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First Steps of Local Contact Algebra
Dedicated to H. S. M. Coxeter

V. I. Arnold

Abstract. We consider germs of mappings of a line to contact space and classify the first simple singularities
up to the action of contactomorphisms in the target space and diffeomorphisms of the line. Even in these first
cases there arises a new interesting interaction of local commutative algebra with contact structure.

1 Introduction

The belief that all simple (having no continuous moduli) objects in nature are controlled by
Coxeter groups is a kind of religion. The corresponding theorem in singularity theory is due
to A. B. Givental [9]. It classifies simple singularities of caustics and wave fronts, defined
by projections of Lagrange and Legendre subvarieties of symplectic and contact manifolds,
in terms of Coxeter euclidean reflections groups, extending to the case of singular varieties
my previous A-D-E-classification [1] (corresponding to smooth submanifolds).

The present work is an attempt to start the classification of singular simple curves in
contact manifolds.

The idea that every reasonable mathematical theory should have symplectic and contact
versions is also based on the success of Coxeter’s extension of linear algebra (considered as
the theory of the root systems A) to other mirror configurations. The application of this
idea to the calculus has led to the foundation of symplectic and contact topologies (see [2]).

In the present article the same idea is applied to a modest local problem. It is astonishing
that this problem—the classification of simple curves in a contact space—is rather difficult
and leads to interesting new interactions of the local commutative algebra with symplectic
and contact structures.

A contact structure on an odd-dimensional manifold is a field of hyperplanes in the
tangent spaces, which is completely nonintegrable. The classical Darboux-Givental theo-
rem claims that a germ of a smooth submanifold of a contact manifold is well defined (up
to a contactomorphism preserving the contact structure) by the induced structure on the
submanifold (see [8]).

The present paper shows that at a singular point of a curve there exist more invariants—
some ghost of the contact structure persists. It would be interesting to describe this ghost
algebraically, in terms of the local algebra of the singularity and of the Poisson brackets.
Such a formula is missing in the paper. I just calculate the normal forms, showing the
existence of the ghost.
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1124 V. I. Arnold

A singularity of a curve is a germ of a smooth (holomorphic, formal, . . . ) mapping of
the line into a smooth (holomorphic, formal, . . . ) manifold at a singular point (where
the derivative of the mapping vanishes). The singularities are considered up to the diffeo-
morphisms of the images in the target manifold (that is, up to the right-left equivalence in
terms of singularity theory).

A singularity is called simple if all the singularities of the neighbouring mappings belong
to a finite set of equivalence classes. The classification of simple singularities of curves is
described in [3].

The codimension of the set of nonsimple singularities of mappings of a line to CN equals
to 6N − 6 if N is large (nonsimple singularities first occur at some points of some curve of
generic families, if the number of parameters reaches 6N − 7).

The list of simple singularities of curves starts with the series

A2 ← A4 ← · · · , A2k = (s2, s2k+1, 0, . . . , 0).

These are all the singularities whose Taylor series contain nonzero quadratic terms (ne-
glecting those which are infinitely degenerate). The list of the simple singularities contains
also the (finitely degenerate) singularities, whose Taylor expansions start with nonzero cu-
bic terms (they form two 3-indices series, related to E6 and to E8). There are also seven
1-index series of finitely degenerate singularities, whose 6-jet has the form (s4, s6, 0, . . . , 0).

The remaining 32 sporadic simple singularities have Taylor series starting with
(s4, s5, 0, . . . , 0) (7 curves), with (s4, s7, 0, . . . , 0) (15 curves), with (s4, s9, 0, . . . , 0)
(1 curve), with (s5, 0, . . . , 0) (6 curves) and with (s6, 0, . . . , 0) (3 curves). They live in
spaces of dimension at least 2 (5 curves), at least 3 (13 curves), at least 4 (9 curves), at least
5 (4 curves), and at least 6 (one curve).

I mention here this information, hoping that it might help someone to find the missing
relation of this list of simple curves to other simple objects. The special role of the number
6 suggests that the affine version of E6 might be responsible for the first nonsimple singu-
larities generation (like in the A-D-E theory) and the cardinality 32 suggest the possibility
of a relation to the complex reflection groups.

