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We study of a new type of multi-bump blowup solutions of the Ginzburg–Landau equation.

Multi-bump blowup solutions have previously been found in numeric simulations, asymptotic

analysis and were proved to exist via geometric construction. In the geometric construction

of the solutions, the existence of two types of multi-bump solutions was shown. One type is

exponentially small at ξ = 0, and the other type of solutions is algebraically small at ξ = 0.

So far, the first type of solutions were studied asymptotically. Here, we analyse the solutions

which are algebraically small at ξ = 0 by using asymptotic methods. This construction

is essentially different from the existing one, and ideas are obtained from the geometric

construction. Hence, this is a good example of where both asymptotic analysis and geometric

methods are needed for the overall picture.
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1 Introduction

The Ginzburg–Landau equation (GL) arises as a model equation in various problems

coming from physics, biology and chemistry. For example, in Rayleigh–Bénard con-

vection, Taylor–Couette flow, nonlinear optics, models of turbulence, superconductivity,

superfluidity and reaction–diffusion systems, it can be derived, see [3, 6, 7, 9, 15] and the

review paper [2]. More general, in ‘marginally unstable’ systems of nonlinear partial dif-

ferential equations defined on unbounded domains, the leading order behaviour of small

perturbations is described by the GL as a normal form, [8]. Since the derivation loses its

validity for large amplitude, it is of particular interest to study existence and stability of

blowup solutions to the GL.

We study the GL written in the following form

i
∂Φ

∂t
+ (1 − iε)ΔΦ+ (1 + ibε)|Φ|2Φ = 0, (1.1)

where Φ(x, t) is a complex amplitude, x ∈ Rd, ε > 0, t > 0 and b is an O(1) parameter.

Although the parameter d represents the dimension, we also consider non-integer values

of d, as will be explained in more detail later on. This equation can be obtained by
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rescaling the standard form of the GL as given in [8]. The coefficients in the equation can

be expressed in terms of the coefficients of the underlying system of partial differential

equations (PDEs), therefore we study the dynamics of the GL for a wide range of

parameters.

In this paper, we study solutions that become infinite in finite time, hence blow up.

For these solutions, a contraction of the wave packet takes place, and simultaneously the

amplitude grows and blows up. In nonlinear optics this phenomenon is called self-focusing,

where it is related to an extreme increase of the field amplitude. In plasma physics it is

called wave collapse.

In numerical simulations, sets of initial data for the GL were found such that the

solutions indeed blow up, see [5,10]. In these simulations, radially symmetric, self-similar,

multi-bump blowup solutions for the GL were found for 2 < d < 4. Here, multi-bump

is related to |Φ| having several maxima. In [5] an asymptotic analysis of these solutions

was also given. Thereafter, the existence and local uniqueness of a radially symmetric,

multi-bump, self-similar blowup solution was proved for 2 < d < 4 in [11] by using

geometric methods. These solutions only arise for dimensions d > 2, since the dimension

d = 2 is the critical dimension for the GL; it distinguishes between integrable and blowup

behaviour.

After setting ε = 0 in the GL equation (1.1) it reduces to the well-known nonlinear

Schrödinger equation (NLS). Blowup solutions of the NLS have already been studied

extensively, see [16] for a survey, and for the most recent results, see [12] and references

therein. The dimension d = 2 is also critical for the NLS. We assume ε � 1 such that

equation (1.1) is a small perturbation of the NLS.

In [5,11], the radially symmetric, self-similar solutions were analysed using the method

of dynamical rescaling, and we also use it here. This method exploits the asymptotically

self-similar behaviour of the solutions. Following [5, 11], space, time and Φ are scaled by

the factors of a suitably chosen norm of the solutions, denoted by L(t), which blows up

at the singularity,

ξ ≡ |x|
L(t)

, τ ≡
∫ t

0

1

L2(s)
ds, u(ξ, τ) = L(t)Φ(x, t). (1.2)

The corresponding norm of the rescaled solution u remains constant in time, and as a

consequence, the rescaled problem is no longer singular. The rescaled solution u satisfies

iuτ + (1 − iε)

[
uξξ +

d− 1

ξ
uξ

]
+ (1 + ibε)|u|2u+ ia(τ)(ξu)ξ = 0,

where

a = −LdL
dt

= − 1

L

dL

dτ
.

It follows from the numerical simulations that self-similar blowup behaviour, with L(t) →
0, arises when a(τ) is a positive constant and that u can be written as u(ξ, τ) = eiwτQ(ξ)

for some positive constant w that depends on the solution. After scaling τ with 1
w
, the
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Figure 1. (a) The k = 1 solution branch, the solutions with one maximum on (−∞,∞), and the

k = 2 solution branch, the solutions with two maxima on (−∞,∞), plotted in the (ε, a)-plane where

d = 3 and b = 0. (b) Final-time profiles where the amplitude |Q| is plotted as a function of the

spatial variable ξ for ε = 0.1. The solutions correspond to the *s in (a). This is a reproduction of

Figures 1.1 and 1.2 in [5].

following equation for Q can be obtained:

(1 − iε)

[
Qξξ +

d− 1

ξ
Qξ

]
− Q+ ia(ξQ)ξ + (1 + ibε)|Q|2Q = 0. (1.3)

Here the parameter a plays the role of a nonlinear eigenvalue. In [10], the constant w is

left as an unknown; this does not affect the solutions since it can be scaled out.

Moreover, the initial and asymptotic conditions for Φ, namely that Φ(x, 0) = Φ0(x) and

that |Φ| vanishes as |x| → ∞, lead to the following initial and asymptotic conditions for Q

Qξ(0) = 0, ImQ(0) = 0, (1.4)

|Q(ξ)| → 0 as ξ → ∞. (1.5)

Here we have exploited the phase invariance of the equation to define the phase of Φ at

the origin. Alternatively, we could have kept w as an unknown in (1.3) and set Q(0) = 1

as in [10].

First, we briefly summarise the results from the numerical simulations and asymptotic

analysis as given in [5] for solutions where |Q| has k maxima on the real line. There

k-solution branches are found in the (ε, a)-plane on which a symmetric solution with k

maxima on (−∞,∞) exists for every 2 < d < 4. In Figure 1(a), which is a reproduction of

Figure 1.1 from [5], the branches for k = 1 and k = 2 where b = 0 and d = 3 are given.

These branches correspond to symmetric solutions with one maximum at ξ = 0 on the

real line, k = 1, and with two maxima, k = 2, on the real line. The latter solutions (k = 2)

have a minimum at ξ = 0. The norm |Q| of the solutions as found on the upper and lower

parts of both branches at ε = 0.1, the points indicated by the *s, are given in Figure 1(b).

Every k-solution branch consists of two parts, which coalesce. The solutions on the

upper part of the branch are smooth perturbations of the solutions found for the NLS.

Note that the intersection point of this part of the branch with ε = 0 axis corresponds
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exactly to the NLS solutions. However, solutions on the lower part of the branch are not

a simple perturbation of the solutions of the NLS. In this paper, we focus on solutions

as found on the lower part of the k-solution branches.

Note that there is a clear distinction between solutions for which k is even and for

which it is odd. When k is odd the k-solution has a maximum at ξ = 0, on the other

hand for even k it has a minimum at ξ = 0. In the numerical simulations, the maxima

that lie away from ξ = 0 are found for a small in the range ξ = O( 1
a
) and just to the left

of ξ = 2
a
, which is the point where the linearisation of (1.3) has a turning point. Thus, as

a → 0+, all these maxima are created at |ξ| = ∞.

The existence and local uniqueness proof of [11] yields for every even k two classes of

k-bump solutions for 2 < d < 4, and with 0 < a � 1, as long as certain relations between

a, d, b and ε hold. Here we give the statement of the result and refer for more details

to [11].

