On Integral Relations connected with the Confluent Hypergeometric Function.

By D. Gibe.

(Read and Received 11th February 1916).

§1. Introductory.

In the Bulletin of the American Mathematical Society* Whittaker defines the confluent hypergeometric function $W_{k, m}(x)$ by the equation

$$
\begin{equation*}
W_{k, m}(x)=\frac{\Gamma\left(k+\frac{1}{2}-m\right)}{2 \pi} e^{-\frac{1}{2} x+\frac{t}{2} i \pi} x^{k} \int(-t)^{-k-\frac{1}{2}+m}\left(1+\frac{t}{x}\right)^{k-\frac{1}{3}+m} e^{-t} d t \tag{1}
\end{equation*}
$$

where the path of integration begins at $t=+\infty$, and after encircling the point $t=0$ in the counter-clockwise direction, returns to $t=+\infty$ again.

In the same memoir it is shown that this function satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2} W}{d x^{2}}+\left\{-\frac{1}{4}+\frac{k}{x}+\frac{\frac{1}{4}-m^{2}}{x^{2}}\right\} W=0, \tag{2}
\end{equation*}
$$

and that its asymptotic expansion is

$$
e^{-\frac{1}{t} x} x^{k} I(x)
$$

where

$$
\begin{equation*}
I(x)=1+\frac{m^{2}-\left(k-\frac{1}{2}\right)^{2}}{1!x}+\frac{\left\{m^{2}-\left(k-\frac{1}{2}\right)^{2}\right\}\left\{m^{2}-\left(k-\frac{3}{2}\right)^{2}\right\}}{2!x^{2}}+\ldots \tag{3}
\end{equation*}
$$

a series which cannot terminate unless $k-\frac{1}{2} \pm m$ is a positive integer.

It is evident that (2) is unaltered if m is changed into $-m$, or if k and x are replaced by $-k$ and $-x$ simultaneously. The four functions

$$
W_{k, \pm m}(x), W_{-k, \pm m}(-x)
$$

are therefore solutions of the differential equation (2).

[^0]The object of the present paper is to show that any W-function for which (3) is a non-terminating series can be expressed in terms of any other W-function for which (3) is a terminating series; in $\S 4$ we shall see that the relation (1) is a particular case of this result. The last section is devoted to a discussion of certain special cases.

§2. Solution of Equation (2) as a Definite Integral.

Transforming (2) by the substitution

$$
y=e^{-p x} x^{-r} W_{-k, m}(-x),
$$

we obtain the differential equation
$x^{2} y^{\prime \prime}+2 x(p x+r) y^{\prime}+\left\{\left(p^{2}-\frac{1}{4}\right) x^{2}+(2 p r+k) x+\left(r^{2}-r+\frac{1}{4}-m^{2}\right)\right\} y=0$
Now assume that (4) can be satisfied by the definite integral

$$
y=\int_{c} v(s)(x-s)^{s} d s
$$

where c is some contour to be afterwards determined. Substituting from (5) in (4) we have

$$
\begin{gather*}
0=\int_{c} v(s)\left[q(q-1)(x-s)^{q-2} x^{2}+2 q(x-s)^{q-1}(p x+r) x+(x-s)^{q}\right. \\
\left.=\int_{c} v\left(p^{2}-\frac{1}{4}\right) x^{2}+(2 p r+k)(x-s)^{q-2}\left[(x-s)^{4}\left(p^{2}-r+\frac{1}{4}-m^{2}\right)\right\}\right] d s \\
\left\{2 p q+2\left(p^{2}-\frac{1}{4}\right) s+2 p r+k\right\} \\
+(x-s)^{2}\left\{q(q-1)+2 q(2 p s+r)+\left(p^{2}-\frac{1}{4}\right) s\right. \\
\left.\quad+(2 p r+k) s+\left(r^{2}-r+\frac{1}{4}-m^{2}\right)\right\} \\
\\
\left.+(x-s)\{2 q(q-1) s+2 q s(p s+r)\}+q(q-1) s^{2}\right] d s . \tag{6}
\end{gather*}
$$

