EQUIVALENT PRESENTATIONS OF MODULES OVER PRÜFER DOMAINS

LASZLO FUCHS AND SANG BUM LEE

Abstract

If F and F^{\prime} are free R-modules, then $M \cong F / H$ and $M \cong F^{\prime} / H^{\prime}$ are viewed as equivalent presentations of the R-module M if there is an isomorphism $F \rightarrow F^{\prime}$ which carries the submodule H onto H^{\prime}. We study when presentations of modules of projective dimension 1 over Prüfer domains of finite character are necessarily equivalent.

1. Introduction. Let R denote a commutative domain with 1 ; all R-modules are unital. In what follows, rk M will denote the rank and gen M the minimal cardinality of generating systems of the R-module M.

Let F and F^{\prime} be free R-modules, H and H^{\prime} submodules such that $F / H \cong F^{\prime} / H^{\prime}$. We say that F / H and F^{\prime} / H^{\prime} are equivalent presentations of the R-module $M \cong F / H$ if there is an isomorphism $\phi: F \rightarrow F^{\prime}$ which carries H onto H^{\prime}.

Needless to say that, in general, there are no compelling reasons for the equivalence of two presentations of a module. Equivalent presentations of torsion-free abelian groups were investigated by J. Erdős [3]; his results were extended to the mixed case by Fuchs [4]. A more relevant study of presentations of abelian groups is due to Hill-Megibben [7]: they succeeded in giving a necessary and sufficient condition for the equivalence of two presentations. One of their numerous corollaries is the stacked bases theorem of Cohen-Gluck [2]. The results of [7] are extended to presentations over arbitrary valuation domains by L. Salce and P. Zanardo [unpublished].

The equivalence of presentations of finitely presented modules was established by Levy [9] and by Brewer-Klingler [1] over Prüfer domains of finite character (finite character means that every non-zero element is contained but in a finite number of maximal ideals) and over Prüfer domains of Krull dimension 1. Note that in the Prüfer case finite presentation is equivalent to finite generation plus having projective dimension ≤ 1. Accordingly, in the infinitely generated case, it is natural to concentrate on modules of projective dimension ≤ 1. It turns out that then the problem is still manageable, at least for torsion-free modules, though it is far from being a trivial generalization of the abelian group case. Let us note right away that over Prüfer domains torsion-freeness and flatness are equivalent.

An obvious necessary condition for the equivalence of the presentations F / H and F^{\prime} / H^{\prime} of an R-module M is that the ranks satisfy

$$
\begin{equation*}
\operatorname{rk} F=\operatorname{rk} F^{\prime} \quad \text { and } \quad \operatorname{rk} H=\operatorname{rk} H^{\prime} \tag{*}
\end{equation*}
$$

Received by the editors September 11, 1996.
AMS subject classification: 13C11.
(c) Canadian Mathematical Society 1998.

Our main purpose here is to show that if M is a flat R-module of projective dimension $\leq 1(R$ is a Prüfer domain of finite character), then $(*)$ is a sufficient condition as well; moreover, the equality $\mathrm{rk} H=\mathrm{rk} H^{\prime}$ alone implies that the presentations F / H and F^{\prime} / H^{\prime} are equivalent. (Observe that then $\mathrm{rk} F=\mathrm{rk} F^{\prime}$ is automatically satisfied because of $\mathrm{rk} F=\mathrm{rk} H+\mathrm{rk} F / H=\mathrm{rk} H+\mathrm{rk} M$.) The main idea of the proof is borrowed from Erdős [3]; however, several essential modifications were needed to settle the problem in our case.

If the condition of M being flat is dropped, then we can establish only a sufficient condition for the equivalence of presentations of M. A main difficulty in obtaining a necessary and sufficient condition in the more general case lies in the fact that for the Hill-Megibben criterion the unique factorization of the integers seems to be a relevant feature. On the other hand, the hypothesis that the projective dimension of M is ≤ 1 is needed in order to assure that H is projective-this property plays an essential role in our considerations.

Our results provide an additional evidence to justify our old claim that the behavior of modules of projective dimensions ≤ 1 over Prüfer domains has a strong resemblance to modules over Dedekind domains (see [5]).
2. Preliminary lemmas. For the proof of our main results, we require a couple of preliminary lemmas.

Lemma 1. If R is a Prüfer domain and F is a projective R-module, then every finite rank pure submodule H of F is a summand of F.

