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A theoretical and experimental investigation of two-dimensional (2-D) liquid curtains
(gravitationally thinning liquid sheets) is provided under conditions where the curtain
issues from a thin slot whose centreline is inclined with respect to the vertical. This
analysis is motivated in part by recent works where it has been proposed that oblique
liquid curtains (those exiting a non-vertical slot) may bend upwards against gravity
when the relevant Weber number at the slot is less than unity (We < 1). By contrast,
Weinstein et al. (J. Fluid Mech., vol. 876, 2019, R3) have proposed that such We < 1
curtains must be vertical and downward falling regardless of the inclination of the slot.
Under low-Reynolds-number (Re) conditions typical of liquid film coating operations, our
experiments show that the curtain shape follows the classic ballistic (parabolic) trajectory
in the supercritical regime (We > 1). In subcritical conditions (We < 1), experiments show
that the downward-falling curtain is vertical except in a relatively small region near the slot,
where the combined effects of viscosity and surface tension induce the so-called teapot
effect. These experimental results are confirmed by 2-D numerical simulations, which
predict the curtain behaviour ranging from highly viscous (Re = O(1)) to nearly inviscid
conditions. The one-dimensional (1-D) inviscid model of Weinstein et al. is recast in a
different form to facilitate comparisons with the 2-D model, and 1-D and 2-D results agree
favourably for supercritical and subcritical conditions. Despite the large parameter range
explored, we have found no evidence that upward-bending curtains exist in an oblique
configuration.
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1. Introduction

Gravitationally thinning liquid sheets, often called liquid curtains, are ubiquitous in
industrial operations. Applications range from liquid film coating (Weinstein & Ruschak
2004) to distillation and absorption processes (Iyer et al. 2021). Despite many studies
carried out in the past half-century, research has continued on the dynamics of liquid
curtains. Benilov (2019) recently used asymptotic methods to derive equations that
describe the trajectory of oblique liquid curtains, namely those formed from a non-vertical
slot. Under steady-state conditions, he obtained inviscid solutions in the asymptotic limits
explored, showing that the curtain trajectories solely depend on surface tension and inertial
effects. The key dimensionless parameter for characterizing such flows is the slot Weber
number,

We = ρlU�2
i H�

i
2σ

, (1.1)

where σ is the surface tension, ρl the liquid density, U�
i the mean velocity at the slot

(used to form the curtain at its top) and H�
i the slot thickness. For configurations in which

the liquid flow emanates from a downward-facing slot that is inclined to the vertical,
Benilov (2019) predicted curtain shapes that bend upwards against gravity for We < 1.
Such a behaviour was also predicted by Keller & Weitz (1957) using a simple inviscid
model. An aim of the current work is to examine the oblique configuration over a wide
range of conditions to determine if upward-bending curtains can be observed. We do
so via experiments, two-dimensional (2-D) fully viscous simulations and a simplified
one-dimensional (1-D) inviscid model. We also assess the efficacy of the 1-D inviscid
model to capture the physics associated with an oblique curtain configuration.

A key issue elucidated in the present work is the location and type of boundary
conditions appropriate for predictions using a 1-D inviscid model. In the case of the
supercritical regime where We > 1, the standard boundary condition, experimentally
confirmed in many prior works cited below, is that the angle of the slot centreline
relative to the horizontal is equal to that of the curtain at the slot (i.e. at the inlet of
the curtain flow). When We < 1 in the curtain at the slot, the liquid can accelerate to
the point where the local Weber number Wel = 1 in the flow (referred to here as the
critical location), and this occurrence influences the inlet boundary condition. The local
Weber number Wel is defined as in (1.1), once the local velocity U� and thickness H�

of the curtain replace the values at the slot. When We < 1 at the slot, experiments and
inviscid theory from prior literature indicate that the curtain centreline flowing from a
downward-facing vertically oriented slot can have an angle different from that of the
slot itself; this angle may be achieved in certain configurations to avoid a singularity
present in the governing equation at the critical location (Finnicum, Weinstein & Rushak
1993). This result was first shown by Finnicum et al. (1993), for a steady configuration
in which a constant pressure drop is applied across the curtain. Ramos (2003), Girfoglio
et al. (2017) and Torsey et al. (2021) encounter the same singularity and resolution as
in Finnicum et al. (1993) in time-dependent and steady curtain problems. Results of
Girfoglio et al. (2017) obtained for gravitational sheets confined by a one-sided air cushion
(liquid nappe) predict frequency spectra for We < 1 that agree well with experiments.
Favourable agreement between experimental and numerical predictions of the curtain
natural oscillation frequency has also been recently found by Chiatto & Della Pia (2022),
who studied unconfined gravitational sheets undergoing supercritical-to-subcritical flow
transitions. In all We < 1 cases cited above, the angle of the curtain centreline at the
slot does not equal that of the slot when a pressure drop is applied. Therefore, there are
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Shapes of liquid curtains flowing from a non-vertical slot

