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Tensor Tomography

This chapter solves the tensor tomography problem for simple surfaces
following Paternain et al. (2013). We shall in fact prove a stronger result
in which the absence of conjugate points is replaced by the assumption that
I ∗

0 is surjective. In order to do this we introduce the notion of holomorphic
integrating factors and prove their existence, which will be important in later
chapters.

10.1 Holomorphic Integrating Factors

Let (M,g) be a compact non-trapping surface having strictly convex boundary,
and consider the geodesic X-ray transform Im that acts on symmetric m-tensor
fields. Recall that the solenoidal injectivity of Im is equivalent with a unique-
ness statement for the transport equation (see Proposition 6.4.4). We will focus
on proving this uniqueness statement.

Suppose that u ∈ C∞(SM) solves

Xu = −f in SM, u|∂SM = 0, (10.1)

where f has degree m. For simplicity, assume that f ∈ �m. By Lemma 6.1.3,
in the special coordinates (x,θ) on SM we may write

f (x,θ) = f̃ (x)eimθ .

Recall that we already know how to deal with the case where m = 0 (this is
the injectivity of I0 proved in Theorem 4.4.1). Let us try to reduce to this case
simply by multiplying the equation (10.1) by e−imθ . This gives a new transport
equation for e−imθu:

(X + a)(e−imθu) = −f̃ (x), e−imθu|∂SM = 0, (10.2)
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234 Tensor Tomography

where a := −eimθX(e−imθ ). Note that a ∈ �−1 ⊕ �1, since X = η+ + η−
and

eimθη±(e−imθ ) ∈ �±1.

We have now reduced the equation (10.1), where the right-hand side has
degree m, to a new transport equation (10.2) where the right-hand side
has degree 0. However, the price to pay is that the new equation has a nontrivial
attenuation factor a. One could ask if there is another reduction that would
remove this factor. The next example gives such a reduction in elementary
ODE theory.

Example 10.1.1 (Integrating factor) Consider the ODE

u′(t) + a(t)u(t) = f (t), u(0) = 0.

The standard method for solving this ODE is to introduce the integrating factor
w(t) = ∫ t

0 a(s) ds, so that the equation is equivalent with(
ewu

)′
(t) = (

ewf
)
(t),

(
ewu

)
(0) = 0.

Using an integrating factor has removed the zero-order term from the equation,
which can now be solved just by integration. The solution is

u(t) = e−w(t)

∫ t

0

(
ewf

)
(s) ds.

In geodesic X-ray transform problems, we are often dealing with equations
such as

Xu + au = −f in SM, u|∂SM = 0,

where a ∈ C∞(SM) is an attenuation factor and f ∈ C∞(SM). We would
like to use an integrating factor w ∈ C∞(SM) satisfying Xw = a in SM ,
which reduces the equation to

X
(
ewu

) = −ewf in SM, ewu|∂SM = 0.

This can always be done, for instance by choosing w = u−a (which may not be
smooth at ∂0SM). However, in many applications one has special structure, in
particular, f often has finite degree (e.g. f = f̃ (x) as in (10.2)). The problem
with applying an arbitrary integrating factor is that multiplication by ew may
destroy this special structure. For example, if f = f̃ (x), then ewf could have
Fourier modes of all degrees.

In this section we prove an important technical result about the existence
of a certain solution of the transport equation Xw = a when a ∈ �−1 ⊕ �1

(i.e. a represents a 1-form on M), where w is fibrewise holomorphic in the
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10.1 Holomorphic Integrating Factors 235

sense of Definition 6.1.14. This provides some control on the Fourier support
of ewf ; e.g. if f = f̃ (x), then ewf is at least holomorphic. This result, which
goes back to Salo and Uhlmann (2011) in the case of simple surfaces with
a ∈ �0, will unlock the solution to several geometric inverse problems in two
dimensions.

Proposition 10.1.2 (Holomorphic integrating factors, part I) Let (M,g) be a
compact non-trapping surface with strictly convex boundary. Assume that I ∗

0
is surjective. Given a−1 +a1 ∈ �−1 ⊕�1, there exists w ∈ C∞(SM) such that
w is holomorphic and Xw = a−1 + a1. Similarly there exists w̃ ∈ C∞(SM)

such that w̃ is anti-holomorphic and Xw̃ = a−1 + a1.