Now let

$$
p^{2}-\frac{1}{4}=0,2 p q+2\left(p^{2}-\frac{1}{4}\right) s+2 p r+k=0,
$$

i.e.

$$
\left.\left.\begin{array}{rl}
p & =\frac{1}{2} \tag{7}\\
q+r+k & =0
\end{array}\right\} \quad \begin{array}{r}
p=-\frac{1}{2} \\
-q-r+k
\end{array}\right\} .
$$

Equation (6) then becomes

$$
\begin{aligned}
& 0=\int_{c} v(s)(x-s)^{q^{-2}}\left[(x-s)^{2}\{q(q-1)+2 q(2 p s+r)\right. \\
& \left.+(2 p r+k) s+\left(r^{2}-r+\frac{1}{4}-m^{2}\right)\right\} \\
& \left.+(x-s)\{2 q(q-1) s+2 q s(p s+r)\}+q(q-1) s^{2}\right] d s
\end{aligned}
$$

where p, q, r, k are subject to conditions (7).

Raising each term to the $q^{\text {th }}$ degree in $(x-s)$, we have

$$
\begin{aligned}
& 0=\int_{c}(x-s)^{q}[\{q(q-1)+2 q(2 p s+r)+(2 p r+k) s \\
& \left.+\left(r^{2}-r+\frac{1}{4}-m^{2}\right)\right\} v(s) \\
& +\frac{1}{q} \frac{d}{d s}\left\{v(s)\left(2 q \overline{q-1} s+2 q \overline{p s^{2}+r s}\right)\right\} \\
& \left.+\frac{1}{q(q-1)} \frac{d^{2}}{d s^{2}}\left\{v(s) q(q-1) s^{2}\right\}\right] d s \\
& -\left[2 s(x-s)^{q}(q-1+p s+r) v(s)+q s^{2}(x-8)^{q-1} v(s)\right. \\
& \left.+s\left\{2 v(s)+s v^{\prime}(s)\right\}(x-s)^{4}\right] . \\
& =\int_{c}(x-s)^{q}\left[s^{2} v^{\prime \prime}+\left\{2(q+r+1) s+2 p s^{2}\right\} v^{\prime}+\{(4 p q+2 p r+4 p+k) s\right. \\
& \left.\left.+\left(q^{2}+2 q r+r^{2}+q+r+\frac{1}{4}-m^{2}\right)\right\} v\right] d s \\
& -\left[s(x-s)^{q-1}\{2(x-s)(q+p s+r)+q s\} v+s^{2}(x-s)^{4} v^{\prime}\right] c
\end{aligned}
$$

where $v(s)$ have been replaced by v.
The contour c will be so chosen that the function

$$
\begin{equation*}
s(x-s)^{q-1}\{2(x-s)(q+p s+r)+q s\} v+s^{2}(x-s)^{4} v^{\prime} \tag{8}
\end{equation*}
$$

will vanish when taken round the contour. The function $v(s)$ will then have to satisfy the differential equation

$$
\begin{gather*}
s^{2} v^{\prime \prime}+\left\{2(q+r+1) s+2 p s^{2}\right\} v^{\prime}+\{(4 p q+2 p r+4 p+k) s \\
\left.+\left(q^{2}+2 q r+r^{2}+q+r+\frac{1}{4}-m^{2}\right)\right\} v=0 \tag{9}
\end{gather*}
$$

where p, q, r, k satisfy conditions (7).