precedents in the literature, with experimental backing, showing that the centreline angle
of the curtain at the slot is not necessarily the same as that of the slot for conditions when
We < 1, albeit when a pressure drop is applied.

Note that the inviscid theory in these previous studies is not valid in the vicinity of the
slot as there is viscous relaxation in that region. The slot itself is embedded in a coating die,
a precision device with tight tolerances used to distribute fluid uniformly by partitioning
pressures generated predominantly from fluid viscosity (Weinstein & Ruschak 2004). As
fluid loses viscous traction with the slot to form the curtain, there is a significant amount of
flow rearrangement near the slot. Theoretical analyses of the entrance region near the slot
have been carried out in early papers by Clarke (1968), Tillett (1968), Ruschak (1980) and
Georgiou, Papanastasiou & Wilkes (1988). Additionally, it is indeed this viscous relaxation
that gives rise to the teapot effect (Kistler & Scriven 1994) when a liquid curtain is formed
from a vertical inclined plane instead of a slot. The flow rearrangement near the slot
ends after vorticity in the flow becomes negligible in response to a lack of traction at
the air–liquid interfaces. Previous literature does indicate that once the entrance flow is
appropriately accounted for, inviscid models yield accurate 1-D curtain shape predictions
that compare extremely well with experiment (see e.g. Clarke et al. 1997).

A recent paper by Weinstein et al. (2019) theorized that the curtain falls vertically
downward if We < 1 at the die slot when there is no pressure drop across the curtain
regardless of the orientation of the die slot, i.e. even if the configuration is oblique.
For such a vertical solution to exist, then, the angle of the curtain centreline is not the
same as that of the die except when the slot is vertical. Weinstein et al. (2019) show
that a singularity in the 1-D inviscid model exists at the critical location, and a vertical
downward-falling curtain is required to eliminate it. The precedence for the elimination
of the singularity is taken from prior literature discussed above when a pressure drop is
applied across the curtain (Finnicum et al. 1993; Girfoglio et al. 2017; Chiatto & Della
Pia 2022). The equations presented in those works reduce to the equations of Weinstein
et al. (2019) when there is no pressure drop, so it stands to reason that the singularity
elimination may be the same. Weinstein et al. (2019) point out that the vertical solution
does not preclude a significant flow rearrangement in the vicinity of the slot, which
enables the curtain flow to be rectified. Therefore, the extrapolation of the vertical inviscid
solution back to the slot may not intersect the slot centreline itself. Kistler & Scriven
(1994) indeed show evidence of this sort of displacement at low flow rates in the vicinity
of the die.

By contrast, Benilov (2019) asserts that, when a singularity exists in his governing
equations at the critical location, the curtain bends upwards to avoid the singularity. More
recently, Benilov (2023) performed a stability analysis on upward-bending curtains, and
concluded they are unstable. In that study, however, he does not propose an alternative
stable solution. So, a question exists as to whether upward-bending solutions are possible,
and if the downward-falling vertical solution provided by Weinstein et al. (2019) is correct.
Here, we perform experiments and use 2-D fully viscous numerical simulations to resolve
this question. At the same time, we use these results to assess the efficacy of the 1-D
inviscid model to predict curtain shapes. Through this examination, appropriate boundary
conditions extrapolated back to the slot for the inviscid model are naturally assessed, as the
viscous region near the slot does preclude the direct application of boundary conditions
there without such an examination.

The organization of this paper is as follows. In § 2, the experimental configuration
and the procedure to generate the oblique liquid curtain are described. The theoretical
frameworks of the 1-D inviscid model and 2-D numerical methods are illustrated in § 3.
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Figure 1. Schematic side view of the experimental set-up. A liquid distribution cavity and a slot in the die (see
figure 3 for more details of the die configuration) are required to generate a uniform curtain widthwise. The
curtain emanates from the slot and it is constrained between two parallel vertical Lexan walls (see figure 2 for
a corresponding perspective view of the experimental set-up).