Proof. Without loss of generality we may assume that F is a free R-module and H is contained in a finitely generated free summand F^{\prime} of F. Then the factor module F^{\prime} / H is a finitely generated flat R-module, so it is projective. Therefore, H is a summand of F^{\prime} and hence of F.

Lemma 2. A projective module of infinite rank over a Prüfer domain of finite character is free.

Proof. This follows at once from Kaplansky [8] and Heitmann-Levy [6].
The next two results are analogs of lemmas on abelian groups due to Erdős [3].
LEMMA 3. A projective pure submodule H of a free R-module Fover a Prüfer domain R of finite character contains a summand of F whose rank is the same as the rank of H. If H is of infinite rank, then this summand is free.

Proof. If H is of finite rank, then by Lemma 1 it is a summand of F, and we are done. So assume H is of infinite rank κ.

Let $B=\left\{b_{\alpha}\right\}$ be a basis of F, and consider finite subsets B_{i} of B such that $\left\langle B_{i}\right\rangle \cap H \neq 0$. Select a maximal pairwise disjoint set Σ of such subsets B_{i}, and a nonzero h_{i} in each $\left\langle B_{i}\right\rangle \cap H$. Let $\left\langle h_{i}\right\rangle_{*}$ denote the pure submodule generated by h_{i}, i.e., $\left\langle h_{i}\right\rangle_{*} /\left\langle h_{i}\right\rangle$ is the torsion submodule of $H /\left\langle h_{i}\right\rangle$. Note that $\left\langle h_{i}\right\rangle_{*}$ is a summand of $\left\langle B_{i}\right\rangle$, and hence $G=$
$\oplus\left\langle h_{i}\right\rangle_{*}$ is a (projective) summand of F, and so of H. Write $F=\left\langle B_{i} \mid B_{i} \in \Sigma\right\rangle \oplus K$ where K is generated by the basis elements not in any member of Σ. Now $K \cap H \neq 0$ is impossible, because then the basis elements b_{α} occurring in a linear combination of a non-zero element in this intersection form a finite subset disjoint from every finite subset in Σ, contradicting the maximality of Σ. Therefore, $K \cap H=0$. Manifestly, the cardinality of the set of all basis elements b_{α} occurring in members of Σ is the same as the cardinality of Σ. Hence $K \cap H=0$ implies that $\mathrm{rk} G=\operatorname{rk}\left\langle B_{i} \mid B_{i} \in \Sigma\right\rangle=\operatorname{rk} F / K \geq \operatorname{rk} H=\kappa$. Now G is a projective module of infinite rank, so it is free by Lemma 2.

The crucial lemma is the following.
LEMMA 4. Let F be a free module of infinite rank over a Prüfer domain R of finite character, and H a projective pure submodule of F. Assume that S is a generating set of F / H whose cardinality is equal to $\operatorname{rk} F$, and T is a subset of F / H disjoint from S satisfying $|T|=|S|$. If $|S|=\mathrm{rk} H$, then F has a basis B which is $\bmod H$ a complete set of representatives of $S \cup T$.

Proof. Suppose $|S|=\operatorname{rk} F=\operatorname{rk} H=\kappa$. In view of Lemma 3, H contains a free summand G of F with rk $G=\kappa$. Choose a basis Y of G and extend it to a basis $C=\left\{b_{\alpha}\right\}$ of F. Next, well-order C in such a way that the elements of $Y=C \cap H$ precede the other basis elements in C. Moreover, we may assume that the well-ordering is done in such a way that Y has order type κ.

We are going to change the basis C to get one with the desired property. We use four steps in order to accomplish this goal.

STEP 1. We modify C such that the new basis C^{\prime} will have the property that it contains Y and two elements of C^{\prime} are congruent $\bmod H$ if and only if both belong to H.

If a basis element b_{β} in C is in the same coset $\bmod H$ as a basis element b_{α} with $\alpha<\beta$ in the well-ordering, then we replace b_{β} in the basis C by $b_{\beta}-b_{\gamma}$ with the first b_{γ} congruent to $b_{\beta} \bmod H$.

STEP 2. We pass to a new basis $C^{\prime \prime}$ of F which contains κ elements of Y and every element of S is represented by exactly one basis element in $C^{\prime \prime}$.

