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Abstract

Given a group G and a finite generating set '£, we take peg : G —*• 2 to be the function which counts the
number of geodesies for each group element g. This generalizes Pascal's triangle. We compute p<g for
word hyperbolic and describe generic behaviour in abelian groups'.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20F32, 05A15.

1. Introduction

We are used to imagining Pascal's triangle as extending forever downwards from a
vertex located at the top. But it is interesting to see it as occupying the first quadrant
of the plane with it's vertex at (0, 0). Imagine further that the plane is made of graph
paper — that is, that we have embedded into it the Cayley graph of Z x Z with respect
to the standard generating set. If we place the entries of Pascal's triangle at the vertices
of this Cayley graph, they now measure something about this graph. The entry at each
point gives the number of geodesies from (0, 0) to that point.

This leads us to the following definition.

DEFINITION. Suppose r = FV(G) is the Cayley graph of G with respect to the
generating set if. The Pascal's function, p = p& : G —*• Z, is given by

p(g) = #{geodesics from 1 to g in r#(G)}.

This definition can be extended to any graph. We will only be interested in Cayley
graphs of finitely generated groups. Conversations with several eminent geometric
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group theorists and combinatorists suggest that surprisingly little is known about these.
I wish to thank Jim Cannon for his kind encouragement.

Let us be more specific about notation. We will take the generating set <£ to be
a set which bijects to a subset of G closed under inversion. The elements of <S can
be multiplied together in Sf *, the free monoid on <£ to form words. Their images can
be multiplied together in G. The map taking words to their values in G is a monoid
homomorphism. We will denote it by w i-> w. Since Sf bijects to 'S and <£ is closed
under inversion, Sf also has an inversion map defined by a~l = a~]. For a word w,
l(w) denotes its length. For a group element g, £(g) = l&(g) denotes its length, that
is, the length of the shortest Sf word which evaluates to g. A word w is geodesic if
t{w) = £{w).

Given A c G and ^ generating G we say that A is totally geodesic if every &
geodesic for an element of A lies entirely in A. We will be interested in the case where
A is a subgroup or a submonoid. If A is totally geodesic subgroup or submonoid, then
srf = <g n A is a generating set for A, and the following is immediate:

PROPOSITION. If A < G is totally geodesic with respect to <S then p& = p<s\A-

One might hope that Pascal's functions could provide a group invariant, but p<s
can depend very strongly on ^. For example, consider Z. If we take the generating
set consisting of a single generator, then p is identically 1. However, if we take the
generating set Z = {t, s \ s = 710), then a number of the form g = lm+5 with k > 0
has a Pascal's function which goes up rather quickly as a function of k. Specifically,
p{g) — (*^5). (This is because each geodesic for g will consist oik+ 5 symbols k or
which are 5 and 5 of which are t.) This goes up with the fifth power of k.

Now this example is not too bad, for we can recover our original Pascal's function
by passing to a finite index subgroup. In fact, given any generating set for Z, there is
a finite index subgroup (namely the one generated by the largest generator) which is
totally geodesic, and the Pascal's function on this subgroup is identically 1. However,
the dependence on generating set becomes more 'ineradicable' if we turn to a free
group of rank greater than 1. Once again if we take a basis, the Pascal's function is
identically 1. Now consider F2, the free group of rank two with the generating set

(x, y,a, b,c \ a = x , b — y , c = x3y2).

Then t(x3y3) = 2, and indeed, e((x3y3)k) = 2k, and p((x3y3)k) = 2k. Any finite
index subgroup must meet this subgroup, and thus the dependence on generating set
will not go away by passing to a finite index subgroup.
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2. Abelian groups

PROPOSITION. Suppose that G = A x B and the<g = s/ x {1} U {1} x 98, where
si and 88 are generating sets for A and B respectively. Then

PROOF. A & geodesic w for (a, b) determines an si geodesic wa for a and a 98
geodesic wb for b. Given the pair wa and wb there are exactly ('"^'"^f(i>) ways of
combining them into a Sf geodesic for (a,b).