Experimental and theoretical results are presented and discussed in § 4, and conclusions
are provided in § 5.

2. Experimental set-up and procedure

2.1. Equipment design and specifications
A side-view schematic of the experimental set-up is provided in figure 1, augmented by
pictures in figure 2. A coating die distributor (here referred to as a die), set at an oblique
angle to the horizontal, creates a liquid sheet that is held between two transparent Lexan
walls. A positive displacement pump is used to deliver the fluid with a metered volumetric
flow rate. The walls are contained within a reservoir, in which the fluid is collected below
the curtain, and it is then pumped back through the die. Continuous experiments are thus
performed, and the shapes of the liquid curtain recorded.

With the general experimental configuration being described, more details of the
experimental set-up are provided in the following. As shown in figure 2, the slot die is
supported on a rectangular Lexan holder, with flat planar vertical and parallel Lexan walls
(thickness of 0.25 cm) spaced 8.5 cm apart that serve as stabilizing edges for the curtain.
It is well known that liquid curtains need to be held at their thin edges or they contract
inwards to form a triangular-shaped sheet, with the curtain width diminishing with distance
from the slot (Kistler & Scriven 1994; Schweizer 2021; Acquaviva et al. 2023). The die
is supported by a 50◦ Nylon angled block (angle measured to within 0.3◦ accuracy by a
PT180 angle finder from R&D Instruments) and by contact with a rectangular cut-out in
the Lexan walls.

Figure 3 provides pictures of the stainless steel die used to create the liquid curtains
in the experiments. The die itself consists of two metallic pieces bolted together, with a
narrow slot formed by sandwiching a 0.3 mm thick shim between the two bolted pieces.
The slot width in the assembled die is 8.75 cm, and it is set by the passageway created via
a cut-out in the shim. A distribution cavity enables the fluid, which is delivered through
a small inlet, to distribute easily widthwise across the die. The die is a key component
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Figure 2. Pictures of the experimental set-up corresponding to the schematic in figure 1. (a) Side view of the
die orientation showing the angled block used to achieve a 50◦ angle of the slot. (b) Perspective view of the
equipment, including the die, trough, pump and recycling system.

Back cover

Plastic shim

Bolt holes Cavity

Slot width

Shim over back cover showing

slot for flow Fluid

inlet

Assembled die

Fluid inlet Bolt holes

Front cover

Slot 

(a)

(b)

(d )

(e)

(c)

Figure 3. Coating die assembly. The die comprises three parts: a back cover (a), a plastic shim (b) and a front
cover (d). The shim is 0.3 mm in thickness, and it is sandwiched between the back and front covers to make a
slot for fluid flow (c). The four indicated bolt holes in panels (a) and (d) are used to fully assemble the die (e).

of the delivery system, and its design is essential to create highly uniform liquid sheets
(Weinstein & Ruschak 2004).

The distance between the inner surfaces of the Lexan walls in figure 2 (8.5 cm) is chosen
to be slightly smaller than the 8.75 cm width of the die slot. As curtains tend to break
at their edges where the fluid velocity is retarded by edging equipment, the decreased
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width forces a small fraction of the flow to increase near the edges, which provides
additional curtain stability. Due to the thickness of the Lexan walls, all the liquid is forced
to remain in the 8.5 cm width domain. The vertical length of the curtain is limited to
10 cm by a solid Nylon platform placed below the die slot (figure 1), which minimizes
foam formation that would arise by direct impingement of the curtain in the liquid. As
a matter of fact, both the reservoir below the curtain and the elimination of foam are
necessary for smooth recirculation of the liquid solution employed in the experiments. An
Ismatec Micropump (model GJ-N25.FF16E) is used to deliver the flow, and the mass flow
rate is measured offline by pumping through an Elite Micromotion Coriolis flow meter
(model CMF010M321NU). A wide-angle SONY HDR-XR260, 8.9 megapixel camera is
used to record the curtain shapes from the side. These side-view recordings can be easily
compared with the 2-D viscous numerical simulations (§ 3.1) and the 1-D inviscid model
(§ 3.2), to reinforce the theoretical conclusions drawn about the curtain shapes in oblique
die configurations.