Consider a set $S^{\prime}=\left\{s_{\rho}\right\}(\rho<\lambda \leq \kappa)$ of representatives of elements of S which have no representatives in the basis C^{\prime}. If S^{\prime} is empty, there is nothing to do. If it is not empty, then we proceed as follows. Without loss of generality we may assume that the representatives $s_{\rho} \in S^{\prime}$ have been selected such that in their representations as linear combinations of the basis elements in C^{\prime} no basis element from Y occurs. We split Y into two disjoint subsets: $Y=Y_{1} \cup Y_{2}$ such that $\left|Y_{1}\right|=\kappa$ and there is a bijection $f: Y_{2} \longrightarrow S^{\prime}$. Using f, the basis elements $b_{\rho} \in Y_{2}$ are replaced by $b_{\rho}+f\left(b_{\rho}\right)$.

STEP 3. We find a new basis B^{\prime} with the property that every element of S is represented by exactly one basis element in B^{\prime}, and all the other basis elements in B^{\prime} (exactly κ of them) belong to H.

We concentrate on those basis elements $b_{\alpha} \in C^{\prime \prime}$ which do not belong either to H or to a coset in S. Since S generates $F \bmod H$, to every $b_{\alpha} \in C^{\prime \prime}$ there is at least one
linear combination x_{α} of the basis elements in $C^{\prime \prime}$ representing elements of S such that $b_{\alpha}-x_{\alpha} \in H$. For each $b_{\alpha} \in C^{\prime \prime}$ which is not in H or in a coset of S, select such an x_{α} and replace b_{α} in $C^{\prime \prime}$ by $b_{\alpha}-x_{\alpha}$.

Step 4. Finally, we obtain a new basis B of F which is $\bmod H$ a complete set of representatives of $S \cup T$.

We focus our attention on the set T. For each coset in T choose a representative $v_{\beta} \in F$, expressed in terms of basis elements in B^{\prime} representing cosets in S. Owing to $|T|=\kappa=$ $\left|B^{\prime} \cap H\right|$, there is a bijection between the elements $\left\{b_{\beta}\right\}$ of B^{\prime} not representing elements of S and the set $\left\{v_{\beta}+H\right\}$ of cosets (where we have the corresponding elements carrying the same indices). If in the basis B^{\prime}, the element b_{β} of B^{\prime} is replaced by $b_{\beta}+v_{\beta}$, then we arrive at a basis with the desired properties.

This completes the proof.
It is worth while observing that the set $S \cup T$ generates the module F / H, thus under the hypotheses of Lemma 4, F has a basis whose elements are incongruent $\bmod H$.

In some cases the condition stated in the preceding lemma is automatically satisfied. Indeed, we can verify the following simple fact valid over any domain R; this was proved by Hill-Megibben [7, Corollary 1.3] for abelian groups:

LEMMA 5. If $M \cong F / H$ is a presentation of an R-module M such that $\operatorname{rk} F>$ gen $M \geq \aleph_{0}$, then the submodule H of F contains a summand G of F with $\mathrm{rk} G=\mathrm{rk} F$.

Proof. Let $\phi: F \rightarrow M$ be the canonical epimorphism (with kernel H). Evidently, there is a summand F_{1} of F with $\operatorname{rk} F_{1}=$ gen M which is mapped by ϕ onto M. Write $F=F_{1} \oplus F_{2}$ and denote the restriction of ϕ to F_{j} by $\phi_{j}(j=1,2)$. As ϕ_{1} is surjective and F_{2} is projective, there is a map $\rho: F_{2} \rightarrow F_{1}$ such that $\phi_{2}=\phi_{1} \rho$. Then $G=\left\{x-\rho x \mid x \in F_{2}\right\}$ is a complement of F_{1} in F contained in H whose rank is necessarily equal to $\mathrm{rk} F$.
3. The main result. We are now ready to verify our main result which we have already mentioned in the Introduction.

THEOREM 6. Let R be a Prüfer domain of finite character, and F, F^{\prime} free R-modules. Two presentations, F / H and F^{\prime} / H^{\prime}, of a flat (i.e. torsion-free) R-module M of projective dimension ≤ 1 are equivalent if and only if

$$
\mathrm{rk} H=\mathrm{rk} H^{\prime} .
$$

Proof. Only sufficiency requires a proof. Suppose rk $H=$ rk H^{\prime}; as already noted above, this implies $\mathrm{rk} F=\mathrm{rk} F^{\prime}$. Actually, we are going to prove a bit more than stated, viz. we will show that every isomorphism

$$
\psi: M=F / H \rightarrow F^{\prime} / H^{\prime}=M^{\prime}
$$

is induced by an isomorphism

$$
\phi: F \rightarrow F^{\prime} \quad \text { with } \quad \phi(H)=H^{\prime} .
$$

Note that the submodules H and H^{\prime} are pure (since M is flat and R is Prüfer) and projective (since p.d. $M \leq 1$). Hence if H and H^{\prime} are of finite rank, then by Lemma 1 they are summands of F and F^{\prime}, respectively. In this case M is projective, and the equivalence of the two presentations of M is obvious. Hence, in the balance of the proof we may suppose that $\operatorname{rk} H=\operatorname{rk} H^{\prime}$ is infinite.