The main results of the present paper are the classifications of the simple singularities
of integral curves of series A2k in contact manifolds and of the nonintegral curves with a
semicubical singularity A2. The solution of the last problem is based on the study of the
simplest objects of the symplectic and contact local algebra—of the Diraciens of the ideals
in the algebras of functions on symplectic manifolds and of their contact versions.

2 Integral Curves of Series A

The A2k-singularity is the singularity diffeomorphic to that of the plane curve x2k+1 = y2

at the origin.
Consider the contact space C2n+1 equipped with the Darboux coordinate system and

with the contact structure dz −
∑

pidqi . Consider the integral curves A2k,r whose projec-
tions to the symplectic 2n-space are

A2k,0 : (q1 = s2, p1 = sa, pi = qi = 0 for i > 1);

A2k,r : (q1 = s2, q2 = sa, p1 = sb, p2 = 0, pi = qi = 0 for i > 2),
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where a = 2k + 1, b = a + 2r, r > 0; of course z = (2/b + 2)sb+2 along such integral curves.

Theorem 1 Almost every integral curve in a contact space whose quadratic term is nonzero
is simple and contact equivalent to one of the curves A2k,r (0 ≤ r ≤ 2k) above.

The exceptional curves are nonsimple and form a subset of codimension infinity con-
sisting of infinitely degenerate curves.

One might replace sb by 0 in the normal form A2k,2k—the corresponding integral curves
are diffeomorphic.

The stratum A2k,r has codimension (2n− 1)(k− 1) + r in the space of integral curves in
C2n+1 having a singular point at the origin. In 3-space only the series A2,0 ← A4,0 ← · · ·
occurs, codim(A2k,0) = k− 1.

3 Semicubical Singular Curves in Contact Spaces

A semicubical singularity is the singularity diffeomorphic to that of the curve x3 = y2 at
the origin.

This plane curve is the image of the mapping x = s2, y = s3. A singularity of a map-
ping into a contact space is simple, if the singularities of the images of the neighbouring
mappings are contactomorphic to those of a finite set of curves.

Theorem 2 There are exactly 5 simple semicubical singularity types in the contact space
C2n+1. They are contactomorphic to the singularities

a0 ←−−−− b1 ←−−−− c2 ←−−−− e3 ←−−−− f 4

� � �
(d3) ←−−−− (h4) ←−−−− ( j5),

where

a0 : z = s2, q1 = s3, p = 0, q>1 = 0;

b1 : z = s3, q1 = s2, p = 0, q>1 = 0;

c2 : z = s4, q1 = s3, p1 = s3, p>1 = q>1 = 0;

e3 : z = s4, q1 = s2, q2 = s3, p1 = s5, p>1 = q>2 = 0;

f 4 : z = s4, q1 = s2, q2 = s3, p = 0, q>2 = 0.

Here the superscript denotes the codimension in the space of singular curves in C2n+1.
The classes in brackets are not simple. For n = 1 (that is the contact 3-space) only 3 simple
singularities a0 ← b1 ← c2 ← (d3) exist.

The nonsimple singularities of semicubical curves in a contact space form a set of codi-
mension 3 in the space of singular curves. Such singularities occur in m-parametric families
of generic curves in the contact 2n + 1-space if m ≥ 2n + 3. In the contact 3-space the non-
simple semicubical singularities first occur when the number of parameters equals 5.
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4 Classification of Integral Curves A2k

Consider the projection (z, p, q) �→ (p, q) of the contact space C2n+1 onto the symplectic
space C2n. We may suppose, without loss of generality, that the z-axis at the singular point
of our curve having the A2k-singularity, does not belong to the tangent 2-plane of the curve
at the singular point.

The projected curve has then also the A2k-singularity. The symplectic classification of
such singularities is given in [4]. It is just the list of A2k,r in Theorem 1 above (0 ≤ r ≤ 2k).

The symplectomorphism h(p, q) = (P,Q), reducing the projection to the symplectic
normal form, can be lifted to a contactomorphism g of the (z, p, q)-space by the formula

g(z; p, q) =
(
z + S(p, q); P(p, q),Q(p, q)

)
.