2.2. Fluid preparation and properties
A liquid solution of ethylene glycol (�99 % purity, VWR Chemicals) with 0.1 % active
Capstone FS-31 fluorosurfactant is employed in the experiments. The surfactant decreases
the surface tension of ethylene glycol from 50.3 to 23.3 mN m−1, as measured by a
drop-weight method at room temperature (21 ◦C) using deionized water as a measurement
standard (Gascon, Antoniades & Weinstein 2019). The viscosity of the solution is found
to be 0.2 P using a Brookfield DV-II Pro viscometer. Since ethylene glycol is hygroscopic,
care was taken to measure its viscosity at the beginning and at the end of the experiments.
It was found that the solution viscosity decreased slightly to an average of 0.18 P over
the course of experiments lasting approximately 2 h. The measured density of the solution
is 1100 kg m−3, and it is obtained using a Mettler balance and a volumetric flask. This
measurement agrees with tabulated literature values for pure ethylene glycol.

Note that ethylene glycol has been chosen as the working fluid due to its ability to wet the
Lexan walls confining the curtain (figure 2), and because it leaves little residue behind on
the walls when the curtain moves to a new location by changing the flow rate. Additionally,
the standard viscosity of ethylene glycol of 0.2 P allows the die distributor to build
sufficient back pressure, which enables excellent liquid distribution without overwhelming
the overall delivery system with extremely high pressures, which could negatively affect
the pump performance.

2.3. Standing wave observation as an experimental tool
As described by Finnicum et al. (1993), standing waves initiated by a small obstacle
carefully placed in the curtain (without breaking the curtain) may be used to determine
the local Weber number Wel. Since the local fluid speed increases downstream along the
curtain due to gravity, the local Weber number increases with distance downward from the
die slot. At locations where Wel > 1 (supercritical flow), angled standing waves emanate
from the obstacle, and where Wel < 1, standing waves cannot form (subcritical flow). The
wave angle θ (see figure 4) is related to the local Weber number at the obstacle as

sin(θ) =
√

1/Wel. (2.1)

When a curtain satisfies We > 1 at the slot exit, it also necessarily satisfies Wel > 1
everywhere in the curtain, and angled standing waves will form regardless of the obstacle
location moving downstream from the die. The angle θ decreases with increasing Wel
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Figure 4. Standing waves in the curtain induced by an obstacle: front (a) and side (b) views of the curtain.
Note that the standing waves have a slight curvature due to the increase in velocity in the curtain, as it thins and
accelerates downstream under the influence of gravity.

(see (2.1)), so it will decrease downstream along the curtain. If the curtain near the slot
satisfies We < 1, the flow will go through a transition from Wel < 1 to Wel > 1 at the
critical location, namely where Wel = 1. By carefully moving an obstacle up and down
in the curtain, the critical location may be deduced. Indeed, the wave fronts become
horizontal (i.e. θ → π/2) at the critical location when approached from below, and
eventually disappear when the obstacle moves above that location. Thus, the standing wave
observation confirms whether Wel > 1 everywhere in the curtain, as well as where the
transition from Wel < 1 to Wel > 1 occurs.

One complication in the present curtain experiments, and in fact in any curtain
experiment with surfactants, is that the local surface tension will vary along the curtain,
as the interface is created/stretched and the surfactant preferentially adsorbs with distance
downstream. Thus, the value of the local Weber number is affected by the local surface
tension, which is not constant in the curtain. However, if a surfactant is not used, the
curtain invariably will disintegrate due to point disturbances that naturally impinge from
the surroundings. Lin & Roberts (1981), De Luca & Costa (1997) and De Luca (1999)
showed that standing wave angle measurements may be used to deduce the local surface
tension in a curtain. To do so, the velocity needs to be measured, because the free-fall
equation for velocity – which arises from inviscid analysis – is not valid all the way back
to the slot where viscous effects are important (see § 1). Thus, there is a reference inviscid
velocity in the curtain that needs to be determined in an experiment.

As this study examines whether curtains undergoing a transition from Wel < 1 to Wel >

1 can bend upwards, as proposed by Benilov (2019), or are vertical and downward-falling
as theorized by Weinstein et al. (2019), we focus on the observation of standing waves
to determine when that transition occurs, without explicitly extracting the local surface
tension or velocity. This information would be needed to compare experiments to
theoretical models with correct material properties. However, the behaviour of the curtain
that we want to examine, namely being vertical or upward-bending, does not depend on
quantitative measurement: it only needs to be known if the subcritical-to-supercritical
flow transition occurs in the curtain. Therefore, we have chosen to keep the experimental
procedure simple, and to examine whether curtains are vertical or upward-bending
qualitatively, without complicating it with auxiliary quantitative measurements. By
construction, then, surface tension does not vary in the 2-D numerical framework and
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Figure 5. Sketch of the liquid curtain and relevant quantities of the 1-D inviscid model (later presented in
§ 3.2).

in the 1-D theoretical model. The 2-D numerical simulations have been thus treated as
idealized experiments for any comparisons with the 1-D model predictions in this study.