Choose a set S of generators of $M=F / H$ of minimal cardinality κ, and pick a subset T of M of the same cardinality, disjoint from S. This can be done as follows. If the characteristic of R is not 2 , then after dropping from S one member of additive inverse pairs among the elements of S, we can choose T to consist of the additive inverses of elements of $S \backslash H$. If the characteristic of R is 2 , then choose T to be $s_{0}+s$ with a fixed element s_{0} of S and s ranging over all elements of S after deleting from S generators of this form.

We clearly have $\kappa \leq \operatorname{rk} F$. Let S^{\prime}, T^{\prime} denote the sets in M^{\prime} corresponding to S, T under the isomorphism ψ. We distinguish three cases.

CASE I. rk $H=\kappa$. Then rk $H^{\prime}=\kappa$ likewise. In view of Lemma 4, there exist a basis B of F and a basis B^{\prime} of F^{\prime} which are complete sets of representatives of $S \cup T \bmod H$ and $S^{\prime} \cup T^{\prime} \bmod H^{\prime}$, respectively. (If S, T are chosen so as not to contain 0 , then B will be disjoint from H.) The correspondence $B \rightarrow B^{\prime}$ which is well defined by mapping $b \in B$ upon $b^{\prime} \in B^{\prime}$ if and only if ψ maps the coset $b+H$ upon $b^{\prime}+H^{\prime}$ extends uniquely to an isomorphism $\phi: F \rightarrow F^{\prime}$ under which H^{\prime} is clearly the image of H. Thus the two presentations are equivalent.

CASE II. rk $H>\kappa$. Pick a free R-module G whose rank is $\mathrm{rk} H$, then replace F by $F \oplus G$ and F^{\prime} by $F^{\prime} \oplus G$, but keep H and H^{\prime}. Application of Case I to the R-module $M \oplus G$ (with ψ extended by the identity map on G) implies the existence of an isomorphism $\phi: F \oplus G \longrightarrow F^{\prime} \oplus G$ with $\phi H=H^{\prime}$ inducing ψ. It is self-evident that $\phi F=F^{\prime}$.

CASE III. rk $H<\kappa$. There is a decomposition $F=F_{1} \oplus F_{2}$ such that $H \leq F_{1}$ and $\operatorname{rk} H=\operatorname{rk} F_{1}<\operatorname{rk} F_{2}=\kappa$. Thus $M=F_{1} / H \oplus F_{2}$, and ψ yields a similar decomposition $M=F_{1}^{\prime} / H^{\prime} \oplus F_{2}^{\prime}$. Case I guarantees the existence of an isomorphism $F_{1} \rightarrow F_{1}^{\prime}$ mapping H upon H^{\prime}; this along with $F_{2} \rightarrow F_{2}^{\prime}$ (restriction of ψ) provides a desired isomorphism $\phi: F \rightarrow F^{\prime}$.

REMARK. A careful examination of the proof reveals that the finite character of the Prüfer domain has been used only to guarantee that G of Lemma 3 is free whenever it is of infinite rank. Consequently, it is enough to require that every projective R-module of infinite rank κ contains a free summand of the same rank κ. It is straightforward to see that this is the case if and only if every projective R-module of countable rank contains a free summand of rank ≥ 1. This condition is satisfied, for instance, if R is of countable character in the sense that every non-zero element of R is contained in at most countably many maximal ideals. Thus Theorem 6 continues to hold for Prüfer domains of countable character.

We turn our attention to a more general situation, by dropping the condition of flatness. From the proofs of Lemma 4 and Theorem 6 it is easy to obtain a sufficient condition on the equivalence of presentations for arbitrary R-modules of projective dimension ≤ 1.

