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1. Introduction

Gleason [3] proved that in the category 'S of compact Hausdorif spaces and
continuous maps, the projective objects are precisely the extremally disconnected
spaces contained in the category. Strauss [7] generalised this and proved that in the
category y of regular Hausdorff spaces and perfect maps the projective objects
are again precisely the extremally disconnected ones. Observe that Gleason's
category is a full subcategory of Strauss's category.

In our earlier paper [1] we generalised the above result of Gleason to the
situation of bitopological spaces. The purpose of the present paper is to do the
same for the above result of Strauss.

In this process we obtain some pleasant surprises. Let us make the convention
that every topological space (X, x) is also considered as a bitopological space
(X, x, T). Then the category of bitopological spaces that we obtained in [1], to be
called cat A in this paper, contains 'S as a full subcategory. We define another
category of bitopological spaces in this paper, to be called cat B, and we determine
the projectives in this category (cf. Main Theorem). Strauss's theorem comes out
as a special case of our Main Theorem. Further it turns out that (1) 18 and SP are
both full subcategories of cat B; (2) cat A is not contained in cat B; (3) the in-
tersection of cat A and cat B is precisely IS; and (4) in &, the two concepts "semi-
compact, quasi-Hausdorff, extremally disconnected bitopological spaces" and
"pairwise regular, pairwise Hausdorff, pairwise extremally disconnected bito-
pological spaces"—the projective objects in cat A and cat B respectively—
coincide with the conventional extremally disconnected topological spaces. As a
side result we prove a Tychonoff Theorem (cf. 4.9) for 'pairwise compactness'—•
denned by Fletcher, Hoyle and Patty [2]—for bitopological spaces.

2. Definitions and statement of main theorem

Throughout let(X,P,Q),(XuP1,Q1)and(X2,P2,Q2) stand for bitopological
spaces. Any topological concept associated with the upper bound topology of
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P and g is referred to as a property of (X, P, Q) with the prefix 'semi'. Thus we get
the concepts of semi-compactness, semi-open set, semi-closed set etc. A set A c X
is said to be quasi-open if for every xeA there exists either a P-open neighbourhood
Uxc A or a Q-open neighbourhood Vx a A. The complement of a quasi-open
set is defined to be quasi-closed. The quasi-closure of any set A turns out to be
ApC\AQ where Ap denotes the P-closure of A and AQ is the Q-closure of A.
(X, P, Q) is said to be quasi-Hausdorff if given xx 9^ x2, there exist disjoint quasi-
open sets U1, U2 containing xt, x2 respectively. A map Xt -> X2 is said to be
quasi-continuous if the inverse image of every quasi-open set is quasi-open.
{X, P, Q) is said to be extremally disconnected if the quasi-closure of every semi-
open set is quasi-open.

With these definitions we proved in [1] that in the category, cat A, of semi-
compact, quasi-Hausdorff bitopological spaces and quasi-continuous maps the
projective spaces are precisely the extremally disconnected ones.

In order now to generalize Strauss's theorem we recall the following definition
of Kelly [4] and Fletcher, Hoyle and Patty [2]. (X, P, Q) is said to be pairwise
Hausdorff if given xx j^x2 there exists a P-open neighbourhood U of xt and a
g-open neighbourhood V of x2 which are disjoint. (X, P, Q) is said to be pairwise
regular if given a P-closed (g-closed) set A and x £ A, there exist a Q-open (P-open)
set U n>A and a P-open (Q-open) set V containing x, which are disjoint. A family
si of P-open and Q-open sets of (X, P, Q) is said to be pairwise open if there
exists at least one P-open set in si and at least one Q-open set in si. If every
pairwise open covering of X has a finite subcovering, we say (X, P, Q) is pairwise
compact. A semi-compact space is always P-compact, Q-compact and pairwise
compact. Now for the purpose of this paper we make the following two
definitions.

(2.1) DEFINITION. A mapping / : (Xlt Pu Qi)-*(X2, P2, Q2) is said to be
perfect if

(i) / is continuous, (cf. Pervin [6]); that i s / i s Pt — P2-continuous and
also Qi — <22~

coritiiiuous,
(ii) / i s compact, that is, the inverse image of every point of X2 is Prcompact,

(^-compact and pairwise compact; and
(iii) / i s closed; that is, the image of every Pi-closed ((^-closed) subset of

Xi is P2-closed (g2-closed) subset of X2.