Case 1.
Let

$$
p=\frac{1}{2} \quad q+r+k=0 .
$$

Equation (9) becomes

$$
\begin{equation*}
s^{2} v^{\prime \prime}+\left\{2(1-k) s+s^{2}\right\} v^{\prime}+\left\{(q+2) s+\left(k^{2}-k+\frac{1}{4}-m^{2}\right)\right\} v=0 . \tag{10}
\end{equation*}
$$

If this has a solution of the form

$$
v=e^{-a s} s^{-\beta} W_{k, \mu}(s),
$$

then it must be the same as
$s^{2} v^{\prime \prime}+2 s(\alpha s+\beta) v^{\prime}+\left\{\left(\alpha^{2}-\frac{1}{4}\right) s^{2}+(2 \alpha \beta+\kappa) s+\left(\beta^{2}-\beta+\frac{1}{4}-\mu^{2}\right)\right\} v=0$,
and hence we must have

$$
\begin{gathered}
\left(\alpha^{2}-\frac{1}{4}\right) s^{2}+(2 \alpha \beta+\kappa) s+\left(\beta^{2}-\beta+\frac{1}{4}-\mu^{2}\right) \equiv(q+2) s+\left(k^{2}-k+\frac{1}{4}-m^{2}\right) \\
2 \alpha s^{2}+2 \beta s \equiv s^{2}+2(1-k) s
\end{gathered}
$$

i.e. $\quad \alpha=\frac{1}{2}, \quad \beta=1-k, \mu= \pm m, \quad \kappa=1-r$.

The solution of (10) is thus

$$
v(s)=e^{-\frac{1}{2} s} s^{k-1} W_{1-r, \pm m}(s)
$$

Case 2.
Let

$$
p=-\frac{1}{2} \quad-q-r+k=0 .
$$

Then by a similar method to the above it may be shown that the corresponding solution is

$$
v(s)=e^{\frac{1}{2} s} s^{-k-1} W_{r-1, \pm m}(s) .
$$

Hence in case (i) we have

$$
e^{-\frac{k}{2} x} x^{-r} W_{-k, m}(-x)=A \int_{c} e^{-\frac{k}{s} s s^{k-1}} W_{1-r, \pm m}(s)(x-s)^{q} d s
$$

and in case (ii)

$$
e^{\frac{1 x}{x}} x^{-r} W_{k, m}(x)=B \int_{c} e^{\frac{1}{4} s^{-k-1}} W_{r-1, \pm m}(s)(x-s)^{q} d s
$$

where q, r, k are subject to conditions (7), and A, B are constants.
Changing the signs of x and k and writing $r=1-k^{\prime}$ in the former and $r=1+k^{\prime}$ in the latter, these became

$$
\begin{align*}
& e^{\frac{k}{x} x} x^{k^{\prime}-1} W_{k, m}(x)=A \int_{c} e^{-\frac{1}{2} s} s^{-k-1} W_{k^{\prime}, \pm m}(s)(x+s)^{k+k^{\prime}-1} d s \tag{11}\\
& e^{\frac{k}{x} x} x^{-k^{\prime}-1} W_{k, m}(x)=B \int_{c} e^{\frac{1}{z} s} s^{-k-1} W_{k^{\prime}, \pm m}(s)(x-s)^{k-k^{\prime}-1} d s \tag{12}
\end{align*}
$$

§ 3. Determination of the Constant A.

Taking the positive value of m in (11) we have

$$
e^{\frac{1}{s} x} x^{k^{\prime}-1} W_{k, m}(x)=\Lambda \int_{c} e^{-\frac{1}{2} s} s^{-k-1} W_{k^{\prime}, m}(s)(x+s)^{k^{k}+k^{\prime}-1} d s
$$

whence

$$
\begin{aligned}
& I(x)=A \int_{c} e^{-s} s^{k-k-1} \\
&\left\{1+\frac{m^{2}-\left(k^{\prime}-\frac{1}{2}\right)^{2}}{1!s}+\frac{\left\{m^{2}-\left(k^{\prime}-\frac{1}{2}\right)^{2}\right\}\left\{m^{2}-\left(k^{\prime}-\frac{3}{2}\right)^{2}\right\}}{2!s^{2}}+. .\right\} \\
& \times\left\{1+\frac{\left(k+k^{\prime}-1\right)}{1!} \frac{s}{x}+\frac{\left(k+k^{\prime}-1\right)\left(k+k^{\prime}-2\right)}{2!} \frac{s^{2}}{x^{2}}+\ldots\right\} d s \\
&=A \int_{c} e^{-s} s^{\lambda}\left\{1+\frac{\alpha \beta}{1!s}+\frac{\alpha(\alpha+1) \beta(\beta-1)}{2!s^{2}}+\ldots\right\} \\
&\left\{1+\frac{\gamma}{1!} \frac{s}{x}+\frac{\gamma(\gamma-1)}{2!} \frac{s^{2}}{x^{2}}+\ldots\right\} d s
\end{aligned}
$$