Theorem 1.1 ([11]) For each a > 0 sufficiently small, 2 < d < 4, b > 0 and conditions on

d, ε, b and a as given in [11] , there exists an n0(a) such that if 2 � n � n0(a) and n even,

there exist 2n locally unique k = n solutions of equation (1.3) with initial conditions (1.4)

and boundary conditions (1.5). These symmetric solutions consist of n maxima on the real

line where n
2

maxima are found on 0 < ξ < ξmax with ξmax = 2−
√
a

a
. These maxima are

strictly O(log( 1
a
)) apart. Of the 2n locally unique k = n solutions, n + 1 are characterised

by the property that |Q(ξmax)| is exponentially small; they are said to be of type L. For the

other n− 1, said to be of type R, |Q|(ξmax) is strictly O(a
3
8 ).

Moreover, the sets of solutions of types L and R can be subdivided even further by

distinguishing in the magnitude of |Q| at ξ = 0. There exist solutions for which |Q(0)| is

exponentially small in a and solutions with |Q(0)| not exponentially small but algebraically

small in a. Both cases occur in both of the sets of types L and R. From the construction

in [11], Section 6, we conclude that for the k = n solutions of type L, two of the in total

n + 1 solutions satisfy the fact that |Q(0)| is exponentially small, the rest of the n − 1

solutions have a value of |Q(0)|, which is algebraically small. The k = 2 solution of type

R (there only exists one) has a value of |Q(0)|, which is exponentially small. For n � 4,

the n− 1 solutions of type R can be subdivided into two solutions with an exponentially

small value of |Q(0)|, whereas for the rest of the n − 3 solutions, |Q(0)| is algebraically

small.

The solutions constructed in [5] are of type L with |Q(0)| exponentially small in a. In

this paper, we perform an asymptotic analysis of the other type L solutions for which |Q|
at ξ = 0 is not exponentially small in a but algebraically small in a. This analysis differs

on several major points from the one in [5] and the one for the NLS in [4]. Apart from

another analysis, we also find that these solutions differ in more than just the magnitude

of |Q(0)|. The k = 2 solutions as constructed in [5] have a maximum at O( 1
a
), this is

not true for solutions with |Q(0)| algebraically small. An important conclusion from the

analysis in this paper is that solutions that have a maximum close to O( 1
a
) also satisfy

the fact that |Q(0)| is exponentially small. In order for |Q(0)| to be algebraically small,

the maximum must lie well before O( 1
a
), hence ξbump � 1

a
must hold for the position of

the maximum ξbump. This is shown in Section 6 where the matching is performed, and
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it indeed also follows from the geometric construction proof in [11]. More specifically,

the analysis in [11] implies that the maximum of the solution lies to leading order at

ξbump = k1 log 1
a

for some positive k1. Here we find that this is indeed so and that

k1 = 1.

In this paper we construct solutions with |Q(0)| algebraically small in a, which are

of type L where the focus lies on the k = 2 solution. Extension to solutions with more

maxima in the interval can be done by extending the analysis in the so-called bump region

as done in [4] for the NLS.

Recall that solutions found in the numerical simulations have a maximum at O( 1
a
).

Hence, the solutions studied in this paper have so far not been found in numeric

simulations. Also, the solutions of type R have, to our knowledge, not been found in

numerical simulations or asymptotic analysis so far.

The stability of the type L solution with A(0) exponentially small, which was found

in [5], has been also analysed, see [14].

Remark 1.1 In [11], the analysis is performed for the case of b > 0, although it can be

extended to negative values of b. In this paper we do not assume that b is positive but

find in Section 5.1 that b > − 1
4

must hold (as long as we assume that ε > 0).

Remark 1.2 Choosing a non-integer dimension as done here is equivalent to taking d = 2

and the power of the nonlinear term is equal to 2σ for some positive σ.

2 The main result and an overview of the approach

In this section we state the main result of this paper and the method we use to ob-

tain it. By applying asymptotic analysis, we construct the k = 2 solution with |Q|
at ξ = 0 algebraically small, and a maximum at 1

δ
� 1

a
. This solution can only

be constructed when the parameters in the problem satisfy the relations as specified in

Main result For a and ε sufficiently small, 2 < d < 4, there exists a k = 2-solution branch

on which a symmetric k = 2 solution is found with a maximum at ξbump = κ
δ

� 1
a

where

δ =

(
log

1

a

)−1

, (2.1)

and κ = 1 to leading order. For this solution the value of Q at ξ = 0 is given by

Q(0) = δ
1−d
2 π

1
2

(
Γ

(
d

2

))−1

2
4−d
2 exp

[
− 1

δ

]
,

= π
1
2

(
Γ

(
d

2

))−1

2
4−d
2 a

(
log

1

a

) d−1
2

.

On this branch the parameters a, b and d satisfy

4ad−5

(
log

1

a

)2−d
e− π

a = d− 2 − 2ε

3a
(1 + 4b) . (2.2)
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Hence, Q(0) is indeed not exponentially small but algebraically small in a. The above

choice of δ is indeed of the form as was expected from the existence proof of [11], see the

Introduction.

In the region around the maximum at ξbump = κ
δ

the leading order of the solution is

given by

Q(ξ) = e− iaκ
2δ (ξ− κ

2δ )
√

2sech
(
ξ − κ

δ

)
.

Note that this expression of the solutions – with Q(0) asymptotically small – around the

maximum differs not only in the position of the maximum with the solutions where Q(0) is

exponentially small for which the maximum lies at ξ = κ̃
a
, [5] but the corresponding value

of Q at the maximum also differs. Here it is
√

2 whereas for the solutions constructed

in [5] the value is expressed in terms of κ̃.

The relation (2.2) above between the parameters is quite special; it is a balance between

an exponentially small term, the left-hand side, and an algebraically small term, the right-

hand side. Hence, the leading order of this expression is given by the right-hand side. In the

asymptotic construction of the solutions in Section 5 this leading order reduction of (2.2)

is indeed also found as a condition. The reduction gives an expression for the lower part

of a k = 2-branch similar to the k = 2-branch given in Figure 1(a). However, the branch

in Figure 1(a) is not the one given here; the solutions found in the numerics resulting

in Figure 1(a) have a maximum at O( 1
a
), whereas the above branch (2.2) corresponds to

solutions with ξmax = O( 1
δ
) � 1

a
. On the other hand, the leading order of the expression

for the bifurcation curves is in both cases, whether the bump lies at O( 1
δ
) or at O( 1

a
), the

same. It is given by the right-hand side of (2.2). This might be one of the reasons that the

solutions constructed in this paper have not yet been found in numerical simulations.

The above result is obtained by studying solutions of equation (1.3) with initial condition

(1.4) and boundary condition (1.5). As in [5, 11], we replace the boundary condition (1.5)

by a local asymptotic condition at ξ → ∞. For large ξ, it follows from the boundary

condition (1.5), |Q(ξ)| → 0, that the behaviour of the solutions is given by the dynamics

of the linear part of equation (1.3)

(1 − iε)

[
Qξξ +

(d− 1)

ξ
Qξ

]
− Q+ ia(ξQ)ξ = 0. (2.3)

For this equation, there exists a pair of linearly independent solutions for large ξ

given by

Q1 ∼ ξ−1− i
a , Q2 ∼ ξ−(d−1− i

a
)e−ia ξ22 + aεξ2

2 . (2.4)

Solution Q2 is rapidly varying as |ξ| → ∞, and has unbounded H1-norm. The solutions

we are looking for are slowly varying solutions, and hence their limiting profile for large

ξ is a multiple of Q1. The asymptotic expressions for Q1 and its derivative imply that

|ξQξ +

(
1 +

i

a

)
Q| → 0 as ξ → ∞ (2.5)

must hold, see [11]. In the NLS-limit this corresponds to solutions with finite Hamiltonian.

From the fact that Q1 decays at ∞, it follows that the boundary condition (1.5) is satisfied,
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δ
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δ
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Figure 2. Different regions on the ξ-axis. As explained in Section 2, solutions are studied in these

different regions by using asymptotic analysis, and thereafter the solutions are matched.

and therefore condition (1.5) can be omitted. Hence, from now on we study equation (1.3)

combined with conditions (1.4) and (2.5).