3. Theoretical and computational methodologies

The theoretical and computational methodologies employed to investigate the curtain
shapes are presented here. The numerical framework to perform 2-D viscous simulations
is described in § 3.1, while § 3.2 provides the simplified inviscid 1-D modelling.

Figure 5 shows a schematic of the curtain flow configuration. The horizontal direction of
the orthogonal Cartesian reference frame is denoted as x�, the vertical direction is denoted
as y� (oriented upwards) and g is gravitational acceleration. The origin O of the reference
frame coincides with the mean point of the inlet curtain thickness. The angle formed
between the horizontal direction and the local tangent of the curtain centreline is denoted
as α, and H� is the local thickness measured along the normal direction. The local radial
coordinate r� and the curvilinear abscissa s� of the arc-length reference frame are also
indicated. The symbol R� denotes the local radius of curvature of the curtain centreline,
and ds� is the differential arc-length. It follows, then, that the corresponding differential
angle, dϕ, may be expressed as dϕ = ds�/R�.

3.1. Two-dimensional viscous numerical simulations
The two-phase 2-D viscous flow represented by the liquid curtain interacting with an
external quiescent gaseous environment is modelled through the one-fluid formulation of
the incompressible Navier–Stokes equations (Scardovelli & Zaleski 1999), given by

∂u�
i

∂ξ�
i

= 0, (3.1a)
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ρ

(
∂u�

i
∂t�

+ u�
j
∂u�

i
∂ξ�

j

)
= −∂p�

∂ξ�
i

+ ρgi + ∂

∂ξ�
j

[
μ

(
∂u�

i
∂ξ�

j
+

∂u�
j

∂ξ�
i

)]
+ σniδS

R�
, (3.1b)

∂C
∂t�

+ ∂Cu�
i

∂ξ�
i

= 0. (3.1c)

The vectors u� = (u�
ξ�, v

�
η�) and g = (gξ�, gη�) represent the flow velocity and the

gravitational acceleration, respectively, in the reference frame Oξ�η�, which is aligned
with the axes of the die slot (see red axes and labels in figure 5). The pressure
field is denoted as p�, the mean gas–liquid interface radius of curvature as R�, the
outward-pointing normal vector to the interface as n = (nξ�, nη�) and the surface tension
coefficient as σ . The Dirac distribution function δS is equal to 1 at the interface, and 0
elsewhere. The density ρ and viscosity μ fields are discontinuous across the interface
separating the two fluids:

ρ = ρg + (ρl − ρg)C, (3.2a)

μ = μg + (μl − μg)C, (3.2b)

where the volume fraction C is a discontinuous function, equal to either 1 or 0 in the liquid
(subscript l) or gaseous (subscript g) regions, respectively. Note that, here and elsewhere,
all the dimensional quantities, except the gravitational acceleration g and the fluid material
properties (ρl, ρg, μl, μg, σ ), are denoted with the superscript �. Dimensionless quantities
are obtained by employing reference values for length and velocity, which are defined
in (3.7a,b) in § 3.2. In particular, the spatial coordinates are scaled with respect to the
curtain inlet (i.e. at x� = 0) thickness, namely ξ = ξ�/H�

i (η = η�/H�
i ), and the velocity

components are made dimensionless by means of the curtain inlet mean velocity, namely
u = u�/U�

i (v = v�/U�
i ).

The system (3.1a)–(3.1c) is solved using the finite volume method in the open-source
code BASILISK, an improved version of Gerris (Popinet 2003) that has been extensively
used and validated for plane liquid jet flow problems (e.g. Schmidt & Oberleithner
2020; Schmidt et al. 2021; Della Pia, Chiatto & de Luca 2020, 2021). The code
employs the volume-of-fluid method by Hirt & Nichols (1981) to track the interface
on a quadtree structured grid, with an adaptive mesh refinement based on a criterion
of wavelet-estimated discretization error (van Hooft et al. 2018). A multigrid solver is
employed to satisfy the incompressibility condition, while the calculation of the surface
tension term is based on the balanced continuum surface force technique (Francois et al.
2006), which is coupled with a height-function curvature estimation method to avoid the
generation of spurious currents. For exhaustive details about the code BASILISK, the
reader is referred to Popinet (2003, 2009) and to the software official website (http://
basilisk.fr).