Proof We do the proof for w holomorphic; the proof for w̃ anti-holomorphic
is analogous (or can be obtained by conjugation).

First we note that one can find f0 ∈ C∞(M) satisfying η+f0 = −a1.
Indeed, by Remark 3.4.17 M is diffeomorphic to the closed unit disk D and
there are global special coordinates (x,θ) in SM . By Lemma 6.1.8 one has in
these coordinates

η+f0 = e−λ∂z(f0)e
iθ, a1 = ã1(x1,x2)e

iθ .

Thus it is enough to find f0 ∈ C∞(D) solving the equation

∂z(f0) = −eλã1 in D.

This equation can be solved for instance by extending the function on the right-
hand side smoothly as a function in C∞

c (C), and then by applying a Cauchy
transform (inverse of ∂z).

Since I ∗
0 is surjective, there exists q ∈ C∞(SM) such that Xq = 0 and

q0 = f0 (see Theorem 8.2.2). Recalling that X = η+ + η− and looking at
Fourier coefficients of Xq, we see that η+qk−1 + η−qk+1 = 0 for all k. Hence

X(q2 + q4 + · · · ) = η−q2 = −η+q0 = a1. (10.3)

Next, we solve η−g0 = a−1 and use surjectivity of I ∗
0 to find p ∈ C∞(SM)

such that Xp = 0 and p0 = g0. Hence

X(p0 + p2 + · · · ) = η−p0 = a−1. (10.4)

Combining (10.3) and (10.4) and setting w = ∑
k≥0 p2k + ∑

k≥1 q2k , we see
that w is holomorphic and Xw = a−1 + a1.
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10.2 Tensor Tomography

Our main result gives a positive answer to the tensor tomography problem in
the case of surfaces with I ∗

0 surjective.

Theorem 10.2.1 (Tensor tomography) Let (M,g) be a compact non-trapping
surface with strictly convex boundary and I ∗

0 surjective. The transform Im is
s-injective for any m ≥ 0.

We note that for the case of (M,g) simple and m = 2, solenoidal injectivity
of I2 was proved in Sharafutdinov (2007) using the solution to the boundary
rigidity problem. We begin with a simple observation that holds in any
dimension.

Lemma 10.2.2 Let (M,g) be a compact non-trapping manifold with
strictly convex boundary. If I ∗

0 : C∞
α (∂+SM) → C∞(M) is surjective, then

I0 : C∞(M) → C∞(∂+SM) is injective.

Proof Suppose that f ∈ C∞(M) satisfies I0f = 0. If I ∗
0 is surjective, there is

w ∈ C∞
α (∂+SM) such that I ∗

0 w = f . Hence we can write

‖f ‖2 = (f ,I ∗
0 w)L2(M) = (I0f,w)L2

μ(∂+SM) = 0,

and thus f = 0.

The next result is the master result from which tensor tomography is derived.
It asserts, in terms of the transport equation, that I |�m : �m → C∞(∂+SM) is
injective whenever I ∗

0 is surjective.

Theorem 10.2.3 (Injectivity of I |�m) Let (M,g) be a compact non-trapping
surface with strictly convex boundary and I∗

0 surjective. Assume that m ∈ Z,
and let u ∈ C∞(SM) be such that

Xu = −f ∈ �m, u|∂SM = 0.

Then u = 0 and f = 0.

The proof is based on another important injectivity result, where the fact that
f has one-sided Fourier support is used to deduce that u has one-sided Fourier
support. A more precise result in this direction will be given in Proposition
10.2.6.

Proposition 10.2.4 Let (M,g) be a compact non-trapping surface with strictly
convex boundary and I0 injective. If u ∈ C∞(SM) is odd and satisfies

Xu = −f in SM, u|∂SM = 0,
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where f is holomorphic (respectively anti-holomorphic), then u is holomor-
phic (respectively anti-holomorphic).

Proof We prove the case where f is holomorphic. Write q := ∑−1
k=−∞ uk .