The approach we take to study the solutions is to divide the positive real line, ξ > 0,

into several regions, see Figure 2, where we study the Q-equation (1.3) by using asymptotic

analysis. Thereafter, we match the solutions as found in these different regions.

In one of the regions, the maximum is found at ξ = ξbump = κ
δ
, this is the so-called

bump region. In this region, we find a sech-profile for the solution, see Section 5, leading

indeed to a bump solution. The other regions lie to the left of the bump region where

ξ � ξbump – the so-called inner region – and to the right of the bump region where

ξ 
 ξbump. Moreover, the region where ξ 
 ξbump consists of the far field where ξ 
 1
a
,

and the region in between the bump region and far field where ξbump � ξ � 1
a
. In this

latter part, a WKBJ-analysis needs to be used to match the bump region to the far field.

See Figure 2 for a sketch of the ξ-axis where the different regions are indicated. The

analysis in the inner region is performed in Section 4, and that of the far field can be

found in Section 3. The matching of the inner solution to the left of the bump region is

done in Section 6, and the bump solution is matched to the far field in Section 7 via a

WKBJ-analysis.

Remark 2.1 The method we apply to obtain expression (2.1) for δ in terms of a is quite

unusual. This expression does not simply follow from the leading order analysis; it only

arises after matching higher order terms of the solution in the inner region to the solution

in the bump region, see Section 6 for a detailed explanation.

2.1 Global estimates

We can link the far field solution to the global behaviour of Q via a rigorous result that

relates the amplitude and phase of the solutions of (1.3). This relation is central in our

final analysis, yielding the parameter branch (2.2), and we will state it here.

We decompose Q into amplitude A and gradient of the phase ψ as

Q(ξ) = A(ξ)exp

(
i

∫ ξ

0

ψ(x)dx

)
, (2.6)
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the Q-equation (1.3) reduces to

Aξξ = ψ2A− d− 1

ξ
Aξ + A− A3 − ε

(
2Aξψ + Aψξ +

d− 1

ξ
Aψ

)
+ aξAψ,

ψξ = −2ψ
Aξ

A
− d− 1

ξ
ψ +

ε

A

(
Aξξ − Aψ2 +

d− 1

ξ
Aξ

)
− a

A

(
A+ ξAξ

)
− bεA2.

As in [5], we obtain from this system the following integral equation for ψ.

Lemma 2.1 The phase ψ and the amplitude A satisfy

ψ +
aξ

2
=

1

ξA2

∫ ξ

0

(2 − d)A2ψ + εxA

(
Axx − Aψ2 +

d− 1

x
Ax

)
− εbxA4 dx. (2.7)

See Lemma 4.1 in [5] for a proof of this statement.

Once the structure of the solution is determined, this expression will be evaluated upon

taking ξ → ∞, in Section 8. This yields the resulting relation between the parameters as

given in (2.2).

3 The far field behaviour when ξ 
 1
a

In this section, we consider the behaviour of Q for ξ 
 1
a
. The boundary condition (1.5)

requires that |Q| is very small in this range of ξ-values, and therefore equation (1.3) can

be approximated by the linearised equation

(1 − iε)

(
Qξξ +

d− 1

ξ
Qξ

)
− Q+ ia(ξQ)ξ = 0. (3.1)

Using the Liouville transformation Q(ξ) = e− ia
4(1−iε) ξ

2

ξ
1−d
2 W , this equation can be written

in a self-adjoint form, leading to the parabolic cylinder equation for W

Wξξ +W

(
a2ξ2

4
− 1

)
= 0, (3.2)

for 0 < a, ε � 1 and ξ 
 1. The solutions to this equation change type at the turning

point ξ = 2
a
, admitting exponentially decaying solutions for ξ < 2

a
and polynomially

decaying solutions for ξ > 2
a
.

In the far field, where ξ 
 2
a
, there exist (complex) constants μ, ν such that as for a

and ε small, solutions are given by

Q(ξ) ∼ μξ−1−i/a
(

1 + O
(

1

aξ2

))
(3.3)

or

Q(ξ) ∼ νξ1−d+i/ae−iaξ2/2eaεξ
2/2

(
1 + O

(
1

aξ2

))
,

see [5]. The first of these two solutions is slowly varying and decaying, whereas the second

is rapidly varying and growing when ε > 0. Therefore, only this first solution satisfies the
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local condition for Q(ξ) given in (2.5), implying that in the far field the solution is given

by (3.3).

In the matching procedure in Section 7, we return to the W -equation (3.2) and analyse

the solutions close to the turning point ξ = 2
a

by using the WKBJ-method.

4 Solutions in the inner region

In this section, we study the solutions in the inner region where |Q| � 1 and ξ � 1. Again,

the linearised equation (2.3) gives the leading order dynamics. Introducing the rescaling

Q(ξ) = e
− ia

4
√

1−iε ξ
2

W (y) with y = ξ√
1−iε , equation (2.3) is rescaled to

Wyy +
d− 1

y
Wy +

(
−1 +

ia

2

)
W = 0, (4.1)

to leading order. After introducing z = 2y and W = Re−y we obtain

zRzz + (d− 1 − z)Rz +

(
1 − d

2
+
ia

8
z

)
R = 0, (4.2)

which reduces to leading order – without the second R-term – to the canonical Kummer

equation. For this Kummer equation, there exist two independent solutions denoted by

M(a1, b1, z) (alternatively, denoted as the confluent hypergeometric function 1F1(a1; b1; z))

and U(a1, b1, z), where a1 = d−1
2

and b1 = d − 1. Hence, to leading order, a solution to

(4.2) is given by the linear combination

R(z) = αinM

(
d− 1

2
, d− 1, z

)
+ cUU

(
d− 1

2
, d− 1, z

)
,

where αin and cU are constants. However, the function U is singular at z = 0 and thus we

must set cU = 0.

Rescaling back to the original variables, the solution to the linearised Q equation (2.3)

is given, to leading order, by

Qin(ξ) = αine
− ia

4
√

1−iε ξ
2

e
− ξ√

1−iε M

(
d− 1

2
, d− 1,

2ξ√
1 − iε

)
, (4.3)

for some constant αin. Then, it can be verified by direct calculation and using the fact

that d
dz

(M(a, b, z)) = a
b
M(a+ 1, b+ 1, z) that the boundary condition Qξ(0) = 0 is indeed

satisfied.

Using that M(a1, b1, 0) = 1 gives that Q(0) = αin. Thus, the condition (1.4) that Q(0) is

real implies that αin must be real. Also, recall that we are constructing solutions for which

|Q| at ξ = 0 is algebraically small in a. This implies that Q(0) = αin has to be algebraically

small in a (and not exponentially small).

Remark 4.1 In [5] it is shown that in the inner region where ξ � 1, the amplitude |Q| of

the solution satisfies to leading order the so-called ground-state equation which admits a

discrete set of exponentially decaying solutions. One of them being |Q| = 0, and another
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the ground-state solution (or the Townes soliton). Here we concentrate on solutions close

to |Q| = 0 because we require Q(0) to be small.

5 Asymptotic analysis of the solutions in the bump region

Now we study the solution in the region where the maxima lie: the bump region. As was

mentioned in the Introduction, we will concentrate our analysis on solutions with one

maximum in this region.

In this section we assume a balance between the terms in the Q equation (1.3) that

contain the parameter ε, representing the perturbation away from the NLS, and the small

parameter a, and therefore set

ε = Ka,

where K > 0 and K = O(1). Note that this choice corresponds to an analog of the lower

branch of the k = 2 solutions in Figure 1(a), although the solutions given in that figure

are not the solutions constructed in this paper, see the Introduction.