The generating function S is defined here by the relation dS = PdQ− pdq.
The contactomorphism g sends the integral curves onto the integral curves. It reduces

the initial integral curve γ to the normal form of Theorem 1.
The integral curves A2k,r are pairwise contact nonequivalent. Indeed, k is a diffeomor-

phism invariant. The contact invariance of the index r > 0 follows from its description as
of the order of the closeness of γ to the closest smooth integral 2-surface.

To prove this description, consider the isotropic 2-surface providing the closest approx-
imation of the projected curve in the symplectic space. The distance to this surface is van-
ishing along the projected curve as sb if r < 2k and vanishes for r = 2k (according to [4]).
Integrating pdq we lift this isotropic 2-surface to an integral surface approximating the ini-
tial integral curve at the same accuracy. Indeed, the difference between the values of z along
two intersecting integral curves whose projections are b-th order tangent in the symplectic
space is b + 1-th order tangent to 0.

5 Diracians and Contactians

The classification of simple nonintegral curves in contact spaces is based on some algebraic
preliminaries which I shall give in a slightly more general situation than is needed for the
proof of Theorem 2.

Let I be an ideal in the algebra of smooth (holomorphic, formal, . . . ) functions on a
symplectic (or Poisson) manifold.

Definition The Diracian DI of the ideal I consists of those elements of I, whose Poisson
brackets with all the functions of I belong to I.

Remark It seems, that Dirac has not considered these ideals. However his classification of
constraints is a predecessor of the local symplectic algebra.

Proposition 1 The Diracian of an ideal is an ideal.

Proof Let H ∈ DI, B ∈ I. Then for any A one has {AH,B} = A{H,B} + H{A,B} ∈ I,
since {H,B} ∈ I and H ∈ I. Therefore, AH ∈ DI.

Proposition 2 The Diracian of an ideal contains the square of this ideal.
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Proof Let A,B,C ∈ I. Then {AB,C} = A{B,C} + B{A,C} ∈ I. Therefore AB ∈ DI and
I2 ⊂ DI.

Proposition 3 The Diracian of an ideal is a Lie algebra (with respect to the Poisson bracket).

Proof Let A,B ∈ DI, C ∈ I. According to the Jacoby identity, {{A,B},C} = {A, {B,C}}+
{B, {C,A}}. Since B ∈ DI, we get {B,C} ∈ I. Since A ∈ DI, we conclude that
{A, {B,C}} ∈ I. Similarly, {B, {C,A}} ∈ I. Therefore {{A,B},C} ∈ I, whence {A,B} ∈
DI.

Proposition 4 Let the ideal I be generated by the generators Fi . Then H ∈ DI if and only if
{H, Fi} ∈ I.

Proof {H,AFi} = {H,A}Fi + {H, Fi}A. If {H, Fi} ∈ I, we get {H,AFi} ∈ I, since Fi ∈ I.

Proposition 5 Let the ideal I be generated by the generators Fi. Then the function F =∑
AiFi belongs to the Diracian of I if and only if

∑
Ai{Fi , F j} ∈ I for every j.

Proof According to Proposition 4, we should verify the conditions {F, F j} ∈ I. But we
have

{F, F j} =
∑

Ai{Fi, F j} +
∑

Fi{Ai , F j}

and the last term belongs to I.
In the three examples that follow we consider the ideals in the C-algebra of the germs

of holomorphic functions of 4 coordinates x = q1, y = q2, u = p1, v = p2 at the origin
of the space C4 equipped with the symplectic srtucture dp1 ∧ dq1 + dp2 ∧ dq2. The word
“generated” means “generated as a module over this algebra”.

Example 1 Consider the ideal I of the functions, vanishing on the semicubical curve A2,0,
defined by the equations u2 = x3, y = v = 0. It is generated by the three functions
(H = u2 − x3, y, v).

Proposition 6 The Diracian DI is generated by (H, v2, uv, y2).

Proof Let F = AH + Bv + C y ∈ DI. Since {H, v} = {H, y} = 0, {v, y} = 1, the cirterion
of Proposition 5 takes the form B ∈ I, C ∈ I, whence F = AH + Kv2 + Lvy + M y2, as
required.