Since f is holomorphic, we have (Xu)k = 0 for k ≤ −1, and using the
decomposition X = η++η− this gives that η+uk−1+η−uk+1 = 0 for k ≤ −1.
Thus we obtain that

Xq = η+u−1, q|∂SM = 0.

Now η+u−1 only depends on x, and hence the injectivity of I0 implies that
η+u−1 = 0. This proves that q = 0 showing that u is holomorphic.

Proof of Theorem 10.2.3 We follow the approach described at the beginning
of Section 10.1. Let r := e−imθ and observe that r−1Xr ∈ �−1 ⊕ �1 since

eimθη±(e−imθ ) ∈ �±1.

By Proposition 10.1.2, there is a holomorphic w ∈ C∞(SM) and anti-
holomorphic w̃ ∈ C∞(SM) such that Xw = Xw̃ = −r−1Xr . Since r−1Xr is
odd, without loss of generality we may replace w and w̃ by their even parts so
that w and w̃ are even. A simple calculation shows that

X
(
ewru

) = ew
(
X − r−1Xr

)
(ru) = −ewrf (10.5)

with a similar equation for w̃. Since rf ∈ �0, ewrf is holomorphic and ew̃rf

is anti-holomorphic.
Assume now that m is even, the proof for m odd being very similar. Then

we may assume that u is odd and thus ewru and ew̃ru are odd. By Proposition
10.2.4, since we have

X
(
ewru

) = −ewrf, ewru|∂SM = 0,

we see that ewru is holomorphic and thus ru = e−w(ewru) is holomorphic.
Arguing with w̃ we deduce that ru is also anti-holomorphic. Thus one must
have ru ∈ �0. This implies that u ∈ �m, and using that Xu ∈ �m we see that
Xu = 0 and finally u = f = 0 as desired.

One can explicitly compute r−1Xr in the proof above using isothermal
coordinates in which the metric is e2λ(dx2

1 + dx2
2):

Exercise 10.2.5 Show that

r−1Xr = mη+(λ) − mη−(λ).

By inspecting the proof of Proposition 10.1.2 show that the conclusion of
Theorem 10.2.3 still holds if we assume that I0 is injective and there is a
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smooth q such that Xq = 0 with q0 = λ. Hence surjectivity of I ∗
0 is only

needed for the function λ!

We will give two corollaries of Theorem 10.2.4.

Proposition 10.2.6 Let (M,g) be a compact non-trapping surface with strictly
convex boundary and I ∗

0 surjective. Let u ∈ C∞(SM) be such that

Xu = −f, u|∂SM = 0.

Suppose fk = 0 for k ≥ m + 1 for some m ∈ Z. Then uk = 0 for k ≥ m.
Similarly, if fk = 0 for k ≤ m − 1 for some m ∈ Z, then uk = 0 for k ≤ m.

Proof Suppose fk = 0 for k ≥ m + 1. Let w := ∑∞
m uk . Using the equation

Xu = −f and the hypothesis on f , we see that

Xw = η−um + η−um+1 ∈ �m−1 ⊕ �m.

Applying Theorem 10.2.3 to the even and odd parts of w, we deduce that
w = 0 and thus uk = 0 for k ≥ m. Similarly, arguing with

∑m
−∞ uk we

deduce that uk = 0 for k ≤ m if fk = 0 for k ≤ m − 1.

The next corollary is an obvious consequence of the previous proposition.

Corollary 10.2.7 (Tensor tomography, transport version) Let (M,g) be a
non-trapping surface with strictly convex boundary and I ∗

0 surjective. Let
u ∈ C∞(SM) be such that

Xu = f, u|∂SM = 0.

Suppose fk = 0 for |k| ≥ m + 1 for some m ≥ 0. Then uk = 0 for |k| ≥ m

(when m = 0, this means u = f = 0).

By Proposition 6.4.4, the previous result also proves Theorem 10.2.1.

10.3 Range for Tensors

In this section we explain how some of the ideas of the previous section can be
employed to give a description of the range for the X-ray transform acting on
symmetric tensors of any rank, pretty much in the spirit of Theorem 9.6.2.