As has been already explained in detail in the Introduction, we assume that the

maximum of the solution is found in the region where ξ = O( 1
δ
) and a � δ � 1. More

specifically, we assume that the peak is located at the point

ξbump =
κ

δ
, (5.1)

with a � δ � 1, and seek to determine κ. In other words, κ is defined such that the

maximum of |Q| lies exactly at κ
δ
. Furthermore, since δ is still free to be chosen, we can

fix the leading order of κ to be equal to 1, hence we take κ = 1 + hot. Note that this is

possible since δ is not a parameter in the equation (contrary to ε).

Now we focus on the region around the maximum and rescale the Q-equation (1.3) by

setting

ξ =
κ

δ
+ s. (5.2)

This leads to

(1 − iaK)

[
Qss + δ

d− 1

κ+ δs
Qs

]
− Q+ i

a

δ
((κ+ δs)Q)s + (1 + iabK)|Q|2Q = 0. (5.3)

Also, we expand both of the parameters κ and K in terms of δ and a:

κ = 1 + δκδ + · · · +
a

δ
κ a

δ
+ · · · + aκa + · · · (5.4)

K = K0 + δKδ + · · · +
a

δ
Ka

δ
+ · · · + aKa + · · ·

where we fix the leading order term of κ identical to 1. Moreover, we require that the

solution |Q| takes on a localised form that is independent of δ and a, provided that they

both are small. Up to this point in the analysis we have not assumed any condition on the

relation between powers of δ and a (apart from a � δ). To stress this, we have written

the expansions in the above form.
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We start the analysis of the Q-equation (5.3) by reducing the self-adjoint Qs terms in

this equation as much as possible. By introducing rescaling in the phase of Q

Q(s) = e− iaκ
2δ sS(s), (5.5)

the leading order self-adjoint terms are reduced and become of higher order. This

leads to

Sss − S + |S |2S = S

[
−ia

(
1 − κ(d− 1)

2(κ+ δs)
(1 − iaK)

)
− a2κ

4δ2
(κ (1 + iaK) + 2δs)

]

+ Ss

[
δ(1 − d)

κ+ δs
(1 − iaK) − ias+

a2κ

δ
K

]
+ iaKSss − iabK|S |2S. (5.6)

We now express S(s) as an asymptotic series in a and δ

S(s) = K̃0

[
S0(s) + δSδ(s) + · · · +

a2

δ2
S a2

δ2

(s) + · · · + aSa(s) + · · ·
]
, (5.7)

where K̃0 is a complex constant with |K̃0| = 1, and S0 is a real function; this can be done

because of the phase invariance of the equation.

Note that the above expansion for S has to be a consistent asymptotic expression in

the bump region. Therefore, we need, for example, that δRe(Sδ) � S0 and Im(Sδ) → 0 for

s → ±∞ (since S0 is real) in the bump region. Here Re(S), resp Im(S), is the real, resp

imaginary, part of S . Similar relations need to hold for the higher order terms. The most

common and easy way to satisfy both conditions is to assume that Re(Sδ) → 0 for s → ±∞
holds as well. It will turn out that this is not possible for both s → +∞ and s → −∞,

and therefore we will restrict the bump region to that part where δRe(Sδ) � S0. Note

that this is quite unusual when applying the method of asymptotic analysis. However, it

is not quite unexpected because the solution in the inner region – to which this bump

solution needs to be matched – contains for ξ 
 1 an exponentially decaying term and

an exponentially growing term, see Section 6.

The assumption that the maximum of |Q| lies at ξ = κ
δ
, hence at s = 0 gives that

0 = (|Q|2)ξ(ξ =
κ

δ
) = (|Q|2)s(s = 0) = 2|Q||Q|s(s = 0)

= 2

(
Re (S)

d

ds
( Re S) + Im (S)

d

ds
( Im S)

)
|s=0. (5.8)

This leads to conditions on the derivatives of the terms in the expansion for S .

Substituting the expansion of S (5.7) into the S-equation (5.6) leads at the O(1)-level to

the following equation for S0

S0,ss − S0 + |S0|2S0 = 0. (5.9)

As mentioned before, we assume the solution S0 of (5.9) to be real, so we find

S0(s) =
√

2sech (s) . (5.10)
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Rewriting this in terms of the original variable ξ gives the following leading order

expression of the Q-solution in the bump region

Q(ξ) = e− iaκ
2δ (ξ− κ

δ
)K̃0

√
2sech

(
ξ − κ

δ

)
,

where K̃0 ∈ C and |K̃0| = 1.

5.1 Higher order terms in the bump region

Now we study the equations for the higher order terms in the expansion of S; this analysis

yields an expression for the leading order terms of K and gives the range of s-values

where expansion (5.7) is asymptotic, thereby restricting the bump region.

The O(δ)-terms in equation (5.6) lead to the following equation for Sδ:

Sδ,ss − Sδ + S2
0 S̄δ + 2|S0|2Sδ = (1 − d)S0,s. (5.11)

Splitting Sδ into complex and real parts as Sδ = tδ + ivδ , we find

tδ,ss − tδ + 3S2
0 tδ = (1 − d)S0,s = fδ

vδ,ss − vδ + S2
0 vδ = 0,

where fδ is defined as the right-hand side of the equation for tδ .

The equation for tδ has two linearly independent solutions, which are given by ψ1(s) :=

S0,s and ψ2(s) := S0,s

∫ s 1
S2

0,x
dx. Here the solutions ψ1 and ψ2 are constructed in such a way

that the Wronskian is equal to 1. Furthermore, ψ1 is odd and localised, and ψ2 is even

and unbounded. Using the method of variation of constants, the general solution of the

tδ-equation is then given by

tδ = Aδψ1 + Bδψ2 − ψ1

∫ s

0

ψ2fδdx+ ψ2

∫ s

0

ψ1fδdx,

for some constants Aδ, Bδ .

From the condition (5.8) that |Q| obtains its maximum at ξ = κ
δ
, we find that tδ,s(0) = 0,

which in turn implies that Aδ = 0. After evaluating the integrals, tδ is given by

tδ = − sech2 (s)

24
√

2
[3Bδ (cosh (3s) − 9cosh (s)) + 4 ((d− 1)(1 − cosh (2s)) + 9Bδ) sinh (s)] .

(5.12)

This expression grows exponentially as |s| → ∞, more specifically,

tδ → − e|s|

6
√

2

[
3

2
Bδ ± (1 − d)

]
,

as s → ±∞. Unfortunately, the constant Bδ cannot be chosen such that tδ decays to zero

for both s → +∞ and s → −∞. However, as explained above, for a correct asymptotic

analysis we do need that the expansion for S (5.7) is an asymptotic expansion. Hence,

the condition δtδ � S0 must be satisfied for all s in the bump region. Now we can still
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choose Bδ and with this choice make certain that tδ decays to zero either as s → +∞ or

as s → −∞. It turns out (from the matching in Section 6) that it is more convenient to

choose

Bδ =
2(d− 1)

3

so that tδ decays to zero for s → +∞. This comes from the fact that the inner solution

as found in Section 4 contains a higher order term which is exponentially growing, see

expression (6.4), whereas the higher order terms in the solution found in the WKBJ-region

are exponentially small, see (7.5). Thus, we can match the exponentially growing term to

the left and not to the right. For negative values of s we restrict to that part of the bump

region where δtδ � S0 is satisfied. This implies that the bump region can only contain

those negative s-values for which |s| � log( 1
δ
).

Now we analyse the equation for vδ . Two linearly independent solutions to the vδ-

equation are given by φ1(s) := S0 and φ2(s) := S0

∫ s
0

1
S2

0
dx, where φ1 and φ2 are again

constructed in such a way that the Wronskian is identical to 1. Furthermore, φ1 is even

and localised, and φ2 is odd and unbounded. Then the general solution to the vδ-equation

is given by the linear combination

vδ = Cδφ1 + Dδφ2

for some constants Cδ, Dδ . Now, since vδ must decay to zero as s → ±∞ and φ2 is

unbounded, we need to set Dδ = 0.