Example 2 Let I be the ideal of functions vanishing on the semicubical parabola x3 = y2,
u = v = 0. Then I is generated by three functions (H = y2 − x3, u, v).

Proposition 7 The Diracian DI is generated by I2 and two more functions

He = 2xu + 3yv, Hh = 2yu + 3x2v

(and hence by (H2,He,Hh, u2, uv, v2)).
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Proof Since I2 belongs to DI, we may replace all the functions by linear (inhomogeneous)
functions in u and v. A linear homogeneous function B(x, y)u+C(x, y)v may be interpreted
as a vector field ξ = B ∂

∂x + C ∂
∂y on the plane (x, y) (considering u and v as the coordinates

of the cotangent vector udx + vdy).
Applying the Proposition 5 to F = AH + Bu + Cv, we first find the Poisson brackets

{H, u} = 3x2, {H, v} = −2y, {u, v} = 0.

Then we rewrite the criteria of Proposition 5

−3x2B + 2yC ∈ I, 3x2A ∈ I, −2yA ∈ I,

(where the coefficients A, B, C depend only on x and y and I denotes the ideal generated by
H in the algebra of functions of x and y).

The last conditions imply A ∈ I, AH ∈ I2. The first condition has the form ξH ∈ I,
which means that the vector field ξ is tangent to the curve H = 0.

Two tangent fields are the Euler quasihomogeneous field ξe = 2x ∂
∂x + 3y ∂

∂y and the

Hamilton field ξh = 2y ∂
∂x + 3x2 ∂

∂y . All other solutions are their combinations ξ =
α(x, y)ξe + β(x, y)ξh.

Indeed, ξeH = 6H, hence, choosing α, we may obtain any value of the coefficient G in
αξeH = GH ∈ I. To find all the solutions ξ of the equation ξH = GH, it remains to solve in
B0 and C0 the linear homogeneous equation ξ0H = 0, which has the form−3x2B0+2yC0 =
0. We obtain B0 = 2yβ and C0 = 3x2β. Therefore ξ0 = βξh, ξ = αξe + βξh.

Example 3 Let I be the ideal of functions vanishing on the semicubically singular curve
x3 = y2, u = xy, v = 0. I is generated by three functions (H = y2 − x3, L = u− xy, v).

Proposition 8 The Diracian DI is generated by I2 and by two more functions

He = 2x2u + 3xyv + a, Hh = 2yu + 3x2v + b,

where a = y3 − 3x3 y, b = −x4 − x2 y.

I shall only use that He,Hh ∈ DI. This fact follows from the vanishing of the Poisson
brackets of these functions with H, L and v (according to Proposition 4).

Remark The contact Hamilton functions are sections of the line bundle defined by the
contact structure rather than functions. Therefore the contact Diracians are submodules
rather than ideals.

In the standard contact space one may identify contact Hamilton functions with ordi-
nary functions (see [5]). The contactian CI of an ideal of such functions consists of those
functions belonging to I whose contact flows preserve I. This ideal, intermediate betwen I
and I2, is a Lie subalgebra with respect to the contact Poisson brackets {., }C (see [5]).

The condition K ∈ CI for a function K of an ideal generated by Ai may be written in
the form {K,Ai}C ∈ I.
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6 Semicubical Nonintegrable Curves

The tangent 2-plane of a semicubical singularity of a curve in a contact space is generically
transversal to the contact hyperplane at the singular point. Otherwise it belongs to the
contact hyperplane.

Case 1 Let it be transversal. Then the smooth 2-surface, containing the curve, can be
transformed into the coordinate (z, q1)-plane by a contactomorphism (according to the
Darboux-Givental theorem, see [8]).

The structure, induced by the contact structure on this plane is the fibration dz = 0.
The fibered diffeomorphisms of the plane are extendable to contactomorphisms.

The normal forms of the semicubical singularities of curves in a fibered plane have been
obtained already in [6], [7] (using the “invariants convolution” operation for the Coxeter
group A2).

These normal forms are q2 = z3 (the generic case—the fiber direction dz = 0 is not
tangent to the curve at the origin) and z3 = q2 (the degenerate case—the fiber is tangent to
the curve).

We thus get the cases a0 and b1 of Theorem 2.