where

$$
\begin{gathered}
\lambda=k^{\prime}-k-1, \quad \alpha=m-k^{\prime}+\frac{1}{2}, \quad \beta=m+k^{\prime}-\frac{1}{2}, \quad \gamma=k+k^{\prime}-1 \\
=\sum_{r=0}^{\infty} A \frac{\gamma(\gamma-1) \ldots(\gamma-r+1)}{r!x^{r}}(-1)^{\lambda+r} \int_{c} e^{-s}(-s)^{\lambda+r} \\
\left\{1+\frac{\alpha \beta}{1!s}+\frac{\alpha(\alpha+1) \beta(\beta-1)}{2!s^{2}}+\ldots\right\} d s
\end{gathered}
$$

Now choose for c a contour beginning at $s=+\infty$, and, after encircling the origin $s=0$ in the counter-clockwise direction, returning to $s=+\infty$. The expression (8) will vanish when taken round this contour, and hence the path of integration is a valid one. We then have

$$
\begin{aligned}
& I(x)=\sum_{r=0}^{\infty} A \frac{\gamma(\gamma-1) \ldots(\gamma-r+1)}{r!x^{r}}(-1)^{\lambda+r} \frac{2 \pi}{i} \\
& \quad\left[\frac{1}{\Gamma(-\lambda-r)}-\frac{\alpha \beta}{1!\Gamma(-\lambda-r+1)}+\frac{\alpha(\alpha+1) \beta(\beta-1)}{2!\Gamma(-\lambda-r+2)}-\cdots\right]
\end{aligned}
$$

provided λ is not zero or an integer

$$
\begin{align*}
& =\sum_{r=0}^{\infty} A \frac{\gamma(\gamma-1) \ldots(\gamma-r+1)}{r!x^{r}}(-1)^{\lambda+r} \frac{2 \pi}{i \Gamma(-\lambda-r)} \\
& \quad\left[1-\frac{\alpha \beta}{1!(-\lambda-r)}+\frac{\alpha(\alpha+1) \beta(\beta-1)}{2!(-\lambda-r)(-\lambda-r+1)}-\cdots\right] \\
& =\sum_{r=0}^{\infty} A \frac{\gamma(\gamma-1) \ldots(\gamma-r+1)}{r!x^{r}}(-1)^{\lambda+r} \frac{2 \pi}{i \Gamma(-\lambda-r)} \\
& F(\alpha,-\beta,-\lambda-r, 1) . \tag{13}
\end{align*}
$$

The hypergeometric series for $F(\alpha,-\beta,-\lambda-r, 1)$ is not in general convergent, since $k+k^{\prime}-r$ is not always positive. Let us, therefore, choose k^{\prime} so that the expression $I(s)$ in the asymptotic expansion of $W_{k^{\prime}, m}(s)$ shall terminate. We can then express $F(\alpha,-\beta,-\lambda-r, 1)$ in terms of Γ-functions. This will be the case when $k^{\prime}=n-\frac{1}{2} \pm m$. Choose the positive value of m. Then