The analysis at the O(δl)-level for l � 2 can be performed in a similar way, where in

the restricted bump region (where for s < 0, |s| � log 1
δ
) the expansion for S is indeed

asymptotic.

It turns out that in order to obtain an expression for the leading order term of

K , K0, in terms of the parameters d and b, we need to study the equation at O(a)-

level. After substituting expression (5.6) into equation (5.7), collecting the O(a)-terms

and separating into real and imaginary parts, with Sa = ta + iva, the equations are

given by

ta,ss − ta + 3S2
0 ta = 0,

va,ss − va + S2
0 va =

d− 3

2
S0 − sS0,s +K0S0,ss − bK0S

3
0 = ga,

where the right-hand side of the va-equation is denoted by ga. Similar to the above analysis

for tδ , we can solve both equations by using the solutions of the homogeneous equation

and the method of variations of constants. Thereafter, the requirement that the expansion

for S (5.7) must be asymptotic, yields an expression for K0.

From the analysis of the ta-equation, yielding ta = Aaψ1 + Baψ2, we do not find any

condition on the parameters in the problem, therefore we omit it here, and continue with

the study of the solution of the va-equation.

The method of variation of constants yields

va = Caφ1 + Daφ2 − φ1

∫ s

0

φ2gadx+ φ2

∫ s

0

φ1gadx.
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Now we need for an asymptotic expansion that |va| → 0 as |s| → ∞. Since φ2 is

exponentially growing, this will result in conditions on the parameters. By using that both

φ1 and ga are even, we find from assuming that |va| → 0 as |s| → ∞ that Da = 0. Moreover,

the condition

0 =

∫ ∞

0

φ1ga dx =

∫ ∞

0

φ1

[
d− 3

2
S0 − sS0,s +K0S0,ss − bK0S

3
0

]
dx,

must be satisfied. Determining the integrals, this yields

d− 2 − 2

3
K0(1 + 4b) = 0.

Hence, we find that K0 can be expressed in terms of b and d, as

K0 =
3(d− 2)

2(1 + 4b)
. (5.13)

In Section 8, we find to leading order the same expression for K0 as here by using the

integral condition (2.7) that was introduced in Section 2.1.

Recall that the coefficient K0 determines the (leading order) relation between ε and

a by ε = K0a + hot. From the fact that both ε and a are positive, we conclude that

K0 must be positive, and hence b > − 1
4

(since d > 2). Moreover, for b close (in a) to

b = − 1
4
, the above analysis can only be performed with the restriction that d − 2 is

small.

6 Matching the bump region to the inner region

In the subsequent sections, we match the solutions as found in Sections 3–5. In this

section, we match the solution in the inner region to the left-hand side of the solution in

the bump region, see Figure 2. Thereafter, in Section 7, we match the right-hand side of

the bump region to the far field by using a WKBJ-method to construct an asymptotic

solution on the real line.

By introducing y = −ξ + κ
δ
, where y > 0, 1 � y � log 1

δ
, we write the inner solution

and the bump solution in terms of this new variable y, which represents the region

where they are both valid. Then the solution in the bump region is, to leading order,

given by

Q(y) = K̃0

√
2ei

aκ
2δ ye−y, (6.1)

where |K̃0| = 1. By using the asymptotics for the Kummer solution, the solution in the

inner region becomes (in terms of y)

Qin(y) = αinπ
− 1

2Γ

(
d

2

)
2
d−3
2

(κ
δ

− y
) 1−d

2

e−i aκ2
4δ2

+i aκy2δ

[
e−y+ κ

δ + e
iπ(d−1)

2 ey− κ
δ

]
. (6.2)
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The solution (6.1) and the leading order term – the first term – in (6.2) match perfectly

upon choosing

K̃0 = exp

[
−i aκ

2

4δ2

]
,

αin = δ
1−d
2 π

1
2

(
Γ

(
d

2

))−1

2
4−d
2 exp

[
− 1

δ

]
, (6.3)

where we use that Q(0), and hence αin, must be real, see Section 4. Also, we use the fact

that κ = 1 + hot – recall that ξbump = κ
δ
.

The aim of the analysis in this paper is to construct solutions for which Q(0), and

hence αin = Q(0), is algebraically small in a (and not exponentially small). Then the above

expression for αin, (6.3), is only algebraically small when exp
[
− 1
δ

]
is algebraically small

in a. From this we can conclude that δ must be chosen such that δ 
 al for every l > 0.

Now it can also be explained that taking the bump of the solution at ξbump = O( 1
a
), as

in [5], immediately implies that Q(0) is exponentially small. Namely, choosing ξbump = O( 1
a
)

corresponds to setting δ = a in (6.3). This gives that αin, and hence Q(0), are exponentially

small.

In the subsequent analysis we will determine an expression for δ in terms of a. In order

to obtain such an expression (6.5) for δ, we focus on the second term in expansion (6.2)

of the solution in the inner region.

With the above choice of αin, expansion (6.2) becomes

Qin(y) =
√

2K̃0e
i aκy2δ

[
e−y + e− 2

δ e
iπ(d−1)

2 ey
]
. (6.4)

In the matching procedure, the second term in this expression must also be matched to a

(higher order) term of the solution valid in the bump region. Since the term is of O(e− 2
δ ),

this can only be done for suitable choices of δ.

The expansion in the bump region contains terms of O(δl1), O
(
am1

δm2

)
and O(al2 ), where

li and mi are positive integers, m2 � m1 and m1 � 2. Now we must match the O(e− 2
δ )-term

to one of these terms. Note that O(e− 2
δ )-term cannot be matched to a O(δl1)-term. In case

we match the O(e− 2
δ )-term to either a O( a

m1

δm2
)-term or a O(al2 )-term (where l2 � 1, m2 � m1,

m1 � 2), this results, in both cases, to the following leading order expression,

δ =
1

cδ log 1
a

, (6.5)

where cδ is a positive constant. Here the higher order terms that arise by equating e− 2
δ

with a O( a
m1

δm2
)-term in the resulting expression for δ are incorporated in the higher order

terms in the expression for κ (5.4).

Upon choosing δ as given in expression (6.5), we find that O(e− 2
δ ) = a2cδ . We will match

this term to a O(al2 )-term in the bump region, and therefore we need to choose 2cδ equal

to a positive integer. Thus, 2cδ = N, where N ∈ N.

Now we show that matching to the O(a)-term Sa in the bump region leads to a

contradiction. The reason for this is that the second term in (6.4) is exponentially growing

in y, but Sa = ta + iva is not growing. First, we study the behaviour of the function va.
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In Section 5.1 we assume that va decays to zero as s → ±∞. There this leads to the

condition (5.13) for K0. If we discard the assumption that va decays as s → ±∞, and

hence, this condition (5.13), the matching can indeed be performed. However, in Section

8, the integral condition (8.4) is used to determine a relation between the parameters, and

there we rediscover the same expression (5.13) for K0 as in Section 5.1. This means that

va indeed decays exponentially to zero as s → ±∞ and cannot be matched to the second

term in (6.4).

Now we analyse whether we can match to the real part, ta, of Sa. For this we need that

the second term in (6.4) is also real (to leading order). From this condition we obtain that
π(d−2)

2
= kπ, k ∈ Z, to leading order. Hence, since 2 < d < 4, this implies that d must be

either close to d = 2 or close to d = 4. We do not want to impose this extra restriction,

therefore matching to the Sa-term is not possible.

Concluding, we should match the second term in (6.4) to the O(a2)-term in the expression

for S (5.7): Sa2 = ta2 + iva2 . Therefore, we must choose

cδ = 1

so that the matching can indeed be performed.

The above analysis results in the expression

δ =

(
log

1

a

)−1

. (6.6)

Also, this gives

Q(0) = αin = π
1
2

(
Γ

(
d

2

))−1

2
4−d
2 a

(
log

1

a

) d−1
2

,

which indeed is algebraically small in a.