(2.2) DEFINITION. (X, P, Q) is said to be pairwise extremally disconnected
if the Q-closure of every P-open set is P-open and the P-closure of every Q-open
set is Q-open.

Now we can state our

MAIN THEOREM. In the category, cat B, of pairwise regular, pairwise
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Hausdorff bitopological spaces and perfect maps, the projective spaces are
precisely the pairwise extremally disconnected ones.

Throughout the rest of the paper " p " will be used for "pairwise"; i.e.
"p-regular" will mean "pairwise regular", and so on.

3. Preliminaries

(3.1) LEMMA. Let(X, P, Q) be a p-Hausdorff space. Let U and V be P-open
and Q-open subsets of X respectively such that U n V = 0. Then UQ C\V = 0
and U nVp = 0.

PROOF. Suppose that UQnV^0. Let xeUQC\V. X(BUQ implies that
every Q-open neighbourhood of x meets U. But V is a Q-open set containing x
which does not meet U. This contradiction shows that UQC\ V = 0. Similarly,
U n Vp = 0 .

We recall the following definition from [1]. Let (Xh Pt, Qi)ieI be a family of
bitopological spaces. On the product set X — niEl Xt, we define a bitopological
structure (P, Q) by taking P as the product topology generated by the P,'s and Q
as the product topology generated by the Qf's.

(3.2) PROPOSITION. Any product of p-Hausdorff spaces is p-Hausdorj.

The proof is analogous to the usual proof of the proposition that the product
of Hausdorff spaces is Hausdorff.

(3.3) PROPOSITION. Any product of p-regular spaces is p-regular.

The proof runs along the same lines as in the case of topological spaces; i.e.
the product of regular spaces is regular.

(3.4) LEMMA. Let (X, P, Q) be p-regular space. Let A be P-compact
(Q-compact) subset of X and B be P-closed (Q-closed) subset of X such that
A C\B = 0. Then A and B can be separated by P-open (Q-open) and Q-open
(P-open) subsets of X respectively.

PROOF. Let A be P-compact and B be P-closed subset of X such that
A n B = 0 . By p-regularity of X, we have for each aeA,& P-opan set Ua and a
Q-open set Va such that

{Ua}aeA is a P-open covering of A and since A is P-compact there exists a finite
subset Ax c A such that
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Let

U = (J L/flandF= f) Va.
ae At a e A\

Then A<=U, B <= V and {/ n F = 0 . The other case is similar.

4. p-compact spaces

(4.1) DEFINITION. A family J5" of a space (X, P, Q) is said to be p-closed if
some (at least one but not all) members of & are P-closed and the remaining
members are g-closed.

(4.2) THEOREM. A space (X, P, Q) is p-compact iff each family of p-closed
subsets of X with the finite intersection property, has a non-void intersection.

The proof follows in a standard way.

(4.3) DEFINITION. A family !F of subsets of a space (X, P, Q) is called
inadequate if the family does not cover X. The family is called finitely inadequate
iff no finite subfamily of & covers X.

(4.4) DEFINITION. A family '€ of subsets of a space (X, P, Q) is called common
if O ^ 5̂  0 ; I? is finitely common iff each finite subfamily of <€ has a non-void
intersection.

(4.5) PROPOSITION. Let(X, P, Q)bea bitopological space. Then thefollowing
are equivalent.

(a) each finitely inadequate family of p-open sets in X is inadequate;
(b) each finitely common family of p-closed sets of X is common.

The proof follows from definitions (4.3), (4.4) and De Morgan formulae.

REMARK. In view of theorem (4.2), conditions (a) and (b) are equivalent to
p-compactness of (X, P, Q).

The following lemmas 4.6, 4.7 and Theorems 4.8 and 4.9 are generalizations
of known results in general topological spaces [5, p 79-80 and 126-128] and
[8, p 127-129] to bitopological spaces.

(4.6) LEMMA. Let OF be a finitely inadequate family of p-open subsets of
{X, P, Q). Then there is a maximal finitely inadequate family 2 of p-open
subsets of (X, P, Q) such that ^c®.