$$
\begin{aligned}
I(x)= & \sum_{r=0}^{\infty} A \frac{\gamma(\gamma-1) \ldots(\gamma-r+1)}{r!x^{r}}(-1)^{\lambda+r} \frac{2 \pi}{i} \\
= & \frac{\Gamma(-\lambda-r-\alpha+\beta)}{\Gamma(-\lambda-r-\alpha) \Gamma(-\lambda-r+\beta)} \\
& \left\{\frac{2 \pi A}{i} \frac{\Gamma(-\lambda-\alpha+\beta)}{\Gamma(-\lambda-\alpha) \Gamma(-\lambda+\beta)}\right. \\
& \left\{1+\sum_{r=1}^{\infty}(-1)^{r} \frac{\gamma(\gamma-1) \ldots(\gamma-r+1)}{r!x^{r}}\right. \\
= & (-1)^{n-\lambda-1-\alpha) \ldots(-\lambda-r-\alpha)(-\lambda-1+\beta) \ldots(-\lambda-r+\beta)} \frac{2 \pi A}{i} \frac{\Gamma\left(k+n-\frac{1}{2}+m\right)}{\Gamma\left(k-m+\frac{1}{2}\right) \Gamma\left(k+m+\frac{1}{2}\right)} I(x) .
\end{aligned}
$$

Hence

$$
A=\frac{(-1)^{k-n+\frac{1}{2}-m} \Gamma\left(k+m+\frac{1}{2}\right) \Gamma\left(k-m+\frac{1}{2}\right)}{2 \pi i \Gamma\left(k+n+m-\frac{1}{2}\right)} .
$$

The corresponding result when m is negative can be immediately obtained. Again, if we replace $W_{k^{\prime}, \pm m}(s)$ in (12) by the other pair of solutions $W_{-k^{\prime}, \pm m}(-s)$, and then change the signs k^{\prime} and s simultaneously, equation (12) becomes equation (11). It therefore follows that $A=B$.

Hence, finally,

$$
\begin{gather*}
e^{\frac{1}{2} x} x^{k^{\prime}-1} W_{k, m}(x)=\frac{(-1)^{k-k^{\prime}} \Gamma\left(k+m+\frac{1}{2}\right) \Gamma\left(k-m+\frac{1}{2}\right)}{2 \pi i \Gamma\left(k+k^{\prime}\right)} \\
\int_{c} e^{-\frac{1}{2} s} s^{-k-1} W_{k^{\prime}, \pm m}(s)(x+s)^{k+k^{\prime}-1} d s \tag{14}
\end{gather*}
$$

provided (1) $k^{\prime}=n-\frac{1}{2} \pm m$, where n is a positive integer or zero, (2) $\pm m-k-\frac{1}{2}$ is not an integer or zero, and (3) c is the contour already specified.

§4. Deduction of Whittaker's definition.

Put $k^{\prime}=m+\frac{1}{2}$ in (14) and we obtain the relation

$$
\begin{aligned}
& e^{k x} x^{m-\frac{1}{2}} W_{k, m}(x)=\frac{(-1)^{k-m-\frac{1}{2}} \Gamma\left(k-m+\frac{1}{2}\right)}{2 \pi i} \\
&=\frac{(-1)^{k-m-\frac{1}{2}} \Gamma\left(k-m+\frac{1}{2}\right)}{2 \pi i} \\
& \int_{c} e^{-\frac{1}{2} s s^{-k-1} W^{-k+m-\frac{1}{2}}(x+s)^{k+m-\frac{1}{2}} d s}(s)(x+s)^{k+m-\frac{1}{2}} d s
\end{aligned}
$$

whence

$$
\begin{aligned}
W_{k, m}(x)= & -\frac{\Gamma\left(k-m+\frac{1}{2}\right)}{2 \pi i} e^{-\frac{1}{2} x} x^{k} \\
& \int_{c} e^{-s}(-s)^{m-k-\frac{1}{2}}\left(1+\frac{s}{x}\right)^{k+m-\frac{1}{2}} d s
\end{aligned}
$$

which is equivalent to (1).
§5. Special Cases.
(1) Relation connecting the Parabolic Cylinder Function and the Error Function.