This shows how to recover the standard Pascal's triangle from the Pascal's functions
for Z with respect to a single generator, or indeed how to find the Pascal's function of
a finitely generated free abelian group with respect to a basis.

There is a sense in which the Pascal's functions for Z" with respect to a basis are
the 'prototype' Pascal's functions for abelian groups.

Let A be an abelian group and let si be a generating set. We will say that a subset
S = [ait,..., aik] C si is compatible if for any N there is a geodesic wN containing
at least N of each letter of S.

PROPOSITION. Let S be a maximal compatible set, and let M = M(S) = S* be the
submonoid of A generated by S. Then S* is exactly the set of geodesies evaluating
into M. Consequently the map S* —> Zk

>0 —>• M takes Zk
>0-geodesics to M-geodesies

and for a € M, p*/(a) = £g e j r - i ( a ) Pv(g)-

PROOF. We firstly check that S* contains only geodesies. To see this, observe that
the geodesies of an abelian group are closed under permutation and the geodesies of
any group are closed under passing to subwords.

Next, we check that 5* exhausts the geodesies of M. Suppose to the contrary that it
does not. Then there is a geodesic u evaluating into M containing some letter (say, a)
not in 5. Let v G S* be an 5-geodesic with u = v, and let w be any 5 word containing
all letters of S. Then for any N, vNwN is a geodesic. But £(u) = t(v) so uNwN is also
geodesic and contains at least N instances of each letter of S U {a}. This contradicts
the maximality of S.

We can discover the maximal compatible sets via the use of translation lengths.
For each element g e A, we take the translation length r(g) to be
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We choose a maximal free abelian subgroup of A and fix an isomorphism to I" C
Q" C K". For each element of A, we have just defined the translation length. Given
q e Q", there is m so that mq e IP and we define x{q) = x(mq)/m. This is
independent of choice of m. Finally, we can extend r to W by continuity. (For
details, see [4].) We take

C = {x € 01" | r(x) < 1}.

In the case where A = I", this is the convex hull of sf c R".
In the case where A = I" x F with F finite and non-trivial, C is the convex hull

of a related object. We take / to be the cardinality of F and let

W = {w € &/* | w e T and 0 < £(u>) < / } .

We take V = \w/t(w) \ w € W}. If a is a letter of w e W, we say that a appears at
w/l(w) € Q".

PROPOSITION. C is the convex hull of V and is n-dimensional. S is compatible
if and only if all the elements of S appear on a common face of C. S is maximal
compatible if and only if all the elements ofS appear on a face ofC which is maximal
with respect to inclusion, hence co-dimension 1.

Notice that an element of S may appear on the boundary of C without being a
vertex of C.

PROOF. The first part of the proposition is a special case of [4, Lemma 5.3.] While
[4] deals with virtually abelian groups, our groups are abelian, so we can simplify the
situation by taking W = [af \ a e A} and V = [\/fdf \ a e A) since in this case
the convex hull of V is identical to the convex hull of V. Now each element of S
appears at exactly one point of V. Since 5 spans a finite index subgroup of I", C is
n-dimensional.

We consider a set 5 C si and investigate when this is compatible. This fails
to be compatible if and only if there is some word (which we write additively)
mxa\ + • • • + mjOj with each a, e 5 which can be shortened, say as

mxax H h mjaj = m\ax -\ h m'^j + nxbx -\ h nkbk

with all coefficients positive integers and J2m'i + Yln' < Ylmi- Furthermore, if
this happens we can suppose that each of these coefficients is divisible by / . By
subtracting the smaller of m, and m\ from the larger, we can assume that no a, appears
on both sides of this equation. We take T = {b\,... ,bk] and partition of S into Si
(those appearing on the left side of the equation) and 52 (those not appearing on the
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left side of the equation). We take 7", S[ and S'2 to be the corresponding sets in W.
It now transpires that we have written an element in the positive linear span of 5J
as a positive linear combination of S'2 U T and have a smaller coefficient sum using
S2 U 7". But this happens exactly when S[ fails to lie on a face of C. This proves the
second part of the proposition, and the third follows immediately.