7 Matching the bump solution to the far field solution

In this section, we match the bump region to the far field. Recall that the far field solution

determined in Section 3 is valid as long as ξ 
 2
a
. In order to match the solution in

the far field to the solution in the bump region, we need to track the solution through

the region that lies between the bump region, where ξ = O( 1
δ
), and the region where the

far field solution is valid (where ξ 
 2
a
). In this region, the dynamics of the solution is

described by the parabolic cylinder equation (3.2) as found in Section 3. This equation

has a turning point at ξ = ξtp = 2
a

and exhibits exponential behaviour to the left, and

parabolic behaviour to the right of this turning point. We apply the WKBJ-method to

equation (3.2) to obtain the solution in this region. Close to ξtp, equation (3.2) reduces to

the Airy equation, see Section 7.1.

Upon introducing x = aξ
2
, equation (3.2) becomes

Wxx − 4

a2

[
1 − x2

]
W = 0. (7.1)
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Note that in the rescaled variable the turning point corresponds to xtp = 1. Using the

WKBJ-method we find that the solution is given by

W = (1 − x2)− 1
4

[
C−e

− 2
a

∫ x
1

√
q(s)ds + C+e

2
a

∫ x
1

√
q(s)ds

]
, (7.2)

where q(x) = 1 − x2. The integral in the exponential can be determined as

F(x) =

∫ x

1

√
q(s)ds =

1

2
x

√
1 − x2 +

1

2
arcsin x− π

4
, (7.3)

and thus, the WKBJ-solution is, in terms of the original variables, given by

Q(ξ) = e− ia
4(1−iε) ξ

2

ξ
1−d
2

(
1 − a2ξ2

4

)− 1
4 [
C−e

− 2
a
F( aξ2 ) + C+e

2
a
F( aξ2 )

]
. (7.4)

Now we match this solution to both bump solution and far field solution. First, we

match the bump solution on the right-hand side to the WKBJ-solution. For that we study

the solutions in the region where they are both valid; we introduce ξ = κ
δ

+ y, with

y > 0, 1 � y � 1
δ
. Then the solution in the bump region is given by

Q(y) = K̃0

√
2e− iaκ

2δ ye−y,

and the WKBJ-solution reduces to

Q(y) = e− iaκ2

4δ2 e− iaκ
2δ y

(
1

δ

) 1−d
2 [

C−e
−y− κ

δ
+ π

2a + C+e
κ
δ
+y− π

2a

]
, (7.5)

to leading order. Since π
2a


 κ
δ
, the second term in this expression is exponentially small,

and the solutions can be matched upon choosing

K̃0

√
2 = e− iaκ2

4δ2

(
1

δ

) 1−d
2

C−e
− κ

δ
+ π

2a .

Combining this with the expression as obtained for K̃0 in equation (6.3), and the fact that

κ = 1 + hot, yields

C− =
√

2δ
1−d
2 e

1
δ

− π
2a . (7.6)

7.1 The Airy equation

At ξ = ξtp = 2
a
, equation (3.2) has a turning point, hence close to this point the WKBJ-

approach breaks down. Around ξtp we analyse (3.2) by zooming in around the turning

point. After introducing z = 2a− 2
3 (1 − x) into (3.2) we find the Airy equation

Wzz − zW = 0.
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The solution of this equation is given by a linear combination of the Airy functions

W (z) = CAiAi(z) + CBiBi(z). (7.7)

Now we match this solution to the left of ξtp to the WKBJ-expression in (7.4). For

that we introduce ξ = 2
a

− y, with y > 0, a− 1
3 � y � 1

a
. In terms of y, we find

2
a
F( a

2
ξ) = − 2

3
a

1
2 y

3
2 such that the WKBJ-solution (7.2) is to leading order given by

W (y) = a− 1
4 y− 1

4

[
C−e

2
3 a

1
2 y

3
2

+ C+e
− 2

3 a
1
2 y

3
2

]
.

Using the asymptotic expressions for y 
 1 as known for the Airy solutions, we find that

this WKBJ-solution can be matched to the Airy solution (7.7) upon choosing

C+ =
1

2
a

1
6 π− 1

2CAi, C− = a
1
6 π− 1

2CBi.

In a similar way as in [5, 13], the matching can be continued to the right-hand side of

the turning point and further into the far field. This analysis is given in detail in [13],

therefore we just give the results here and refer to this analysis. It is found that the

constants in the solutions are related as

CAi = iCBi

μ =
√

2π− 1
2 a

d−3
2 + 1

6 e
i
a

log a+i π
4CBi

Finally, combining this with the above expression for C− in (7.6) leads to

μ = 2a
d−3
2 e

i
a

log a+i π
4 δ

1−d
2 e

1
δ

− π
2a , (7.8)

completing the matching between the bump solution and the far field solution.

8 Evaluating the integral expression

In this section we evaluate the integral expression (2.7), as given in Lemma 2.1, to obtain

a relation between the parameters in the problem. The relation that we find corresponds,

to leading order, to the expression for K0, (5.13), as found in Section 5.1.

We determine the integral expression (2.7) for ξ 
 1
a
. Using the decomposition of Q in

amplitude and phase as given in (2.6), leads for ξ 
 1
a

to the following expression for A

and ψ

A =
|μ|
ξ

(
1 + O

(
1

aξ2

))
and ψ = − 1

aξ

(
1 + O

(
1

aξ3

))
. (8.1)

Substituting these asymptotic estimates into expression (2.7), it follows that for ξ 
 1
a

aξ

2
=
ξ(2 − d)

|μ|2

∫ ξ

0

A2ψdx+
ξε

|μ|2

∫ ξ

0

xA

(
Axx − Aψ2 +

d− 1

x
Ax − bA3

)
dx, (8.2)

https://doi.org/10.1017/S0956792512000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000320


Asymptotic analysis of blowup solutions of GL equation 121

where both integrals converge as ξ → ∞. Thus, letting ξ → ∞, we find the exact expression,

|μ|2 =
2(2 − d)

a

∫ ∞

0

A2ψdx+
2ε

a

∫ ∞

0

xA

(
Axx − Aψ2 +

d− 1

x
Ax − bA3

)
dx. (8.3)

To obtain the resulting parameter branch (2.2) as given in Section 2, we use the

relation (7.8) that was determined for μ in the matching analysis in Section 7. A

second estimate for μ follows from (global) estimates of both of the integral terms

in (8.3).

In order to obtain the expression for the two integrals in expression (8.3) over the whole

(positive) real line, we determine the integrals in different regions as distinguished in the

matching analysis. For this we use approximations for the amplitude A and ψ as obtained

in Sections 3–7. It turns out that the main contribution to both integrals comes from the

bump region; the other regions yield contributions that are higher order compared to the

one in the bump region.

In constructing the solution, we had to study the solution in the WKBJ-region in

Section 7. This region has a width of O( 1
a
), and hence we do need to determine the integral

over this region as well. This is different from the analysis in [5]; there this was not

necessary.

In the subsequent sections, we study the regions separately. We start every section by

stating the amplitude A and gradient of the phase ψ as found for the solution in previous

sections. Using these expressions, we obtain the integrals.

Note that all the analysis is to leading order, most of the time, we will refrain from

mentioning this. Moreover, we use in the following analysis that κ = 1 to leading order,

although we only use this in the last step of each evaluation.

8.1 The integral expression in the bump region

In this section, we integrate over the bump region where the bump is found at ξ = κ
δ
.

Hence, we integrate from ξ = −z1 + κ
δ

up to ξ = z2 + κ
δ
, where z1, z2 > 0, z1, z2 
 1,

z2 � 1
δ

and z1 � log 1
δ
. In this region, we determine from Section 5 that

ψ = −aκ

2δ

A =
√

2sech
(
ξ − κ

δ

)
.