These functions are connected with the W-function by the relations

$$
\begin{aligned}
& D_{2 k-\frac{1}{k}}(\sqrt{2 s})=2^{k-\frac{1}{2}} s^{-\frac{1}{2}} W_{k, \frac{1}{k}}(s) \\
& \quad \text { Erfc. }(s)=\frac{1}{2} s^{-\frac{1}{2}} e^{-\frac{1}{2} s^{2}} W_{-\frac{1}{4}, \frac{1}{4}}\left(s^{2}\right)
\end{aligned}
$$

Putting $k^{\prime}=-\frac{1}{4}, m=\frac{1}{4}$ in (14) and assuming $k \pm \frac{1}{4}$ is not an integer or zero, we have

$$
\begin{aligned}
e^{\frac{k}{x}} x^{-\frac{5}{2}} W_{k, \frac{1}{2}}(x)= & (-1)^{k+\frac{\Gamma\left(k+\frac{1}{4}\right) \Gamma\left(k+\frac{3}{4}\right)}{2 \pi i \Gamma\left(k-\frac{1}{4}\right)}} \\
& \int_{0} e^{-\frac{1}{2} s} s^{-k-1} W_{-\frac{1}{2}, 4}(s)(x+s)^{k-\frac{5}{4}} d s
\end{aligned}
$$

whence

$$
\begin{aligned}
& e^{\frac{3}{} x} x^{-1} D_{2 k-\frac{1}{3}}(\sqrt{2 x})=\frac{(-2)^{k-\frac{1}{2}}}{\pi}\left(k-\frac{1}{4}\right) \Gamma\left(k+\frac{1}{4}\right) \\
& \int_{c} s^{-k-\frac{y}{4}}(x+s)^{k-\frac{5}{4}} \operatorname{Erfc} \cdot(\sqrt{s}) d s
\end{aligned}
$$

Corollary.

$$
\begin{aligned}
e^{\frac{1}{x} x} x^{-1} D_{2 k-\frac{1}{2}}(\sqrt{2 x})= & -\frac{(-2)^{k-\frac{5}{4}}}{\pi}\left(k-\frac{1}{4}\right) \Gamma\left(k+\frac{1}{4}\right) \\
& \int_{c} s^{-k-\frac{5}{4}}(x+s)^{k-\frac{5}{4}}\left\{\pi^{\frac{1}{2}}-\gamma\left(\frac{1}{2}, s\right)\right\} d s
\end{aligned}
$$

where $\gamma(n, x)$ is the incomplete gamma function.
(2) Relation connecting the Pearson-Cunningham Function and Sonine's Polynomial.

These functions are expressed in terms of the W-function by the relations*

$$
\begin{aligned}
& \omega_{a, \beta}(x)=\frac{(-1)^{a-\frac{1}{2} \beta}}{\Gamma\left(\alpha-\frac{1}{2} \beta+1\right)} x^{-\frac{1}{2}(\beta+1)} e^{-\frac{1}{2} x} W_{a+\frac{1}{2}, \frac{1}{2} \beta}(x) \\
& T_{\beta}^{\gamma}(x)=\frac{1}{\gamma!(\beta+\gamma)!} x^{-\frac{1}{2}(\beta+1)} e^{\frac{1}{2} x} W_{\gamma+\frac{1}{2} \beta+\frac{1}{2}, \frac{1}{2} \beta}(x) \\
& \quad \text { where } \gamma \text { is an integer. }
\end{aligned}
$$

Put $k=\alpha+\frac{1}{2}, \quad k^{\prime}=\gamma+\frac{1}{2} \beta+\frac{1}{2}, \quad m=\frac{1}{2} \beta$ in (14). Then if $\pm \frac{1}{2} \beta-\alpha$ is not an integer or zero,

$$
\begin{array}{r}
e^{\frac{1}{2} x} x^{\gamma+\frac{1}{2} \beta-\frac{1}{2}} W_{a+\frac{1}{2}, \frac{1}{2} \beta}(x)=\frac{(-1)^{\alpha-\gamma-\frac{1}{2} \beta} \Gamma\left(\alpha+\frac{1}{2} \beta+1\right) \Gamma\left(\alpha-\frac{1}{2} \beta+1\right)}{2 \pi i \Gamma\left(\alpha+\frac{1}{2} \beta+\gamma+1\right)} \\
\int_{c} e^{-\frac{1}{2} s} s^{-\alpha-\frac{3}{2}} W_{\gamma+\frac{1}{2} \beta+\frac{1}{2}, \frac{1}{2} \beta}(s)(x+s)^{\alpha+\frac{1}{2} \beta+\gamma} d s,
\end{array}
$$