Let (M,g) be a non-trapping surface with strictly convex boundary. Pick a
function h : SM → S1 ⊂ C such that h ∈ �1. Such a function always exists:
for instance, in global isothermal coordinates we may simply take h = eiθ . Our
description of the range will be based on this choice of h. Define the 1-form

A := −h−1Xh.
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Observe that since h ∈ �1, then h−1 = h̄ ∈ �−1. Also Xh = η+h + η−h ∈
�2 ⊕�0, which implies that A ∈ �1 ⊕�−1. It follows that A is the restriction
to SM of a purely imaginary 1-form on M .

First we will describe the range of the geodesic ray transform I restricted to
�m:

Im := I |�m : �m → C∞(∂+SM,C).

Observe that if u solves the transport equation Xu = −f where f ∈ �m

and u|∂−SM = 0, then h−mu solves (X − mA)(h−mu) = −h−mf and
h−mu|∂−SM = 0. Also note that h−mf ∈ �0. Thus

I−mA(h−mf ) = (
h−m|∂+SM

)
Im(f ), (10.6)

where the left-hand side is an attenuated X-ray transform with attenuation
−mA as given in Definition 5.3.3. The relation in (10.6) is telling us that if we
know how to describe the range of IA acting on C∞(M), where A is a purely
imaginary 1-form, then we would know how to describe the range of Im. It
turns out that this is possible to do even in much greater generality, namely
when A is a connection (cf. Theorem 14.5.5). We will return to this topic in
later chapters; for the time being we content ourselves with a description of the
results.

Let Qm : C(∂+SM,C) → C(∂SM,C) be given by

Qmw(x,v) :=
{
w(x,v) if (x,v) ∈ ∂+SM,

(e−m
∫ τ (x,v)

0 A(ϕt (x,v)) dtw) ◦ α(x,v) if (x,v) ∈ ∂−SM,

and let Bm : C(∂SM,C) → C(∂+SM,C) be

Bmg :=
[
g − em

∫ τ (x,v)
0 A(ϕt (x,v)) dt (g ◦ α)

] ∣∣∣
∂+SM

.

In other words, with I1 denoting the X-ray transform on 1-tensors, we have

Qmw(x,v) =
{
w(x,v) if (x,v) ∈ ∂+SM,

(e−mI1(A)w) ◦ α(x,v) if (x,v) ∈ ∂−SM,

and

Bmg =
[
g − emI1(A)(g ◦ α)

] ∣∣∣
∂+SM

.

We define

Pm,− := BmH−Qm.

The following result from Paternain et al. (2015b) describes the range of Im.
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240 Tensor Tomography

Theorem 10.3.1 Assume that (M,g) is a simple surface. A function
u ∈ C∞(∂+SM,C) belongs to the range of Im if and only if u =(
hm|∂+SM

)
Pm,−w for w ∈ S∞

m (∂+SM,C), where this last space denotes
the set of all smooth w such that Qmw is smooth.

Suppose that F is a complex-valued symmetric tensor of order m and denote
its restriction to SM by f . Recall from Proposition 6.3.5 that there is a one-
to-one correspondence between complex-valued symmetric tensors of order m
and functions in SM of the form f = ∑m

k=−m fk , where fk ∈ �k and fk = 0
for all k odd (respectively even) if m is even (respectively odd).

Since

I (f ) =
m∑

k=−m

Ik(fk),

we deduce directly from Theorem 10.3.1 the following.

Theorem 10.3.2 Let (M,g) be a simple surface. If m = 2l is even, a
function u ∈ C∞(∂+SM,C) belongs to the range of the X-ray transform
acting on complex-valued symmetric m-tensors if and only if there are w2k ∈
S∞

2k (∂+SM,C) such that

u =
l∑

k=−l

(
h2k|∂+SM

)
P2k,−w2k .

Similarly, if m = 2l + 1 is odd, a function u ∈ C∞(∂+SM,C) belongs to the
range of the X-ray transform acting on complex-valued symmetric m-tensors
if and only if there are w2k+1 ∈ S∞

2k+1(∂+SM,C) such that

u =
l∑

k=−l−1

(
h2k+1|∂+SM

)
P2k+1,−w2k+1.
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