Isoperimetric $2^{m} n$-gons applied to flnding $\frac{1}{\pi}$ concisely by a new construction.

By R. E. Anderson, M.A.

Fiaure 27.

1. Let AB be the half-side of any n-gon, OB its in-radius (r), and OA its circum-radius (R). Draw $O A A_{1}$ to bisect $\angle A O B$ and $A A_{1} C \perp$ to it meeting $O B$ in C. Then $A_{1} B_{1} \|$ to $A B$ is the half-side of a $2 n$-gon having the same perimeter as the n-gon, $O B_{1}$ its inradius (r_{1}), and OA_{1} its circum-radius (\mathbf{R}_{1}).

Since B_{1} bisects $B C$ and $\triangle O B_{1} A_{1}$ is similar to $O A_{1} C$
and

$$
\left.\begin{array}{ll}
2 \mathrm{OB}_{1}=\mathrm{OB}+\mathrm{OC}=\mathrm{OB}+\mathrm{OA}, & \therefore 2 r_{1}=r+\mathrm{R} \\
\mathrm{OA}_{1}{ }^{2}=\mathrm{OB}_{1} . \mathrm{OC}=\mathrm{OB}_{1} . \mathrm{OA}, & \therefore \mathrm{R}_{1}{ }^{2}=r_{1} \mathbf{R}
\end{array}\right\} \quad \text { and } \therefore
$$

$2 r_{2}=r_{1}+\mathrm{R}_{1}, \quad 2 r_{3}=r_{2}+\mathrm{R}_{2}, \quad 2 r_{4}=$ etc., $2 r_{m}=r_{m-1}+\mathrm{R}_{m-1} \quad \ldots \quad$ (a)
$\mathrm{R}_{2}{ }^{2}=r_{2} \mathrm{R}_{1}, \quad \mathrm{R}_{3}{ }^{2}=r_{3} \mathrm{R}_{2}, \quad \mathrm{R}_{4}{ }^{2}=$ etc. $, \quad \mathrm{R}_{m}{ }^{2}=r_{m} \mathrm{R}_{m-1}, \quad \ldots \quad$ (b)
where $\mathrm{R}_{2}=\mathrm{OA}_{2}=\mathrm{OC}_{2} \mathrm{R}_{3}=\mathrm{OA}_{3}=\mathrm{OC}_{3}$, etc., $r_{2}=\mathrm{OB}_{2}, r_{3}=\mathrm{OB}_{3}$, etc., the new points being got by drawing $A_{1} A_{2} C_{1}, A_{2} A_{3} C_{2}$, etc., respectively \perp to the successive bisectors $\mathrm{OA}_{2}, \mathrm{OA}_{3}$, etc., and $\mathrm{A}_{2} \mathrm{~B}_{2}, \mathrm{~A}_{3} \mathrm{~B}_{3}$, etc., $\| A B$ or $A_{1} B_{1}$.

Thus, given r and R , we find $r_{m}\left(=\mathrm{OB}_{m}\right)$ and $\mathrm{R}_{m}\left(=\mathrm{OC}_{m}\right)$ the radii of a polygon of $2^{m} n$ sides which has the same perimeter as the original n-gon. The diagram shows (1) that as m increases the two points B_{m} and C_{m} approach nearer and nearer to an intermediate point K ; and (2) that the line $\mathrm{OK}(=k)$ is the radius of a circle having also the perimeter in question.

Choosing the simplest case, $n=2$, then if the common peri-
meter $=2$ units, $\mathrm{OB}(=r)$ vanishes, $\mathrm{K}=\mathrm{OA}=\mathrm{AB}=\frac{1}{2}$ and Fig. 27 is modified to Fig. 28. Also, circumference of the circle $=2=2 \pi k$ $\therefore k=\frac{1}{\pi}$. Then, applying (a) and (b), we have

$$
\left.\begin{array}{ll}
r_{3}=\cdot 314,208,718,257,8(7) & \mathrm{R}_{3}=\cdot 320,364,430,968 \\
r_{4}=\cdot 317,286,574,613, \ldots & \mathrm{R}_{4}=\cdot 318,821,788,7 \ldots \tag{c}\\
r_{5}=\cdot 318,054,181,6(5) & \mathrm{R}_{5}=\cdot 318,437,75 \quad \ldots
\end{array}\right\}
$$

Thus for the $2^{5} .2$-gon the radii agree to only 3 places. When m is large the following results will greatly reduce the labour of finding k.
2. OA_{2} bisects $\angle \mathrm{A}_{1} \mathrm{OC}_{1}, \quad \therefore \mathrm{~A}_{1} \mathrm{C}_{1}$ bisects $\angle \mathrm{CA}_{1} \mathrm{~B}_{1}$, and $\mathrm{CC}_{1}>2 \mathrm{~B}_{1} \mathrm{~B}_{2}$. Thus $\mathrm{BB}_{1}>4 \mathrm{~B}_{1} \mathrm{~B}_{2}, \mathrm{~B}_{1} \mathrm{~B}_{2}>4 \mathrm{~B}_{2} \mathrm{~B}_{3}$, etc.,

$$
\text { and } \mathrm{BB}_{1}+\mathrm{B}_{1} \mathrm{~B}_{2}+\text { etc., }>4\left(\mathrm{~B}_{1} \mathrm{~B}_{2}+\mathrm{B}_{2} B_{3}+\text { etc. }\right)
$$

i.e.

$$
\mathrm{BK}>4 \mathrm{~B}_{1} \mathrm{~K} \text { or } k-r>4\left(k-r_{1}\right)
$$

\therefore finally $k-r_{m-1}>4\left(k-r_{m}\right)$ and for a close value

$$
\begin{equation*}
r_{m}<k<\frac{1}{3}\left(4 r_{m}-r_{m-1}\right), \ldots \tag{d}
\end{equation*}
$$

Thus by (c) $k==\frac{1}{3}\left(4 r_{6}-r_{5}\right)=\frac{1}{3}\left(2 \mathrm{R}_{5}+r_{5}\right)=318,309,89$.