PROOF. Let %> be the collection of all finitely inadequate families of p-open
sets. Let <€ be ordered by set inclusion; i.e., %u ^2 e^ then ^ < ^ 2 if ^ c <g2.
Now &'e&. So, by Hausdorff maximal principle, let rfbea maximal linearly
ordered subcollection of ̂  such that J5" e si. Let^ = u J / . 2 is a family of p-open
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sets, since each member of ja/ is such a family. We shall show (i) 3J is finitely
inadequate and (2) 3 is a maximal finitely inadequate family of p-open sets.

To prove (i), let Du D2,--, DKe3. Then for each i, there is some c€i in sd
such that D( e e€i Since s4 is linearly ordered one of these (€i, say #,-, contains each
of the other <€is. So D.-e^- for each i. Thus (Jf=1 D^X, since ^ is finitely
inadequate. Hence 3> is finitely inadequate.

Now, suppose (2) were not true; i.e., suppose there were some open (either
P-open or Q-open) set G $3 such that 3 KJ {G} is still finitely inadequate. Then
s4 u {3 U {G}} would be linearly ordered and would properly contain s/,
contradicting the maximality of sf. Thus (2) must be true, and 3 is the required
maximal finitely inadequate family containing !F.

(4.7) LEMMA. Let (X, P, Q) be a bitopological space. Let 3 be a maximal
finitely inadequate family of p-open sets. If some member of 3 contains
G1C\G2 n ••• (~^Gn, where each G; is P-open (Q-open), then GKe3s for some

PROOF. First suppose n =2. Suppose G^3i and G2$@. Then by maximality
of 3), there must be members Ax, A2,---,Am of 3 such that

G j \J Ax \J A2 U ••• yJ Am = X.

Also, there are members Bx, B2, • • •, Bn of 3) such that

G2 U B t (JB2 U--- UB n = X.

Then

( ) U--- ^)AmUB1 U- I

so that no members of 3s can contain Gt C\ G2. Thus we have proved a contra-
diction for n = 2. Similarly, we conclude the lemma for any positive integer n.

The following is the generalization of Alexander's theorem.

(4.8) THEOREM. Let SP be a subbase for P and SQ be the subbase for Q,
where (X, P, Q) is a bitopological space. If each p-open cover of X consisting of
sets from SP U S g has a finite subcover, then X is p-compact.

The proof follows from theorem (4.5), its remark and lemmas (4.6) and (4.7).
The following is the generalization of Tychonoff's theorem.

(4.9) THEOREM. The product of p-compact bitopological spaces is p-compact.
Conversely, if the product is p-compact, then each component is p-compact.

PROOF. Let {Xa, Px, QX}XE A bs a family of bitopological spaces. Let(X,P, Q)
be the product space. Suppose each (Xx, Pa, Qx) is p-compact. Let SP be the
defining subbase for P and SQ be the subbase for Q. Then
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Let S = SPUSQ and let -W be a p-op3n finitely inadequate subfamily of S. For
a e A, let

Then Q$a is finitely inadequate in Xa. Since Xa is p-compact, 3Sa does not cover
Xx. So for each ae A, let

Let x = ( x , ) e l . x$\J& (because xx$ u{B\B-£„}). Therefore 3F is
inadequate. By theorem (4.8), (X, P, Q) is p-compact.

The converse follows from the fact that projections are continuous and the
continuous image of p-compact spaces is p-compact.

5. Perfect mappings

(5.1) We begin with an example of a perfect mapping.

EXAMPLE. Let Xt be the real line R, let Pt be the usual topology and

Ql = {<£} u{l /U(x,oo): t / ePi a n d x G l J .

Let X2 be also the real line R, let P2 be the usual topology and let

Q2 = {(j)}\j{UKJ{-ao,xY UeP2andxeX2}.

Then/: (Xu Pu Qt)->(X2, P2, Q2) defined by f(x) = - x for every xeX1; is a
perfect mapping.

REMARK. Every continuous mapping between p-compact, p-Hausdorff
spaces is perfect. For we have only to show (ii) and (iii). Let xeX2. {x} is both
P2-closed and Q2-closed (because X2 is jp-Hausdorff) and so/" *(x) is both P^closed
and Qi-closed (because / is continuous). Therefore/"1^) is Pi-compact, gx-
compact and p-compact. To show (iii), let F be Px-closed (Qj-closed) subset of Xly

then F is Qj-compact (PrCDmpact). Therefore/(F) is Q2-compact (P2-compact)
and hence P2-closed (Q2-closed) subset of X2.