The first integral in expression (8.3) is then given by

∫ z2+
κ
δ

−z1+ κ
δ

A2ψdx =

∫ z2

−z1
−aκ

δ
sech2(s)ds

= −2aκ

δ
= −2a

δ
,

to leading order.
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The second term in expression (8.3) can be evaluated as

∫ z2+
κ
δ

−z1+ κ
δ

xA

(
Axx − Aψ2 +

d− 1

x
Ax − bA3

)
dx

=

∫ z2

−z1
2
κ

δ

(
sech(s)

d2

ds2
(sech(s)) − a2κ2

4δ2
sech2(s) − 2bsech4(s)

)
ds

+
[
(d− 1)sech2(s)

]z2
−z1

= − 4

3δ
(1 + 4b) .

8.2 The integral expression in the inner region

In the inner region, we integrate from ξ = 0 up to κ
δ

−z1, where z1 > 0 and 1 � z1 � log 1
δ

and we find in Section 4 that

ψ = −aξ

2
, (8.4)

A = αine
−ξM

(
d− 1

2
, d− 1, 2ξ

)
. (8.5)

We evaluate most of the integrals in expression (8.3) by using the fact that the integral

can be estimated by its value at the tail; for ξ large. Hence, we use the asymptotic

expansion for the Kummer function for ξ 
 1, see [1],

M(a1, b1, 2ξ) =
Γ (b1)

Γ (a1)
(2ξ)a1−b1e2ξ + hot =

2
d−3
2

√
π
Γ

(
d

2

)
ξ

1−d
2 e2ξ + hot,

and replace the lower bound ξ = 0 of the integration by some ξ = y3 where 1 � y3 �
κ
δ

− z1. This indeed gives the leading order of the integrals since A is increasing and

remains bounded for ξ < y3.

The first integral in expression (8.3) is then given by∣∣∣∣
∫ κ

δ
−z1

0

A2ψdx =

∣∣∣∣ − a

2
α2
in

∫ κ
δ

−z1

0

xe−2x

(
M(

d− 1

2
, d− 1, 2x)

)2

dx

∣∣∣∣,
=

∣∣∣∣aπ2d−4α2
in

(
Γ

(
d

2

))2 ∫ κ
δ

−z1

y3

x2−de2xdx

∣∣∣∣,
=

∣∣∣∣aα2
in

22d−7

π

(
Γ

(
d

2

))2

[Γ [3 − d,−2x]]
κ
δ

−z1
y3

∣∣∣∣,
=

∣∣∣∣aα2
in

2d−5

π

(
Γ

(
d

2

))2

δd−2e2(
1
δ

−z1)
∣∣∣∣,

=
a

2δ
e−2z1 � a

δ

to leading order, and hence its contribution to the integral is smaller than that of the

solution in the bump region (which is of O( 1
a
)).
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The second integral in expression (8.3) is in this region also smaller than the contribution

to the integral of the bump solution. We show this in Appendix A.

8.3 The integral expression in the WKBJ-region

In the construction of the solution, the WKBJ-region runs from ξ1 = κ
δ
+z2 to ξ2 = 2

a
−y2,

where z2, y2 > 0, 1 � z2 � 1
δ

and a− 1
3 � y2 � 1

a
. Hence, this region has the size of order

O( 1
a
), therefore we do need to determine the contribution of this region to the integral

expression. Again, it will turn out that its contribution is much smaller than that of the

bump region.

In the WKBJ-region, we find from (7.4) and the relation C+ = 1
2
iC− that to leading

order

ψ = −aξ

2
(8.6)

A2 = |C−|2ξ1−d
(

1 − a2ξ2

4

)− 1
2
{
e− 4

a
F( aξ2 ) +

1

4
e

4
a
F( aξ2 )

}
,

= |C−|2ξ1−d
(

1 − a2ξ2

4

)− 1
2

e− 4
a
F( aξ2 ), (8.7)

where F is given by (7.3) and C− by (7.6), see Section 7. Here the second equality in the

expression for A2 is obtained by using that

0 > −1

3
(ay2)

3
2 = F

(
aξ2

2

)
> F

(
aξ

2

)
> F

(
aξ1

2

)

=
a

2

(κ
δ

+ z2

)
− π

4
, and hence, F

(
aξ

2

)
< 0 and

1

a
|F

(
aξ

2

)
| 
 1.

From this we conclude that the second term in A2 is exponentially small, and hence higher

order.

The first integral in expression (8.3) is then given by

∣∣∣∣
∫ ξ2

ξ1

A2ψdx

∣∣∣∣ =

∫ ξ2

ξ1

1

2
a|C−|2x2−d

(
1 − a2x2

4

)− 1
2

e− 4
a
F( ax2 )dx,

= de

∫ aξ2
2

aξ1
2

(
2

a

)2−d
|C−|2s2−d(1 − s2)− 1

2 e− 4
a
F(s)ds,

�
1

2

(
2

a

)1−d
|C−|2 max

s∈[
aξ1
2 ,

aξ2
2 ]

(s2−d(1 − s2)−1)
[
−e− 4

a
F(s)

] aξ2
2

aξ1
2

,

=
1

2

(
2

a

)1−d
|C−|2 max

{
(ay2)

−1,
( a

2δ

)2−d
} {

−e− 4
a
F(

aξ2
2 ) + e− 4

a
F(

aξ1
2 )

}
,

= max
{

2−dad−2δ1−dy−1
2 ,

a

2δ

}
e−2z2 � a

δ
(8.8)
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to leading order. Again, the contribution of the above integral is smaller than the one in

the bump region.

The second integral in expression (8.3) is determined in Appendix B.

8.4 The integrals in the far field

For the far field, we integrate over all ξ � 2
a

+ ỹ, where ỹ > 0, ỹ 
 1
a
. Then, we have

ψ = − 1

aξ
,

A = |μ|ξ−1.

Using this, the first integral in (8.3) is given by

∫ ∞

2
a
+ỹ

A2ψdx = −|μ|2
a

∫ ∞

2
a
+ỹ

x−3dx

=
|μ|2
2
a

(
2

a
+ ỹ

)−2

=
|μ|2
2
aỹ−2 � a3|μ|2.

Expression (7.8) found in Section 7.1 implies that |μ| is exponentially small, and therefore

the contribution of the far field to the first integral is certainly smaller than the one in

the bump region.

The second integral in (8.3) is obtained as

∫ ∞

2
a
+ỹ

xA

(
Axx − Aψ2 +

d− 1

x
Ax − bA3

)
dx = |μ|2

∫ ∞

2
a
+ỹ

(
− 1

a2
− d+ 3 − b|μ|2

)
x−3dx

= |μ|2 1

2

(
− 1

a2
− d+ 3 − b|μ|2

)(
2

a
+ ỹ

)−2

� |μ|2 1

2

(
3 − 1

a2
− d− b|μ|2

)
ỹ−2 � |μ|2,

which again is an exponentially small contribution to the integral.

9 The resulting relation for the parameters

In this section, we collect all the results from the sections above and substitute these into

the integral expression (8.3). This yields the following leading order relation between the

parameters

|μ|2 =
4(d− 2)

δ
− 8ε

3aδ
(1 + 4b) . (9.1)

Note that the only contribution to right-hand side comes from the bump region.
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Now we use expression (7.8) for μ, this gives

4ad−3δ2−de
2
δ

− π
a = d− 2 − 2ε

3a
(1 + 4b) ,

which, after setting δ = log 1
a
, results in relation (2.2) as given in the main result in

Section 2.

The relation consists of a balance between an exponentially small term on the left-hand

side and an algebraically small term on the right-hand side. The leading order of this

relation is given by the right-hand side and yields

ε = a
3(d− 2)

2 (1 + 4b)
.

This corresponds to relation (5.13) that was found for K0 in the bump region analysis, in

Section 5, by using

ε = Ka with K = K0 + hot.