Corollary 7. Let F and F^{\prime} be free modules over a Prüfer domain R, and assume F / H and F^{\prime} / H^{\prime} are presentations of the R-module M of projective dimension 1. If
(i) $\mathrm{rk} F=\mathrm{rk} F^{\prime}$;
(ii) H contains a free summand of F of rank gen M;
(iii) H^{\prime} contains a free summand of F^{\prime} of rank gen M,
then every isomorphism $\psi: F / H \rightarrow F^{\prime} / H^{\prime}$ is induced by an isomorphism $\phi: F \rightarrow F^{\prime}$ such that $\phi(H)=H^{\prime}$.

Proof. In the proofs above the flatness of M was used only to ascertain that conditions (ii) and (iii) were satisfied. Therefore, assuming (ii) and (iii), and choosing a generating set S of M of cardinality gen M, the argument above establishes the present claim as well (in view of Remark above, the condition of R being of finite character is dropped).

From the last corollary it follows at once:
Corollary 8. Let R be a Prüfer domain, and $F / H, F^{\prime} / H^{\prime}$ two presentations of the R-module M of projective dimension 1 where F, F^{\prime} are free R-modules. Then there is a free R-module G of rank $\leq \operatorname{gen} M$ such that

$$
(F \oplus G) /(H \oplus G) \quad \text { and } \quad\left(F^{\prime} \oplus G\right) /\left(H^{\prime} \oplus G\right)
$$

are equivalent presentations of M.
4. Application. Finally, we mention an application of our results. This is an analog of one obtained by Erdős [3] for abelian groups.

COROLLARY 9. Let R be a Prüfer domain of finite character, and N a submodule of an R-module M such that M / N is flat of projective dimension 1 . If

$$
\aleph_{0} \leq \operatorname{gen} M / N \quad \text { and } \quad \operatorname{gen} N \leq \operatorname{gen} M / N
$$

then M has a generating system of cardinality gen M / N whose elements are pairwise incongruent $\bmod N$.

Proof. Represent M as F / H with a free R-module F such that $\operatorname{rk} F=$ gen M. Then N will be of the form F^{\prime} / H with a submodule F^{\prime} of F containing H. Notice that F^{\prime} is projective, since $F / F^{\prime} \cong M / N$ has projective dimension ≤ 1. Furthermore, in view of $\operatorname{rk} F^{\prime}=\operatorname{rk} H+\operatorname{gen} N \leq \operatorname{gen} M+\operatorname{gen} N=\operatorname{gen} M / N$ (the last equality is a consequence of the hypothesis gen $N \leq \operatorname{gen} M / N)$ we can choose a free R-module G such that $\operatorname{rk}(G \oplus$ $F) /\left(G \oplus F^{\prime}\right)=\operatorname{rk}\left(G \oplus F^{\prime}\right)$. We now appeal to the remark made after Lemma 4 to conclude that the free R-module $G \oplus F$ has a basis B whose elements $\bmod G \oplus F^{\prime}$ represent different elements of M / N. As $B \bmod H$ generates M, this yields a generating system for M of the desired kind.

References

1. J. Brewer and L. Klingler, Pole assignability and the invariant factor theorem in Prüfer domains and Dedekind domains. J. Algebra 114(1987), 536-545.
2. J. Cohen and H. Gluck, Stacked bases for modules over principal ideal domains. J. Algebra 14(1970), 493-505.
3. J. Erdős, Torsion-free factor groups of free abelian groups and a classification of torsion-free abelian groups. Publ. Math. Debrecen 5(1957), 172-184.
4. L. Fuchs, Abelian Groups. Akadémiai Kiadó, Budapest, 1958.
5. \qquad Note on modules of projective dimension one. In: Abelian Group Theory, Gordon and Breach Science Publishers, New York etc., 1986.
6. R. C. Heitmann and L. S. Levy, 1 1/2 and 2 generator ideals in Prüfer domains. Rocky Mountain J. Math. 5(1975), 361-373.
7. P. Hill and C. Megibben, Generalizations of the stacked bases theorem. Trans. Amer. Math. Soc. 312(1989), 377-402.
8. I. Kaplansky, Modules over Dedekind rings and valuation rings. Trans. Amer. Math. Soc. 72(1952), 327340.
9. L. S. Levy, Invariant factor theorem for Prüfer domains of finite character. J. Algebra 106(1987), 259-264.

Department of Mathematics
Tulane University
New Orleans, Louisiana 70118
U.S.A.
e-mail: fuchs@mailhost.tcs.tulane.edu

Department of Mathematical Education
Sangmyung University
Seoul 110-743
Korea

