ON (v, k, λ)-CONFIGURATIONS WITH $v=4 p^{c}$

by R. L. McFARLAND

(Received 20 November, 1973)

1. Introduction. A ($v, k, \lambda)$-configuration, also called a symmetric balanced incomplete block design, is an arrangement of v distinct objects called points or varieties into v subsets called lines or blocks such that each line contains exactly k points and each pair of distinct lines contains exactly λ points in common. To avoid certain trivial configurations, one assumes that $0<\lambda<k<v-1$.

In this paper we show that a (v, k, λ)-configuration with v of the form $4 p^{e}$ where p is a prime must have the parameters

$$
\begin{equation*}
(v, k, \lambda)=\left(4 m^{2}, 2 m^{2}-m, m^{2}-m\right) \tag{1}
\end{equation*}
$$

where $m= \pm p^{\ddagger e}$. Hence, in particular, e must be even. This result was proved for $p=2$ by Mann [2, pp. 72-73] or [3, p. 213]. The method of proof can be extended to determine all possible parameter values when v is of the form $2^{d} p^{e}$ and d is a small positive integer. We list the possible parameter values for $v=2 p^{e}, 8 p^{e}$ and $16 p^{e}$.

The ambiguity in the sign of m in (1) arises from the fact that replacing m by $-m$ in (1) yields the parameters of the complementary (v, k, λ)-configuration, that is, the (v, k, λ) configuration obtained by replacing each line by its complement.

The parameters (1) for arbitrary integral m are of some interest since the incidence matrix of such a (v, k, λ)-configuration yields a Hadamard matrix on replacing each 0 by -1 (see, e.g., Mann [2, p. 71]).

For further general information on (v, k, λ)-configurations and Hadamard matrices, see, e.g., Hall [1, Chapters 10 and 14].
2. Main result. We shall use the following two well-known facts concerning the parameters of a (v, k, λ)-configuration (see, e.g., Hall [1, Chapter 10]). First, the parameters are related by

$$
\begin{equation*}
k(k-1)=\lambda(v-1) . \tag{2}
\end{equation*}
$$

As is customary, set

$$
\begin{equation*}
n=k-\lambda \tag{3}
\end{equation*}
$$

Then (2) can be written as

$$
\begin{equation*}
n=k^{2}-\lambda v \tag{4}
\end{equation*}
$$

Second, if v is even, then n is a square.
We now show that if the parameters of a (v, k, λ)-configuration satisfy $v=4 n$, then the parameters are of the form (1) for some integer m, a result first noted by Menon [4, pp. 739740]. If $v=4 n$, then (3) and (4) yield

$$
n=k^{2}-\lambda v=(n+\lambda)^{2}-4 \lambda n=(n-\lambda)^{2}
$$

Let $m=n-\lambda$. Then $n=m^{2}, \lambda=n-m=m^{2}-m, k=n+\lambda=2 m^{2}-m$ and $v=4 n=4 m^{2}$, as desired. Note that $m>0$ if and only if $k<\frac{1}{2} v$.

Theorbm. Suppose there exists a (v, k, λ)-configuration with v of the form $4 p^{e}$, where p is a prime and e is a positive integer. Then e is even and the parameters are of the form

$$
(v, k, \lambda)=\left(4 m^{2}, 2 m^{2}-m, m^{2}-m\right)
$$

where $m= \pm p^{t^{2}}$.
Proof. Replace the (v, k, λ)-configuration by its complementary configuration if necessary so that

$$
\begin{equation*}
k<\frac{1}{2} v . \tag{5}
\end{equation*}
$$

Since $v=4 p^{c}$ is even, $n=k-\lambda$ must be a square, say

$$
n=p^{2 f} n_{1}^{2}
$$

where n_{1} is not divisible by p. First suppose that $2 f \geqq e$. Then (3) and (5) yield

$$
\begin{equation*}
p^{2 f} n_{1}^{2}=n<k<\frac{1}{2} v=2 p^{c} . \tag{6}
\end{equation*}
$$

Thus $1 \leqq p^{2 f-e} n_{1}^{2}<2$, so that $2 f=e$ and $n_{1}=1$. Therefore $v=4 p^{2 f}=4 n$ and, as noted above, the parameters (1) result with $m=p^{\frac{1}{2} e}$. The complementary parameters with $k>\frac{1}{2} v$ correspond to $m=-p^{4 e}$.

Now assume that

$$
\begin{equation*}
2 f<e \tag{7}
\end{equation*}
$$

We complete the proof by showing that (7) is impossible. Substituting for n and v in (4) yields

$$
\begin{equation*}
p^{2 f} n_{1}^{2}=k^{2}-4 p^{e} \lambda . \tag{8}
\end{equation*}
$$

Hence

$$
k=p^{\varsigma} k_{1}
$$

for some integer k_{1}. Let

$$
\begin{equation*}
\lambda_{1}=k_{1}-p^{f} n_{1}^{2} \tag{9}
\end{equation*}
$$

Then

$$
\lambda=k-n=p^{f} k_{1}-p^{2 \int} n_{1}^{2}=p^{f} \lambda_{1}
$$

Substituting the above expressions for k and λ in (8) yields

$$
\begin{equation*}
4 p^{e-f} \lambda_{1}=k_{1}^{2}-n_{1}^{2}=\left(k_{1}+n_{1}\right)\left(k_{1}-n_{1}\right) \tag{10}
\end{equation*}
$$

