
22

Anomalies

In the Standard Model, the fermion fields of the leptons and quarks interact through

the mediation of vector bosons. As we remarked in Chapter 10, the renormalisability

of the Model requires the vector boson fields to be introduced through the mecha-

nisms of local gauge symmetry. Renormalisation requires the insertion of counter

terms in the Lagrangian (Chapter 8). It is important that the counter terms maintain

the local gauge symmetries, along with their corresponding conserved currents. As

a consequence, one of the global current conservation laws of the Standard Model,

that we have obtained by treating the fields as classical fields, has to be modified

when the classical fields are quantised. This is an example of an anomaly. We shall

see that baryon number and lepton number are not strictly conserved quantities in

quantum field theory.

22.1 The Adler–Bell–Jackiw anomaly

Bell and Jackiw and, independently, Adler were the first to find an anomaly in a field

theory (see Treiman et al., 1985). They were concerned with the axial vector current

associated with the chiral symmetries introduced in Section 16.7. To appreciate the

nature of this anomaly, consider the model Lagrangian density

L = ψ̄[γ μ(i∂μ − q Aμ) − m]ψ − 1

4
Fμν Fμν. (22.1)

This has the local gauge symmetry of electromagnetism; it is invariant under the

transformation

ψ(x) → ψ ′(x) = e−iqχ (x)ψ(x),

Aμ(x) → A′
μ(x) = Aμ(x) + ∂μχ (x).

(22.2)

215

https://doi.org/10.1017/9781009401685.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401685.024


216 Anomalies

If m = 0, L also has a global chiral symmetry: it is then invariant under the

transformation

ψ(x) → ψ ′(x) = eiαγ 5ψ(x), (22.3)

as may easily be verified using the properties of the γ matrices (Section 5.5).

Applying the transformation (22.3) to the Lagrangian density (22.1), with α taken

to be infinitesimal and space and time dependent, gives an infinitesimal change δL

in L which (after an integration by parts in the action) may be taken to be

δL = α(x)[∂μ jμ

A − 2imψ̄γ 5ψ],

where

jμ

A = ψ̄γ μγ 5ψ (22.4)

is the axial current. (See Problem 5.6.)

It follows from Hamilton’s principle that, for fields that obey the field

equations,

∂μ jμ

A = 2imψ̄γ 5ψ. (22.5)

If m = 0, the axial current is conserved:

∂μ jμ

A = 0 if m = 0. (22.6)

The results (22.5) and (22.6) have been obtained treating the fields as classical fields.

In quantum field theory the fields become quantum operators, and the currents can be

calculated in perturbation theory. It is found that in order to keep the electric charge

conserved and maintain electromagnetism as a local gauge symmetry, perturbation

theory requires

∂μ jμ

A = 2imψ̄γ 5ψ − e2

2π2
εμνλρ∂μ Aν∂λ Aρ. (22.7)

With m = 0 the axial current is not conserved, but instead

∂μ jμ

A = − e2

2π2
εμνλρ∂μ Aν∂λ Aρ. (22.8)

This is the Adler–Bell–Jackiw axial anomaly. It is found to be the only anomalous

term in ∂μ jμ

A . Using Problem 4.3, we can write (22.8) in the explicitly gauge

invariant form

∂μ jμ

A = − e2

π2
E · B. (22.9)

It is interesting to note that from (22.8) we can construct a current

jμ

total = jμ

A + e2

4π2
εμνλρ Aν Fλρ, (22.10)
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which evidently is conserved:

∂μ jμ

total = 0. (22.11)

jμ

total is gauge dependent (it contains Aν) and hence lacks immediate physical sig-

nificance. Nevertheless it follows from (22.11) that the charge

Q(t) =
∫

jo
total d3x (22.12)

is constant in time. Q(t) is a gauge invariant quantity.

22.2 Cancellation of anomalies in electroweak currents

In the Standard Model, there are anomalies that have an origin and structure similar

to the axial anomaly described in Section 22.1. In particular in the electroweak

sector the gauge bosons couple to currents that have both vector and axial vector

components, as, for example, in (12.15) where

jμ
e = e†Lσ̄ μνL = ēγ μ(1/2)(1 − γ 5)νe. (22.13)

It is the mix of vector and axial vector that gives rise to anomalies that threaten

the renormalisability of the electroweak sector. Detailed calculations show that, in

a theory that has only leptons and no quarks, anomalies do spoil the conservation

laws of the currents that couple to the bosons. Conversely, in a theory with only

quarks and no leptons there are again anomalies. Remarkably, in a theory which

includes both leptons and quarks the anomalies cancel exactly, provided that the

number of lepton families is equal to the number of quark families, and then the

electroweak gauge currents are strictly conserved (t’Hooft, 1976). Thus equality in

the number of lepton families and quark families is of fundamental importance to

the renormalisability of the Standard Model.

There are no serious anomalies associated with the gluon fields of the strong

interaction.

22.3 Lepton and baryon anomalies

We now turn to the currents that, classically, arise from global symmetries and

conserve the number of leptons and the number of quarks. We will first consider

the situation if neutrinos are shown to be Dirac fermions. For Dirac neutrinos there

is a conserved lepton current given by (22.25)

Jμ

lepton(x) =
∑

α=e,μ,r

[
α
†
L (x) σ̃ μαL (x) + α

†
R (x) σμαR (x) + ν

†
αL(x) σ̃ μναL (x)

+ ν
†
αR (x) σμναR (x)

]
. (22.14)
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and classically

∂μ(Jμ

lepton) = 0. (22.15)

On quantisation, this current is not conserved. The divergence equation has to

be modified in a way reminiscent of (22.8) and becomes

∂μ

(
Jμ

lepton

)
= 3

64π2
εμνλρ

[
1

2
g2

2Tr
(
WμνWλρ

) − g2
1BμνBλρ

]
. (22.16)

The fields Wμν, Bμν , and the coupling constants g1 and g2, were introduced in

Chapter 11.

