions which persist at low temperatures over
an entire year. The similarities between dendritic and
fractal coarsening must, however, be further elucidated. The
dynamics of the specific surface area seem to be governed
by the ‘true’ dynamic exponent which suggests the dominant
underlying pathway of mass transport: diffusion-limited
evaporation/condensation with z =3 at high temperatures,
and surface diffusion with z = 4 at low temperatures.
The slowing down of growth might be likewise caused by
continuously increasing transients to a final scaling state.
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With regard to applications it will be interesting to see
whether the two-scale Teubner=Strey form of the correlation
function provides missing geometrical information for scat-
tering problems.
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