Remark These two normal forms are also related to the Coxeter groups D5 and E7 corre-
sponding to the functions z(q2 − z3) and z(q3 − z2).

Case 2 The tangent 2-plane of the curve at the singular point belongs to the contact hy-
perplane.

Project the curve to the symplectic space along the z-direction. Reduce the resulting
A2-curve to one of the three normal forms (c, e, f ) of Theorem 2 by a symplectomorphism
(as in Section 4). Lifting it to a contactomorphism, we get z = h(s), where h(s) = cs4 + · · ·
(since the tangent 2-space belongs to the contact hyperplane).

Suppose that c 
= 0 (as it is generically). Rescaling the coordinates, we can construct a
contactomorphism and a change of the coordinate s such that c will be equal to 1.

Theorem 3 (c,e,f) Every curve, defined by the above projection c, e or f and by h = s4 + · · · ,
is contactomorphic to the curve with the same projection to the symplectic space, for which
h = s4.

These three theorems are proved in Sections 7, 8 and 9.
Suppose now that h(s) = o(s4) (cases d, h, j of Theorem 2).

Theorem 4 No curve, defined in contact 3-space with the contact structure dz + pdq = 0 by
the equations (q = s2, p = s3, z = cs5) is simple: c is a modulus.

Proof The contact vector field defined by the contact Hamilton function K, has the form
(see [5]):

ṗ = −Kq + pKz, q̇ = Kp, ż = K − pKp.

The existence of the required equivalence would imply the solvability of the homological
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equations 


2su(s) + Kp = 0,

3s2u(s)− Kq + pKz = 0,

5cs4u(s) + K − pKp = s5

in the unknowns u and K (representing the deformations of the independent and depen-
dent variables).

The function K should here be evaluated at the point (q = s2, p = s3, z = cz5). One
also should have u(0) = K(0) = Kp(0) = Kq(0) = 0 (the singular point remaining at the
origin).

These linear equations are contradictory. Indeed, they are quasihomogeneous (for the
weights of variables deg s = 1, deg q = 2, deg p = 3, deg z = 5). Equating terms of
degrees 2, 3 and 5 in the first, second and third equation, we get for the coefficients of the
Taylor series u(s) = as+ · · · , K = Apq +Bz + · · · the relations 2a +A = 0, 3a +(B−A) = 0,
5ca + Bc = 1, which are contradictory.

Corollary There are no simple singularities among the semicubical curves with h(s) = o(s4).

Proof Consider the class (d) of curves, whose projection to the symplectic plane is of type
c but for which h(s) = cs5+ (higher order terms).

There are no simple curves is this class, since the contradiction, described above, remains
when the higher order terms are taken into account.

But all the semicubical singularities for which h(s) = o(s4) are adjacent to the curves of
class (d) (since classes e and f are adjacent to c). Whence the corollary.

Remark The result remains true in any dimension, since the nonsimple curves of class
(d) remain nonsimple in any dimension (which follows, for instance, from the Darboux-
Givental theorem but can also be deduced from the calculations above).

7 Proof of Theorem 3c

We need the following three statements on the representations of holomorphic functions
by combinations of other holomorphic functions. They remain true if the given functions
depend holomorphically on the parameters (of which the representation coefficients will
then depend holomorphically).

1o If A(s2, s3) = 0, one has A(x, y) = B(x, y)(y2 − x3).

Indeed, one always can write A = a(x) + yb(x) + B(x, y)(y2 − x3), and if A(s2, s3) = 0
one should have a ≡ b ≡ 0.

2o Any function s2 f (s) is the value of a holomorphic function F(s2, s3).

Indeed, if f (s) = u(s2) + sv(s2), it suffices to take F = xu(s) + yv(x).

3o Lemma If R(s2, s3) = sa
(
c + sr(s)

)
, c 
= 0, and M(s2, s3) = sa+2m(s), then there exists a

representation
M(x, y) = B(x, y)R(x, y) + C(x, y)(y2 − x3).
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Indeed, s2m(s)
(

c − sr(s)
)
= F(s2, s3), c2 − s2r2(s) = G(s2, s3), G(0) 
= 0, according

to 2o. For B = F/G one gets (M − BR)(s2, s3) = 0 and the existence of C follows from 1o.
Lemma 3o is proved.