This leads to a few observations. Since the top dimensional faces are co-dimension
1, the union of the monoids, Us is compatible M(S) includes a finite index subgroup of A.

A 'generic' generating set is one for which the points of V are in general position
(modulo a h-> a"1). In this case the faces of C are simplices and there is no point of
V in the interior of a face. Hence, when S is compatible n is an isomorphism so that
Ps/\ms) — Pi", , and when 5 is maximal compatible, n is the rank of A. Thus, in the
generic case, there are pieces of G so that for any piece a finite index subgroup of G
meets that piece in a simplicial cone and the Pascal's function there looks exactly like
the standard one.

3. Hyperbolic groups

We turn our attention to the word hyperbolic groups of [3]. There is a general
method for finding the Pascal's function of a word hyperbolic group.

THEOREM. Let G be a word hyperbolic group and let^ = {gi, ... gk} be a generat-
ing set for G. Then there are m x m matrices, M\,..., Mk and vectors u = [u \ ... um]
and v = [v\ ... vm]T with the following property: If g e G and gil ... gin is any
geodesic for g, then py{g) = wM,, • • • Minv.

PROOF. Let L be the set of all <£ geodesies. L is the language of an automatic
structure [2, 3.4.5]. In particular, there is a finite state automaton F which determines
whether two geodesies represent the same element of G. This finite state automaton
can be seen as a finite labeled directed graph: the vertices of the graph correspond
to the states of the machine, the edges correspond to the transitions and the labels on
those edges correspond to the input letters mediating those transitions. Each letter
here is a pair (a, a') where each of a and a' is either blank or an element of &, and
they are not both blank. The graph has a base point corresponding to the start state of
F and a subset of its vertices correspond to the accept states of F. Since F accepts
only pairs of words of equal length, no edge leading to an accept state has a blank for
either a or a'. We will take this machine to be deterministic, so for each pair of words
(w, v) which is accepted, there is only one path from the start state to an accept state
bearing that label.
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If we now fix an element g and a geodesic gi{ • • • gin for g, then p& (g) is the number
of words w = ax • • • an so that the pairs (g,,, ax) - • • (gin, an) label a path starting from
the start state of F to an accept state of F. To count these we do the following.
We take m to be the number of states of F and suppose that these are enumerated
sx,... ,sm. (We assume st is the start state.) We define Af, to be the m x m matrix so
that rriij gives the number of edges from state i to state j bearing a label of the form
(gt, a'). We take u = [1 0 . . . ]. We take v so that the z'th entry is 1 if s, is an accept
state and 0 otherwise.

A standard induction shows that this does what is required. That is, if 0 < r <
n = l(g), we let N = Nr = Mit- • • Mir. (No = I.) Then n{j gives the number
of paths from s, to Sj labeled by words of the form (g,,, a,) • • • (gir, ar). Pre- and
post-multiplication by u and v sum over paths from the start state to accept states. We
leave the details to the reader.

Bartholdi has similar and more efficient methods in the case where G is a hyperbolic
surface group [1].

PROPOSITION. Suppose that G = A* B and that <£ = srf U 38, where si and 88
are generating sets for A and B respectively. Then

••akbk) =

PROOF. A & geodesic consists of stf and 38 geodesies for its factors.

If the Pascal's function of a group graph is identically 1, then there is a unique
geodesic to each group element. It is easy to arrange for this to happen in any finite
group: we take the entire group as the generating set. Likewise this happens in a free
group if we take our generating set to be a basis. It now follows that an arbitrary
product of free and finite groups has a generating set in which the Pascal's function is
identically 1. This raises the following

QUESTION. Suppose G has a generating set for which Pascal's function is identic-
ally 1. Does it follow that G is a free product of free groups and finite groups?

Papasoglu has given a partial answer to this in [5] where he has shown that if a
group is hyperbolic and has Pascal's function identically 1 then it is virtually free.

We prove the following.