Figure 28.

To find a similar relation between the circum-radii I draw $\mathrm{A}_{2} \mathrm{D} \| \mathrm{A}_{1} \mathrm{C}$ and $\mathrm{A}_{2} \mathrm{E}$ bisecting $\angle \mathrm{C}_{1} \mathrm{~A}_{2} \mathrm{D}$. The four adjacent acute angles at A_{2} are equal $\therefore \mathrm{C}_{2} \mathrm{C}_{1}<\mathrm{C}_{1} \mathrm{E}<\mathrm{ED}, \mathrm{OD}$ or $\mathrm{C}_{1} \mathrm{D}>2 \mathrm{C}_{1} \mathrm{C}_{2}$. Thus $\quad C_{1}>4 \mathrm{C}_{1} \mathrm{C}_{2}, \mathrm{C}_{1} \mathrm{C}_{2}>4 \mathrm{C}_{2} \mathrm{C}_{3}$, etc., and, as before, CK or $R-k>4 \mathrm{C}_{1} \mathrm{~K}$ or $4\left(\mathrm{R}_{1}-k\right)$. Finally $\mathrm{R}_{m-1}-k>4\left(\mathrm{R}_{m}-k\right)$ and for a close value

$$
\mathbf{R}_{m}>k>\frac{1}{3}\left(4 \mathrm{R}_{m}-\mathrm{R}_{m-1}\right), \ldots \quad \ldots \quad \ldots \text { (e) }
$$

Thus by (c) without using r_{6}

$$
\frac{1}{3}\left(4 R_{5}-R_{4}\right)=\cdot 318,309,74, \frac{1}{3}\left(4 r_{5}-r_{4}\right)=\cdot 318,310,05
$$

$$
\therefore \quad k=\text { arith. mean }=\cdot 318,309,89 \text { as above. }
$$

When r_{m} and R_{m} agree to p places $p-1$ more can be found correctly by treating the new circum-radii as if they were in-radii.

Hence a third method of contraction when k has to be found to a large number of decimals. Calling the radii (after R_{m}) $a_{1}, a_{2}, a_{3} \ldots a_{x}$ we shall have

$$
\begin{gathered}
\left.\begin{array}{c}
2 a_{3}=a_{1}+a_{2} \\
2 a_{4}=a_{2}+a_{3} \\
\text { etc. } \\
2 a_{x}=a_{x-2}+a_{x-1}
\end{array}\right\} \quad \begin{array}{r}
\therefore \text { adding these } x-2 \text { equations we get } \\
a_{1}+2 a_{2}=2 a_{x}+a_{x-1} \\
=3 a_{x} \quad \text { very nearly }
\end{array} \\
\therefore k=\frac{1}{3}\left(r_{m}+2 \mathrm{R}_{m}\right), \quad \ldots \quad \ldots
\end{gathered} \quad \ldots{ }^{*}(f)
$$

without finding the $x-3$ intervening terms.
3. A fourth contraction may be derived from (d), thus:

$$
\begin{array}{llll}
4\left(k-r_{m}\right)<k-r_{m-1} & \text { gives } & u=\frac{1}{3}\left(4 r_{m}-r_{m-1}\right) \\
4\left(k-r_{m-1}\right)<k-r_{m-2} & \quad, & v=\frac{1}{3}\left(4 r_{m-1}-r_{m-2}\right)
\end{array}
$$

and

$$
16(k-u)<k-v
$$

\therefore for a close value $k=\frac{1}{15}(16 u-v)$, (g)
Thus, using (c)

$$
\begin{aligned}
u & =\frac{1}{3}\left(4 r_{5}-r_{4}\right) \\
v & =\cdot 318,310,050,7 \\
3 & \left(4 r_{4}-r_{3}\right)
\end{aligned}=\cdot 318,312,526,76
$$

\therefore by (g)

$$
k=\cdot 318,309,886, \text { taking } 9 \text { places ; }
$$

whence $\quad \frac{1}{k}=\pi=3 \cdot 141,592,65(54)$ by division.
It may be noted that if in Fig. 28 a quadrant BKMN be drawn its arc is exactly measured by the line $A B$, and its area is exactly measured by the rectangle $\mathrm{BN} . \mathrm{BB}_{1}$.

[^0]
[^0]: * This result is given by Gergonne (Annales, Vol. VI.) with a more complicated proof, and recently by MM. Rouché and Comberousse with a different proof still more intricate (Traité de Géom., 6th ed., 1891). For knowledge of the latter I am indebted to John S. Mackay, LL. D.