Now consider the curve Γ in C3 with the contact structure dz + pdq = 0 (note the sign),
defined by the equations H(p, q) = 0, z = F(p, q) (we are mostly interested in the case
H = p2 − q3, F = q2, of the standard curve (q = s2, p = s3, z = s4)).

The contact Hamiltonian K defines the contact vector field (see [5, appendix 4], for the
choice of the sign of z):

dp

dt
= −Kq + pKz,

dq

dt
= Kp,

dz

dt
= K − pKp.(1)

We choose K = A(p, q) +
(

z − F(p, q)
)

B(p, q). Denote by P(t), Q(t), Z(t) the motion,
starting at t = 0, from a point (p, q, z) of Γ, defined by the contact Hamiltonian K.

Define the initial velocity Ḣ = ( d
dt )t=0

(
H
(
P(t),Q(t)

))
. We find from (1)

Ḣ = {A,H} + B({H, F} + pHp),(2)

where {I, J} = Ip Jq − Iq Jp is the Poisson bracket of I and J.
Indeed, on Γ we have

K = A, Kp = Ap − FpB, Kq = Aq − FqB, Kz = B,(3)

therefore Hp ṗ + Hqq̇ = Hp(−Aq + FqB + pB) + Hq(Ap − FqB).
Now suppose, that Ḣ = 0 on Γ. Write the vertical component of the moving curve as

Z(t) = F
(

P(t),Q(t), t
)

and calculate the initial velocity of the change of the function F:

∂F

∂t
=

(
∂

∂t

)
t=0

F(P,Q, t).

We get from (1) and (3) the formula

∂F

∂t
= {F,A} + A− pAp.(4)

Indeed, ż = Fp ṗ + Fqq̇ + ∂F
∂t , hence

∂F

∂t
= ż − Fp ṗ − Fqq̇ = A− pAp + pFpB− Fp(−Aq + FqB + pB)− Fq(Ap − FpB),

as required.
To kill the perturbation m in the equation of the curve

q = s2, p = q3, z = s4 + m(s), m = s5n(s),

using the homotopy method, we shall construct a (time-dependent) contact Hamilton
function K = A + (z − F)B, where, at moment t , F(s2, s3) = s4 + tm(s) and where the
coefficients A and B verify:
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(a) the condition Ḣ = 0 on Γt of the preservation of the semicubical projection of the
curve to the symplectic plane,

(b) the homological equation ∂F
∂t = m on Γt ,

(c) the origin fixing conditions A(0) = Ap(0) = Aq(0) = B(0) = 0.

The conditions (b) and (a) can be written as equations

{F,A} + A− pAp = m(s),(b)

{A,H} + B({H, F} + pHp) = 0(a)

along semicubical parabola q = s2, p = s3.
To solve the linear system (b), (a) in the unknowns A and B, consider the quasihomoge-

neous grading deg q = 2, deg p = 3, deg H = 6. First we find the solutions, verifying (a)
exactly but (b) only approximately:

{F,A} + A− pAp = sn mod sn+1, n ≥ 5.(b ′)

We shall find a solution of this equation of quasihomogeneous degree n + 1. Since the
equation (b) is linear, we thus reduce the equation (b) to a similar equation with a high
order zero of the right hand side m, which we shall solve explicitly.

To find the solution of the approximating equation (b ′), we replace F by its lower order
part q2 (which is also the unperturbed F). The lowest order term of the left hand side is
−2qAp. To make it equal to sn we choose A = p2qa−1/4 if n is odd and A = pqb−1/2 if n is
even (deg A = n + 1 ≥ 6). We thus get the required solution A of equation (b ′).

Choose B verifying the condition (a), which we can write in the form

M = BR + CH, M = {H,A}, R = {H, F} + pHp.

For F = q2 we get R = 4s5 + O(s6). The higher order terms in F do not change the
principal part 4s5 of R. We also have, for the quasihomogeneous A, that

deg M ≤ deg H + deg A− deg p − deg q = deg A + 1 ≥ 7.