(5.2) LEMMA. An image of a p-regular space under a perfect mapping is
p-regular.

The proof runs on the same lines as that of lemma 3 of [7]. The following
three lemmas are generalizations of Strauss's lemmas 4, 5 and 6 respectively [7].

(5.3) LEMMA. Let f be a closed and compact mapping from a space
(Xu P t , gi) into a space (X2, P2, Q2). Then f~l maps all P2-compact (Q2-
compact) sets to P\-compact (Q^compact) sets and all p-compact sets of X2 to
p-compact sets of Xt.
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PROOF. Let C be any p-compact subset of X2. We shall show that / - 1 (C) is
p-compact subset of Xx. Suppose that there is a family {Ha}aeA of p-closed
subsets of Xt such that {Hx}xe A is filtered downwards,

but that for any a e A , / - 1 ( Q nflB ^ 0 . Since/(HJ is a P2-closed or Q2-closed
set (depending on HJ which meets C, there exists a point yeC such that

(because C is p-compact). For every ae /\, f~1{y)C\Ha ^ 0. Since f~1(y) is
p-compact, there exists a point

^/"Wn (f) H.).
a e A

But x e / ' ^ C ) contradicting our assumption that

Similarly we can show that inverse image of every P2-compact (<22-compact)
subset of X2 is P-compact ((^-compact) subset of Xt.

REMARK. The above lemma shows that the composite of two perfect mappings
is perfect. So, we may speak of the category cat B, of p-regular, p-Hausdorff
spaces and perfect mappings.

(5.4) LEMMA. Let (Xt, Plt gx) and (X2, P2, Qi) be bitopological spaces
and let f be a compact mapping from Xt onto X2. Then there is a quasi-closed
subspace F of Xt such that f(F) = X2 and such that no proper P^-closed or
Qt-closed subspace of F has this property.

PROOF. Let F be any linearly ordered p-closed family of subsets of Xt which
are mapped onto X2 by/. Then F = ( J H 6 r H is quasi-closed. Also for any yeX2

and HeT, f~1(y)CiH?±0. Because f~1(y) is p-compact, it follows that
f~1(y) C\F ¥^0. Hence f(F) = X2. The lemma now follows by an application
of Zorn's lemma.

(5.5) LEMMA. Let f be a mapping from (Xt, Pu Qt) onto (X2, Pi, Q2)
such that f does not map any proper Pvclosed, Qt-closed subset of Xt onto X2.
Then f does not map any proper semi-closed subset of Xt onto X2.

PROOF. A semi-closed set is the intersection of finite unions of Pi-closed and
Q^closed subset of Xv Since no proper Prclosed, <2i-closed subset of Xt is
mapped onto X2, it follows that no proper semi-closed subset of Xx is mapped
onto X2.
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(5.6) LEMMA. Suppose that f is a closed, continuous mapping from a space
(Xt, Pt, Qi) onto a space (X2, P2, Qi)- Suppose also that f does not map any
proper semi-closed subset of Xt onto X2. Then if H is any Px-open subset of Xlt

f(H) c [(/(H'))']Q2 and if K is any Q.-open subset of Xu f(K)

PROOF. Considering the semi-open subset

of Xi and proceeding in the similar way as that in lemma 6 of [7], we shall get

f(H) c [(/(H'))T2-
Similarly, if K is any Qi-open subset of Xt, we have

6. /7-Extremally disconnected spaces

(6.1) We begin with two examples of p-extremally disconnected spaces.

EXAMPLE 1. Let X be the real line R. Let P be the usual topology and Q be
the discrete topology. Then (X, P, Q) is p-extremally disconnected. It is
p-Hausdorff and p-regular.

EXAMPLE 2. Let X be the real line R. Define u by u(x, y) = 0 if y ^ x, u(x, y)
= 1 if y < x and v by v(x,y) = u(y,x). Let P and Q be the topologies generated
by u and v respectively. Then (X, P, Q) is p-extremally disconnected. It is not
p-Hausdorff.

(6.2) LEMMA. In a p-extremally disconnected, p-Hausdorff space, if U
and V are disjoint P-open and Q-open sets respectively, then UQ O Vp = 0.