The total quark number is also classically conserved but the same anomalous term

as in (22.15) arises when the quark fields are quantised for each colour. Summing

over the three colours we have

∂μ Jμ

quark = 3∂μ Jμ

lepton. (22.17)

Since baryon number is one third of the quark number, this can also be written

∂μ Jμ

baryon = ∂μ Jμ

lepton, (22.18)

where Jμ

lepton = Jμ
e + Jμ

muon + Jμ
tau.

Thus if neutrinos are Dirac particles, anomalies reduce the two classically con-

served currents of the Standard Model to one that can be taken as Jμ

baryon − Jμ

lepton.

The independent current Jμ

baryon + Jμ

lepton is not conserved.

Let us now consider the lepton number current. This is not conserved but, as we

found with the chiral anomaly, there is nevertheless an associated current that is

conserved, and we may write

∂μ

(
Jμ

lepton − Jμ

T

)
= 0, (22.19)

where

Jμ

T = 3

32π2
εμνλρ

[
1

2
g2

2Tr
(
WνWλρ − (ig2/3) WνWλWρ

) − g2
1 Bν Bλρ

]
.

(22.20)

Jμ

T is called the topological current, and

NT =
∫

J 0
T d3x (22.21)

is the topological number.

The lepton number is defined to be

Nlepton =
∫

J 0
leptond3x, (22.22)
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and it follows from (22.19) that Nlepton − NT is constant in time. If NT changes by

�NT, then Nlepton changes by �Nlepton, and �Nlepton = �NT .

22.4 Gauge transformations and the topological number

Is the topological number a gauge invariant? For simplicity we shall restrict our

discussion to fields that are gauge transforms of the vacuum field configuration.

Then from (11.4b) and (11.6)

Bμ = (2/g1) ∂μθ, (22.23)

Wμ = (2i/g2)
(
∂μU

)
U†. (22.24)

The field strengths Bμν and Wμν are of course zero everywhere. Also we shall only

consider gauge transformations in a local region of space, so that θ → 0 and U → I
as r → ∞. The topological number for this vacuum configuration is

NT = − 1

8π2

∫
ε0i jkTr

{
(∂i U) U† (

∂ j U
)

U† (∂kU) U†} d3x, (22.25)

using (22.24) in (22.20).

It can be shown that NT is an integer multiple of 3, 0, ±3, ±6, . . . We can illus-

trate this by considering unitary transformations of the form

U(x) = cos f (r )I + i sin f (r )(r̂·τ ), (22.26)

taking α = f (r )r̂ in (B.9). Here f (r ) is a function with the property that f (r ) → 0

as r → ∞, so that U → I as r → ∞. If U(x) is to be defined at r = 0, then sin f (r )

must vanish there (since r̂ is not defined at r = 0). Thus we require f (0) = nπ where

n is an integer. Subject only to the boundary conditions at r = 0 and r → ∞, f (r )

can be any continuous and differentiable function.

If n = 0, f (r ) can be deformed continuously to give f (r ) = 0, U = I, for all r;

transformations like this are called ‘small’ unitary transformations. If n �= 0 there

is no way in which f(r) can be deformed continuously to give U = I for all r; these

are ‘large’ unitary transformations. Direct computation of (22.25) with U of the

form (22.26) gives

NT = 6

π

∫ nπ

0

sin2 f d f = 3n. (22.27)

It appears that in a theory with no fermions there would be many inequivalent

representations of the vacuum state, characterised by a topological number NT.

Neglecting the fermions, and treating the SU (2) × U (1) gauge fields and the Higgs

field classically, it is found that to change NT continuously by one unit involves

field distortions that require energy. Estimates suggest the energy barrier in field
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configurations is of height a few times (4π/g2
2) Mw ∼ 100 Mw. Treating the fields

as quantum fields, t’Hooft (1976) found that quantum tunnelling can take place

through the barrier, but the probability per unit volume in space-time of a change in

NT is very small because of a very small tunnelling factor exp(−16π2/g2
2) ≈ 10−173.

22.5 The instability of matter, and matter genesis

Including the fermions in the Standard Model, if the Higgs and gauge fields

pass over the energy barrier separating different topological sectors, the fermion

fields must also evolve. Suppose, for example, that �Nlepton = −3 and, from

(22.18), �Nbaryon = −3. These conditions are satisfied by, for example, the decay
3
2He → e+ + μ+ + ν̄τ.

With suppression factors like 10−173, it is unlikely that any helium nucleus in

our galaxy has ever decayed in this way since helium nuclei were formed.

It is nevertheless an intriguing possibility that the matter content of the Universe

could have been generated by an anomaly mechanism. In the Big Bang model of

cosmology, at the very early stage in its evolution the Universe was intensely hot, at

a temperature high compared even with the barrier height separating the different

topological sectors. Thermal fluctuations over the barrier would produce matter

or antimatter depending on the sign of �NT. In the beginning the net baryon and

lepton numbers might both have taken the symmetrical value zero. To generate the

observed preponderance of matter over antimatter requires CP violation, and this

is an attribute of the Standard Model.

The modifications are straightforward if neutrinos are Majorana fermions. For

example, with the Majorana Lagrange density of (21.11), (22.19) becomes

∂μ

(
Jμ

lepton − Jμ

T

)
= mαβ

(
νT

ασ 2νβ + ν+
β σ 2ν∗

α

)
(22.28)

as can be shown by making an infinitesimal, space time dependent, phase change

on all the lepton fields (see the method of section (22.1)). If neutrinos are Majorana

particles then, with the anomalies, no global conservation laws remain.
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