Equation (a) is thus solvable in B according to Lemma 3o above.
Suppose now that the right hand side m of equation (b) is divisible by s7. In this case we

put A = f H and get for f the equation − f R = m along the semicubical parabola. This
equation is solvable according to Lemma 3o. Now {A,H} = 0 along the parabola, therefore
equation (a) is satisfied for B = 0.

We have thus solved the homological equation for any m divisible by s5. The flow of the
contact vector field that we have constructed sends the nonperturbed curve (z = s4) onto
the perturbed one

(
z = s4 + m(s)

)
.

8 Proof of Theorem 3e

Consider the curve Γ (x = s2, y = s3, u = v = 0) in the space C4 equipped with the
Darboux coordinates q1 = x, q2 = y, p1 = u, p2 = v. We shall reduce to the contact
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normal form the curve in the 5-space, equipped with the contact structure dz + pdq = 0,
whose projection to C4 is Γ and for which z = s4 + m(s), m = s5u(s).

We should construct the contact homotopy over Γ of the curves z = F(x, y, t) = x2 +
tM(x, y), M(s2, s3) = m(s). Our contact time-dependent Hamilton function K will not
depend on z. To preserve the projection Γ we shall choose K in the Diracian of the ideal I
of the curve Γ.

The elements of I2 are not moving the curve. Hence we try

K = f He + gHh, He = 2xu + 3yv, Hh = 2yu + 3x2v

(according to Example 2 of Section 5), where f = f (x, y), g = g(x, y). This choice implies
Ḣ = 0 on Γ. The velocity of the deformation of function F, defining the moving curve, is
calculated as in equation (4) of Section 7. Taking into account that we have now K = A,
B = 0, A = pAp, He = Hh = 0 on Γ, we get along Γ

∂F

∂t
= f {F,He} + g{F,Hh}.

For the unperturbed curve F0 = x2, we find {F0,He} = −4x2 and {F0,Hh} = −4xy.
Therefore, for the perturbed curve, we get along Γ at any moment

{F,He} = −4s4 + · · · , {F,Hh} = −4s5 + · · · ,

where the dots mean higher order terms. Now it is easy to solve the homological equation
in f , g

f {F,He} + g{F,Hh} = m(s), m = s5n(s).

We choose g = −n(0)/4 and get for f the equation f (−4s4 +· · · ) = s6k(s) alongΓ, solvable
in f (x, y) according to Lemma 3o of Section 7.

The contact flow defined by contact Hamiltonian that we have constructed sends the
nonperturbed curve onto the perturbed one.

9 Proof of Theorem 3f

Now Γ is defined in C4 by the equations x = s2, y = s3, u = s5, v = 0. Choose H = y2−x3,
L = u − xy. As in Section 8, use the generators of the D(I)/I2 provided by Example 3 of
Section 5:

K = f (x, y)He + g(x, y)Hh,

He = 2x2u + 3xyv + a, Hh = 2yu + 3x2v + b,

a = y3 − 3x3 y, b = −x4 − xy2.

Then along Γ we have

H = L = He = Hh = {H,He} = {H,Hh} = {L,He} = {L,Hh} = 0.
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We also find K − pKp = a f + bg, and, along Γ, a = −2s9, b = −2s8.
Denote the coordinate that we wish to normalise by the homotopy method as z =

F(x, y, t) = x2 + tM(x, y), M(s2, s3) = s5n(s).
The homological equation {F,K} + K − pKp = M along Γ takes the form

f ({F,He} + a) + g({F,Hh} + b) = m(s), m = s5n(s).(∗)

For the unperturbed curve F0 = x2 we get {F0,He} = −4x3, {F0,Hh} = −4xy. Therefore
along Γ we have

{F,He} + a = −4s6 mod s7, {F,Hh} + b = −4s5 mod s6.

To solve the homological equation (∗) we first solve it mod s6, choosing f = 0, g =
−n(0)/4. Then we solve mod s7 the equation with the right hand side s6k(s), choosing
g = 0, f = −k(0)/4.

Finally, to solve the remaining equation with right hand side s7l(s) we choose f = 0 and
find g(x, y) using Lemma 3o of Section 7.

We thus obtain the required contact flow, sending the nonperturbed curve onto the
perturbed one.
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