Since $\left(k_{1}+n_{1}\right)-\left(k_{1}-n_{1}\right)=2 n_{1}$ and $p \nmid n_{1},(10)$ implies that

$$
\begin{equation*}
p^{e-f} \mid k_{1}+n_{1} \quad \text { or } \quad p^{e-f} \mid k_{1}-n_{1} \tag{11}
\end{equation*}
$$

even if $p=2$. Now

$$
\begin{gather*}
k_{1}=k / p^{f}<\frac{1}{2} v / p^{f}=2 p^{e-f} \\
n_{1}=\sqrt{n} / p^{f}<\sqrt{\frac{1}{2} v} / p^{f}=\sqrt{2} p^{\frac{1}{2}-f} \leqq p^{e-f} \tag{12}
\end{gather*}
$$

Thus

$$
\begin{align*}
& 0<k_{1}+n_{1}<3 p^{e-f} \tag{13}\\
& 0<k_{1}-n_{1}<2 p^{e-f} \tag{14}
\end{align*}
$$

Then (10), (11), (13) and (14) imply that either

$$
\begin{equation*}
p^{e-f}=k_{1} \pm n_{1}, \quad 4 \lambda_{1}=k_{1} \mp n_{1} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
2 p^{e-f}=k_{1}+n_{1}, \quad 2 \lambda_{1}=k_{1}-n_{1} \tag{16}
\end{equation*}
$$

Suppose that (15) holds. Then eliminating k_{1} yields

$$
\begin{aligned}
p^{e-f} \mp n_{1} & =k_{1}=4 \lambda_{1} \pm n_{1} \\
p^{e-f} & =4 \lambda_{1} \pm 2 n_{1}
\end{aligned}
$$

Therefore $2 \mid p$, and so $p=2$. But $p \nmid n_{1}$, so that $e-f=1$. Then (7) implies that $e=1$, so that $v=4 p^{e}=8$. There are no nontrivial parameter values satisfying (2) with $v=8$. Suppose that (16) holds. First eliminate λ_{1} using (9) and then eliminate the quantity $k_{1}+n_{1}$.

$$
\begin{aligned}
k_{1}-n_{1} & =2 \lambda_{1}=2\left(k_{1}-p^{s} n_{1}^{2}\right) \\
2 p^{f} n_{1}^{2} & =k_{1}+n_{1}=2 p^{e-f} \\
n_{1}^{2} & =p^{e-2 s}
\end{aligned}
$$

But $p \nmid n_{1}$, so that $e=2 f$ in opposition to (7). This completes the proof.
3. Further results. As noted previously, Mann [2] or [3] has shown that a (v, k, λ)configuration with v a power of 2 must have parameters of the form

$$
\begin{equation*}
(v, k, \lambda)=\left(2^{2 f+2}, 2^{2 f+1} \pm 2^{f}, 2^{2 f} \pm 2^{f}\right) \tag{17}
\end{equation*}
$$

G. F. Stahly has pointed out (written communication via a third party) that Mann's proof actually shows (on replacing most occurrences of 2 by p) that a (v, k, λ)-configuration with v of the form $2 p^{e}$, where p is a prime, must have $p=2$ and hence parameters of the form (17).

The proof of this paper can be extended (straightforward but tedious) to determine all possible parameter values of a (v, k, λ)-configuration when v is of the form $8 p^{e}$ or $16 p^{e}$, where p is a prime. The results are: If v is of the form $8 p^{e}$, then the parameters are of the form (17), or up to complementation the (v, k, λ) parameters are $(40,13,4)$ or $(56,11,2)$. If v is of the form $16 p^{e}$, then the parameters are of the form (1) with $m= \pm 2 p^{4 e}$ so that e must be even in this case, or up to complementation the parameters are one of the following.

v	k	λ	n
112	37	12	25
176	50	14	36
208	46	10	36
400	57	8	49
496	55	6	49
944	369	144	225
976	351	126	225
3888	507	66	441

In proving the theorem we used the inequality $n<\frac{1}{2} v$ in (6) and (12); in these further calculations it is better to use instead the inequality $n \leqq \frac{1}{4}(v+1)$ at the corresponding steps. This inequality is a consequence of the relation

$$
\lambda(2 n-1) \leqq n^{2}-n+\lambda^{2}=\lambda(v-2 n),
$$

in which the inequality is equivalent to $n-\lambda \leqq(n-\lambda)^{2}$ and the equality follows from (2) and (3).

Note added in proof. A proof of G. F. Stahly's result that a (v, k, λ)-configuration with v of the form $2 p^{e}$, where p is a prime, must have $p=2$ can be found in J. F. Dillon, Elementary Hadamard difference sets, Ph.D. Thesis (University of Maryland, 1974).

REFERENCES

1. M. Hall, Jr, Combinatorial theory (Waltham, Massachusetts, Blaisdell, 1967).
2. H. B. Mann, Addition theorems (New York, Wiley, 1965).
3. H. B. Mann, Difference sets in elementary abelian groups, Illinois J. Math. 9 (1965), 212-219.
4. P. K. Menon, On difference sets whose parameters satisfy a certain relation, Proc. Amer. Math. Soc. 13 (1962), 739-745.

University of Glasgow
Glasgow G12 8QW