whence

$$
\begin{aligned}
e^{x} x^{\beta+\gamma} \omega_{\alpha, \beta}(x)= & \frac{(-1)^{-\beta-\gamma} \gamma!(\beta+\gamma)!\Gamma\left(\alpha+\frac{1}{2} \beta+1\right)}{2 \pi i \Gamma\left(\alpha+\frac{1}{2} \beta+\gamma+1\right)} \\
& \int_{c} e^{-s_{s}-\alpha+\frac{1}{2} \beta-1}(x+s)^{\alpha+\frac{1}{2} \beta+\gamma} T_{\beta}^{\gamma}(s) d s .
\end{aligned}
$$

[^1]The following relations may be similarly obtained :-
(3) $D_{2 k-\frac{1}{2}}(\sqrt{2 x})=\frac{(-1)^{k-r-\frac{1}{2}} 2^{k-\frac{5}{4}} r!\left(r+\frac{1}{2}\right)!\Gamma\left(k+\frac{1}{4}\right) \Gamma\left(k+\frac{3}{4}\right)}{\pi \Gamma\left(k+r+\frac{3}{4}\right)}$

$$
\int_{c} e^{-z} s^{-k-\frac{1}{t}}(x+s)^{k+r-\frac{1}{2}} T_{\frac{1}{2}}^{r}(s) d s
$$

(4)

$$
\omega_{m, m}(x)=(-1)^{1-m} \frac{n+\frac{1}{2} m}{2 \pi i} e^{-x} x^{1-m}
$$

$$
\int_{c} s^{-n-\frac{1}{2} m-1}(x+s)^{n+\frac{m}{2}-1}[\Gamma(m)-\gamma(m \cdot s)] d s .
$$

(5) $\quad \omega_{r, \frac{1}{2}}(x)=-\frac{(-2)^{-k-\frac{3}{2}} \Gamma\left(r+\frac{5}{\frac{5}{2}}\right)}{\pi i \Gamma\left(k+r+\frac{1}{2}\right)} e^{-x} x^{-k+\frac{1}{2}}$

$$
\int_{c} e^{-\frac{1 s}{2} s} s^{-r-\frac{1}{3}}(x+s)^{k+r-\frac{1}{2}} D_{2 k-\frac{1}{2}}(\sqrt{2 s}) d s
$$

(6) $\omega_{r, \frac{f}{f}}(x)=\frac{1}{\pi}\left(r+\frac{1}{4}\right) e^{-x} c^{\frac{1}{2}} \int_{c} s^{-r-\frac{4}{4}}(x+s)^{r-\frac{1}{7}} \operatorname{Erfc} .(\sqrt{s}) d s$.
(7) $\quad T_{r}^{p} \quad(x)=\frac{(-1)^{p+r} \Gamma\left(q-\frac{1}{2} r+1\right)}{2 \pi i \Gamma\left(p+q+\frac{1}{2} r+1\right)} x^{-q-\frac{3}{2} r}$

$$
\int_{c} e^{-\frac{1}{2} s} s^{-p-1}(x+s)^{p+q+\frac{1}{2} r} \omega_{q, r}(s) d s
$$

$$
\int_{c} e^{-\frac{k s}{} s^{-r-\frac{1}{2}}(x+s)^{k+r-t} D_{2 k-\frac{1}{2}}(\sqrt{2 s}) d s ~}
$$

[^0]: * 2nd Series, Vol. X., p. 125.

[^1]: * Whittaker \& Watson's Modern Analysis, Chap. XVI., Misc. Exs. 8 \& 10.

