By R. E. ANDERSON, M.A.

FIGURE 27.

1. Let AB be the half-side of any *n*-gon, OB its in-radius (r), and OA its circum-radius (R). Draw OA₁ to bisect \angle AOB and AA₁C \perp to it meeting OB in C. Then A₁B₁|| to AB is the half-side of a 2*n*-gon having the same perimeter as the *n*-gon, OB₁ its inradius (r_1) , and OA₁ its circum-radius (R₁).

Since B_1 bisects BC and $\triangle OB_1A_1$ is similar to OA_1C

and
$$OA_1^2 = OB_1 \cdot OC = OB_1 \cdot OA, \quad \therefore \quad 2r_1 = r + \mathbf{R}$$

 $OA_1^2 = OB_1 \cdot OC = OB_1 \cdot OA, \quad \therefore \quad \mathbf{R}_1^2 = r_1 \mathbf{R}$ and \therefore

$$2r_2 = r_1 + R_1$$
, $2r_3 = r_2 + R_2$, $2r_4 = \text{etc.}$, $2r_m = r_{m-1} + R_{m-1}$... (a)

$$R_2^2 = r_2 R_1$$
, $R_3^2 = r_2 R_2$, $R_4^2 = etc.$, $R_m^2 = r_m R_{m-1}$, ... (b)

where $R_2 = OA_2 = OC_2$, $R_3 = OA_3 = OC_3$, etc., $r_2 = OB_3$, $r_3 = OB_3$, etc., the new points being got by drawing $A_1A_2C_1$, $A_2A_3C_2$, etc., respectively \perp to the successive bisectors OA_2 , OA_3 , etc., and A_2B_2 , A_3B_3 , etc., $\parallel AB$ or A_1B_1 .

Thus, given r and R, we find $r_m (= OB_m)$ and $R_m (= OC_m)$ the radii of a polygon of $2^m n$ sides which has the same perimeter as the original *n*-gon. The diagram shows (1) that as *m* increases the two points B_m and C_m approach nearer and nearer to an intermediate point K; and (2) that the line OK(=k) is the radius of a circle having also the perimeter in question.

Choosing the simplest case, n=2, then if the common peri-

meter = 2 units, OB(=r) vanishes, $R = OA = AB = \frac{1}{2}$ and Fig. 27 is modified to Fig. 28. Also, circumference of the circle = $2 = 2\pi k$

$$\therefore k = \frac{1}{\pi}. \text{ Then, applying (a) and (b), we have} \\ r_3 = \cdot 314, 208, 718, 257, 8(7) \\ r_4 = \cdot 317, 286, 574, 613, \ldots \\ r_5 = \cdot 318, 054, 181, 6(5) \\ R_6 = \cdot 318, 437, 75 \\ \ldots \\ \end{cases}, \dots (c)$$

Thus for the 2^5 . 2-gon the radii agree to only 3 places. When m is large the following results will greatly reduce the labour of finding k.

2. OA_2 bisects $\angle A_1OC_1$, $\therefore A_1C_1$ bisects $\angle CA_1B_1$, and $CC_1 > 2B_1B_2$. Thus $BB_1 > 4B_1B_2$, $B_1B_2 > 4B_2B_3$, etc.,

and
$$BB_1 + B_1B_2 + \text{ etc.}, > 4(B_1B_2 + B_2B_3 + \text{ etc.}),$$

i.e.

$$BK > 4B_1K$$
 or $k - r > 4(k - r_1)$

 \therefore finally $k - r_{m-1} > 4(k - r_m)$ and for a close value

$$r_m < k < \frac{1}{3}(4r_m - r_{m-1}), \dots \dots \dots \dots (d)$$

. ...

Thus by (c) $k = \frac{1}{3}(4r_6 - r_5) = \frac{1}{3}(2R_5 + r_5) = 318, 309, 89.$

FIGURE 28.

To find a similar relation between the circum-radii I draw $A_2D \parallel A_1C$ and A_2E bisecting $\angle C_1A_2D$. The four adjacent acute angles at A₂ are equal \therefore C₂C₁ < C₁E < ED, CD or C₁D > 2C₁C₂. Thus $CC_1 > 4C_1C_2$, $C_1C_2 > 4C_2C_3$, etc., and, as before, CK or $R-k>4C_1K$ or $4(R_1-k)$. Finally $R_{m-1}-k>4(R_m-k)$ and for a close value

$$R_m > k > \frac{1}{3}(4R_m - R_{m-1}), \dots \dots \dots (e)$$

Thus by (c) without using r_6

$$\frac{1}{3}(4R_{5}-R_{4}) = 318, 309, 74, \frac{1}{3}(4r_{5}-r_{4}) = 318, 310, 05$$

·••

$$k = arith. mean = \cdot 318, 309, 89 as above.$$

When r_m and R_m agree to p places p-1 more can be found correctly by treating the new circum-radii as if they were in-radii.

Hence a third method of contraction when k has to be found to a large number of decimals. Calling the radii (after R_m) $a_1, a_2, a_3...a_r$ we shall have

$$2a_{3} = a_{1} + a_{2}$$

$$2a_{4} = a_{2} + a_{3}$$
etc.
$$2a_{x} = a_{x-2} + a_{x-1}$$

$$\begin{array}{c} \therefore & \text{ adding these } x - 2 \text{ equations we get} \\ a_{1} + 2a_{2} = 2a_{x} + a_{x-1} \\ & = 3a_{x} \quad \text{very nearly} \\ & \vdots \quad k = \frac{1}{3}(r_{m} + 2R_{m}), \quad \dots \quad \dots \quad \text{ $`(f)$} \end{array}$$

without finding the x-3 intervening terms.

3. A fourth contraction may be derived from (d), thus:

$$\begin{array}{ll} 4(k-r_m) & < k - r_{m-1} & \text{gives} & u = \frac{1}{3}(4r_m - r_{m-1}) \\ 4(k-r_{m-1}) < k - r_{m-2} & , & v = \frac{1}{3}(4r_{m-1} - r_{m-2}) \end{array}$$

and

and
$$16(k-u) < k-v$$

... for a close value $k = \frac{1}{15}(16u - v)$, (g)

Thus, using (c)

$$u = \frac{1}{3}(4r_5 - r_4) = \cdot 318, \ 310, \ 050, \ 7$$
$$v = \frac{1}{3}(4r_4 - r_3) = \cdot 318, \ 312, \ 526, \ 7$$
$$\therefore \text{ by } (g)$$
$$k = \cdot 318, \ 309, \ 886, \ \text{taking 9 places };$$
whence
$$\frac{1}{k} = \pi = 3 \cdot 141, \ 592, \ 65 \ (54) \text{ by division.}$$

It may be noted that if in Fig. 28 a quadrant BKMN be drawn its arc is exactly measured by the line AB, and its area is exactly measured by the rectangle BN. BB₁.

^{*} This result is given by Gergonne (Annales, Vol. VI.) with a more complicated proof, and recently by MM. Rouché and Comberousse with a different proof still more intricate (Traité de Géom., 6th ed., 1891). For knowledge of the latter I am indebted to John S. Mackay, LL.D.