10 Discussion

In this paper, we construct, by using asymptotic analysis, solutions to equation (1.3) for

a � 1, which correspond to blowup solutions of the GL (1.1). These solutions have a

maximum at ξbump = κ
δ

where δ = (log 1
a
)−1 and Q(0) is algebraically small in a, see

Section 2 for the statement of the main result. These solutions are essentially different

from the solutions that were constructed in [5]. To compare, these solutions of [5] have a

maximum at ξ = κ̃
a

and Q(0) is exponentially small in a. However, the bifurcation curves

on which both of the solutions are found are to leading order the same.

The solutions in [5] are found to be numerically stable under certain conditions whereas

we expect the solutions found in this paper to be unstable. They have so far not been

found in the numerical simulations in [5] and [10], nor in the numerical simulations of

the NLS in [4] (which corresponds to the choice ε = 0 and d exponentially close to d = 2

in (1.1)). In order to study the stability of the solutions analytically, a similar analytic

approach as in [13] could be performed; there the stability of solutions with Q(0) is

studied by using Evans function techniques.
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Appendix A The second term of (8.3) in the inner region

In this appendix, we determine the contribution of the solution in the inner region to the

second integral in the integral expression (8.3). Using the expressions for ψ (8.4) and A
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(8.5) and that

Ax = αine
−ξ

[
M

(
d+ 1

2
, d, 2ξ

)
−M

(
d− 1

2
, d− 1, 2ξ

)]

=
2
d−3
2 αin(d− 1)√

π(d+ 1)
Γ

(
d

2

)
ξ

1−d
2 eξ + hot,

we find∣∣∣∣∣
∫ κ

δ
−z1

0

xA

(
Axx − Aψ2 +

d− 1

x
Ax − bA3

)
dx

∣∣∣∣∣
=

∣∣∣∣∣
[
xAAx +

1

2
(d− 2)A2

] κ
δ

−z1

0

−
∫ κ

δ
−z1

0

xA2
x + xA2(ψ2 + bA2)dx

∣∣∣∣∣
=

2d−3α2
in

π

(
Γ

(
d

2

))2
∣∣∣∣∣
[
x1−de2x

(
d− 1

d+ 1
x+

d− 2

2

)] κ
δ

−z1

0

−
∫ κ

δ
−z1

y3

(
d− 1

d+ 1

)2

x2−de2x +
a2

4
x4−de2x + b

2d−3α2
in

π

(
Γ

(
d

2

))2

x3−2de4xdx

∣∣∣∣∣
= 2δ1−de− 2

δ

∣∣∣∣d− 1

d+ 1

(κ
δ

− z1

)2−d
e2( κ

δ
−z1)

−
[(

d− 1

d+ 1

)2

(−1)d2d−3Γ [3 − d,−2x] + a2(−1)d2d−7Γ [5 − d,−2x]

− δ1−de− 2
δ b24d−7(−1)2dΓ [4 − 2d,−4x]

] κ
δ

−z1

y3

∣∣∣∣
=

∣∣∣∣∣2d− 1

d+ 1
δ−1e−2z1 − 2δ1−de− 2

δ

[(
d− 1

d+ 1

)2
1

2
x2−de2x

−a2

8
x4−de2x +

1

2
δ1−de− 2

δ bx3−2de4x
] κ
δ

−z1

y3

∣∣∣∣∣
= |δ−1e−2z1

(d− 1)(d+ 3)

(d+ 1)2
− be−4z1δ−1|

=
1

δ
|b|e−4z1 � 1

δ
.

Again, this is indeed smaller than the contribution of the bump region to integral.

Appendix B The second term of (8.3) in the WKBJ-region

In the WKBJ-region, the second integral in (8.3) is evaluated using that∣∣∣∣
∫ ξ2

ξ1

xA

(
Axx − Aψ2 +

d− 1

x
Ax − bA3

)
dx

∣∣∣∣
=

∣∣∣∣∣
[
xAAx +

1

2
(d− 2)A2

]ξ2

ξ1

−
∫ ξ2

ξ1

xA2
x + xA2(ψ2 + bA2)dx

∣∣∣∣∣ .
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Now we evaluate both of these terms separately using the expressions for ψ (8.6) and A

(8.7). This second expression also gives

Aξ =
1 − d

2
ξ−1A+

a2ξ

8

(
1 − a2ξ2

4

)−1

A− |C−|ξ 1−d
2

(
1 − a2ξ2

4

)− 1
4

e− 2
a
F( aξ2 )Fξ

(
aξ

2

)

= A

[
1

2
ξ−1

(
1 − a2ξ2

4

)−1 (
1 − d+ d

a2ξ2

4

)
−

(
1 − a2ξ2

4

)− 1
2

]
.

First, we determine

[
xAAx +

1

2
(d− 2)A2

]ξ2

ξ1

=

[
A2

{
1

2

(
1 − d+ d

a2x2

4

)(
1 − a2x2

4

)−1

+
d− 2

2
− x

(
1 − a2x2

4

)− 1
2

}]ξ2

ξ1

=

[
1

4
x1−d

(
1 − a2x2

4

)− 3
2

|C−|2e− 4
a
F( ax2 )(a2x2 − 2)

−4x2−d|C−|2e− 4
a
F( ax2 )

]ξ2

ξ1

=
1

2
ξ1−d

1 |C−|2e− 4
a
F( a2 ξ1) (8ξ1 − 1)

=
4

δ
e−2z2 � 1

δ
.

Then,

∣∣∣∣
∫ ξ2

ξ1

xA2ψ2dx

∣∣∣∣ =

∣∣∣∣ − a

2

∫ ξ2

ξ1

x2A2ψdx

∣∣∣∣
�
a

2
ξ2

2

∣∣∣∣
∫ ξ2

ξ1

A2ψdx

∣∣∣∣ =
2

a

∫ ξ2

ξ1

A2ψdx � 2

δ
,

using the estimate found in (8.8).

Also, we estimate

∣∣∣∣
∫ ξ2

ξ1

xA2
xdx

∣∣∣∣=
∣∣∣∣∣
∫ ξ2

ξ1

A2

{
1

4
x−1

(
1 − a2x2

4

)−2 (
1 − d

(
1 − a2x2

4

))2

−
(

1 − a2x2

4

)− 1
2
(

1 − d

(
1 − a2x2

4

))
+ 8x

(
1 − a2x2

4

)}
dx

∣∣∣∣∣
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= |C−|2
∣∣∣∣∣
∫ ξ2

ξ1

{
1

2
x−d

(
1 − a2x2

4

)− 5
2
(

1 − d

(
1 − a2x2

4

))2

− x1−d
(

1 − a2x2

4

)−1 (
1 − d

(
1 − a2x2

4

))
+ x2−d

(
1 − a2x2

4

) 1
2

}
e− 4

a
F( ax2 )dx

∣∣∣∣∣
� |C−|2

(
2

a

)−d [
e− 4

a
F(x)

] aξ2
2

aξ1
2

{
1

4
max

s∈
[
aξ1
2 ,

aξ2
2

](s−d(1 − s2)−3(1 − d(1 − s2))2
)

−1

a
max

s∈
[
aξ1
2 ,

aξ2
2

](s1−d(1 − s2)− 3
2 (1 − d(1 − s2))

) 2

a2
max

s∈
[
aξ1
2 ,

aξ2
2

](s2−d)}
� 8δ−1e−2z2 � δ−1.

Finally,

∫ ξ2

ξ1

xA4dx = |C−|4
∫ ξ2

ξ1

x3−2d

(
1 − a2x2

4

)−1

e− 8
a
F( ax2 )dx

= |C−|4
∫ aξ2

2

aξ1
2

(
2

a

)4−2d

s3−2d(1 − s2)−1e− 8
a
F(s)ds

=
1

4
|C−|4

(
2

a

)3−2d [
−e− 8

a
F(s)

] aξ2
2

aξ1
2

max
s∈

[
aξ1
2 ,

aξ2
2

](s3−2d(1 − s2)− 3
2

)
= 23−2d 1

δ
e−4z2 + hot � 1

δ
. (B 1)

Hence, taking these terms together, the contribution of the WKBJ-region to the second

integral in expression (8.3) is smaller than that in the bump region.
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