THEOREM. Suppose G = (&) is virtually infinite cyclic and that p& is identically
1. Then either G = Z and <£ is a single generator, or G is the infinite dihedral group
Z2 * Z2 and W consists of two involutions.
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As we will observe below, it is sufficient to assume that p& is bounded.

PROOF. Since G is virtually cyclic, it is word hyperbolic. Hence there is a finite
state automaton F whose language is the entire language of geodesies. Since the set
of geodesies is infix closed, we can assume that every vertex is both a start state and
an accept state. Since G is infinite, F has a loop. Assume the label on this loop is
y = y, • • • y-. For some positive power m, (ym) is normal in G. We consider the word
ymy\. The word ymy\ is geodesic, and we either have ymy\ = y\ym or ymy\ = y\y~m.

CASE 1. ymy\ = y\ym. Then y\ym is also geodesic, and necessarily equal ymy\.
This implies that y is a positive power of yt. In this case we will call y\ = t and
v = t" for some n.

CASE 2. ymy\ = y\y~m. Now ymyt is a geodesic, and this evaluates to the same
element as y\y~m- Since these both have the same length, the latter is also geodesic,
so these two words are necessarily equal. But ymy\ ends in _yi and y\ y~m ends in yf'.
Evidently y^ = yf' and y7 = y,"1.

Now j > 2, since y2 is geodesic, while y2 = 1. We look at the loop labeled
y' = y2 • • • y^x based at the next vertex of the loop y. Since y' is a cyclic conjugate
of y, and (ym> is normal, (ym) = (y'm). In particular, (y'm) is normal. Performing the
same argument as before, we have y""y2 = y2y'eim-, where e2 = ± 1 . But e2 = 1 is
impossible, since we then have (as in case 1) y' is a positive power of y2 whence y' is
a power (at least 2) of yx which is of order 2. Consequently y'my2 = y2y'~m, and, as
in case 2, y2 has order 2.

But now we observe that ymyiy2 = y\y2y
m so that ymyiy2 = y\y2y

m, and thus y is
a positive power of yiy2. In this case we call y\ and y2 r and s respectively and have
y — (rs)" for some n.

Let the loops of F bear the labels vu ..., vq. Then all of uj", . . . , Tq have powers
lying in a common normal subgroup Z = (z) < G. Thus, for each i some power
of W is a positive power of z or of z~] • This divides the set of loops of F into two
equivalence classes. Now if v, and Vj fall in the same equivalence class, TJ7 and v] have
a common positive power, so u, and Vj are themselves positive powers of common
word. In particular they are both labeled by a positive power of either t, t~\rs or sr.
Furthermore, if u, labels a loop, so does its inverse, since the inverse of a geodesic is
also a geodesic. Thus all the loops of F are labeled by positive and negative powers
of / or all the loops of F are labeled by positive powers of rs and its inverse sr.

Now the set of all geodesies is a regular language in which the number of words of
length n is bounded by a linear function of n. It is a standard result that such languages
are finite unions of the form |J , {«;v? wt \m >0}. To finish the proof it only remains
to see that if each w, is a power of t, then so are each u, and u, and that if each v, is a
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power of rs, then each M, and u, consists only of r's and s's. (This is certainly true
for any w, or u, that is empty!)

CASE 1. Each u, is a power of t. We repeat the argument of case 1 above using
using the last letter of w, or the first letter of wt in the role of y{. We then repeat this
peeling off successive letters of w, and u>,, thus showing that each of these consists
only of f±|7s.

CASE 2. Each u, is a power of rs. We suppose v, is a positive power of rs. Then
the last letter of M, conjugates a power of vt to its inverse and is thus s. The last two
letters of M, (if there are two) conjugate a power of rs to itself, and are thus rs. Thus
each non-empty w, is an alternating word in r and s ending in s and likewise each w,
is an alternating word in r and * beginning in r.

We can weaken the supposition that p& = 1 to the supposition that p<# is bounded.
For if we can move (say) x through ym (where y labels a loop) either preserving or
reversing sign, but giving a different word, then we can change x(ym)k into any of k
different geodesic words for the same element.
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