The proof follows by lemma (3.1) and definition (2.2)

(6.3) DEFINITION. A mapping f:(Xlt Pu Qi)->(X2, P2, Q2) is said to be
homeomorphism if/is bijective and bo th /and / " 1 are continuous.

(6.4) LEMMA. Let f be a closed continuous mapping of a p-Hausdorff
space (Xt, Pj, Qj) onto a p-extremally disconnected, p-Hausdorff space
(X2, i32> Qi)- U f does not map any proper semi-closed subset of Xt onto X2,
then f is a homeomorphism.

The proof is similar to that of lemma 7 of [7].

7. Proof of the main theorem

The following proof runs on the same lines as that of Strauss [7].
Suppose that / is a psrfect mapping from a p-regular, p-Hausdorff space
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(Y, P1; Qx~) onto a p-regular, p-Hausdorff space (X, P2, Q2)\ and that g is a perfect
mapping from a p-extremally disconnected, p-regular and p-Hausdorff space
(£, P3, Q3) into (X, P2, Q2). We shall show that there is a perfect mapping h
from £ into Y such that f h - g.

Consider the subset

Z = {(e,y): g(e) =f(y)} <=(ExY, P, Q)

where P = P3 x Pt and Q = Q3 x g t . We shall first show that the projection nt

of Z onto E is perfect. It is clearly continuous for nt: E x 7 -»£ is continuous. As

it is compact because by theorem (4.9), {e} x/-1{g(e)} is p-compact; and
P-compact and Q-compact by Tychonoff's theorem. We must show that ny is
closed mapping. Let F be a P-closed subset of Z and let ee(re1(F))'. Then the
P-compact set

{«} xf~l{g(e)}

and the P-closed set F are disjoint subsets of E x Y and so by lemma (3.4), there
exists a P-open set H in E x F such that

{e} x /"1{g(e)}cif a n d F O i i = 0 .

Since {e} xf~1{g(e)} is P-compact, for some integer n,

where D; is P3-open subset of £ and Wt is P^open subset of Y for each i = 1 to n.
Now Strauss's [7] argument at this point may be repeated and we are led to
prove that n^F) is P3-closed. Similarly, n1 maps g-closed subset of Z into Q3-
closed subset of £. Hence n1 is a closed mapping.

Similarly, the projection n2 of £ x Y onto 7 is perfect.
Now by lemma (5.4), there is a quasi closed subset Zo of Z for which

TI^ZQ) = £ and no proper P-closed, Q-closed subset of Zo is mapped onto £. By
lemma (5.5) no proper semi-closed subset of Zo is mapped onto £. By lemma
(6.4), TtjJ Zo is a homeomorphism and has an inverse say a. Finally, if we put
h = n2a, h will be the required mapping.

Conversely, let (X, P, Q) be a projective space in such a category. Let G be
a P-open subset of X. We shall show that GG is P-open. Let (Z, Pt, Qr) be a
p-regular, p-Hausdorff space and let a, b be two distinct points of Z. Consider

Y = (G' x {a})U(GGx {b})c=jr xZ .

Let i be the inclusion map of Y into X x Z and TC be the projection of X x Z
onto X. Then it is easy to see that re i is a perfect mapping from Y onto X. Since X
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is projective there exists a perfect map \j/: X -* Y such that nixji = I, where / is the
identity map from X onto X. n i is one-one on (G x {b}). Therefore {//(x) = (x, b).
Since \j/ is continuous,

for all xeGQ. But

(Gx

Therefore GQ^\j/~\GQ X {ft}). Also ifx$GQ then i/̂ (x) = (x,a). So,

But i/r is continuous and (G' x {a}) is P-closed in Y and so (GQ x {ft}) is P-open
in Y. Therefore GGis P-open in X.

Similarly we can show that P-closure of any Q-open set is Q-open. Therefore
(X, P, Q) is p-extremally disconnected.

(7.1) REMARK. The intersection of cat A and cat B is precisely the category of
semi-compact, p-Hausdorff spaces and continuous maps. Since semi-compact
spaces are p-compact, P-compact and Q-compact, it follows by theorem 10 of [2]
that P = Q. Thus the intersection of cat A and cat B is precisely ^.

I express my deep sense of gratitude to Prof. V. Krishnamurthy for his
encouragement and help in the preparation of this paper.
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