The computational domain employed to calculate the viscous 2-D curtain flow solutions
is a square, whose side length is equal to L� = 100H�

i , as shown in figure 6(a). The square
sides are aligned with the die slot axes ξ�–η�: the obtained solution is then rotated by
αs and represented in the Ox�y� reference frame. Note that we verified the domain-size
independency of the 2-D simulation results reported in this work. In particular, we
performed simulations (not reported) for both smaller (L� = 75H�

i ) and larger (L� =
125H�

i ) domains than the one here considered, and no appreciable variations of the curtain
shapes were detected.
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ρgρl

η�
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αs
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(b)(a)

Figure 6. Sketch of the computational domain (a) and quadtree adaptive grid structure (b) employed for the
2-D viscous simulations. In (a), the reference frame aligned with the die slot axes is indicated as Oξ�η� (red
axes), while the physical system of coordinates as Ox�y� (black axes). A qualitative representation in the Ox�y�

reference frame of the curtain shape computed in supercritical conditions is reported in yellow, while black
curves highlight the curtain–ambient interfaces.

Dimensionless inflow boundary conditions are prescribed at the inlet: at the curtain slot
exit section (−1/2 < η < 1/2), we assign

u = 3
2 (1 − 4η2), (3.3a)

v = 0, (3.3b)

C = 1, (3.3c)

while for |η| > 1/2, the values u = v = C = 0 are enforced. The same values are
employed as initial conditions for the flow variables in the whole domain. To reproduce the
curtain flow of experimental conditions (i.e. Re = O(1)), a fully developed liquid parabolic
profile is employed as the streamwise velocity boundary condition (3.3a). Alternatively, a
plug profile (u = 1) is also employed to provide comparisons with inviscid 1-D model
solutions in § 4. A standard free-outflow boundary condition is enforced at the three
remaining boundaries, namely p = 0 and normal derivatives of velocity components and
volume fraction equal to zero. A quadtree-structured grid is employed in the computations,
which is characterized by a maximum level of refinement N = 9 along the curtain–ambient
interfaces, and by a dynamical refinement of the cells elsewhere (see figure 6b) according
to user-defined adaptation criteria (van Hooft et al. 2018). The N = 9 level of refinement
corresponds to a minimum cell edge length equal to �ξ� = 0.20H�

i (5 grid cells within
H�

i ).

3.2. One-dimensional inviscid model
In what follows, we derive the 1-D inviscid model governing the curtain shape in Cartesian
coordinates. Note that the 1-D model we present is mathematically equivalent to that
formulated by Weinstein et al. (2019), who derive their equations in arc-length coordinates.
However, the current formulation allows us to compare directly with the 2-D analysis of
§ 3.1 in the same coordinate system, and also allows us to elucidate some interesting 1-D
solution behaviour as will be seen.
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Shapes of liquid curtains flowing from a non-vertical slot

With reference to the x�–y� coordinate system presented in figure 5, the dimensional
equations of momentum balance are written for a slice of the thin curtain as follows:

u� du�

dx� = −sin(α)

R�

2σ

ρlH�
, (3.4a)

u� dv�

dx� = cos(α)

R�

2σ

ρlH�
− g, (3.4b)

dy�

dx� = v�

u�
, (3.4c)

where

H� = U�
i H�

i√
u�2 + v�2

,
sin(α)

R�
= y�′′y�′

(1 + y�′2)2 ,
cos(α)

R�
= y

�′′

(1 + y�′2)2 . (3.5a–c)

The velocity components along x� and y� are denoted as u� and v� , respectively, y
�′ =

dy�/dx� is the local slope and y�′′ = d2y�/dx�2.
Due to the small thickness of the curtain, (3.4a)–(3.4c) have been obtained by averaging

quantities along the thickness direction, considering constant values of the velocity
components. For an infinitely long curtain, a natural length scale L�

g for the arc-length
direction s� in figure 5 is L�

g = U�2
i /g. Using the slot height H�

i as a characteristic thickness
scale, a slender curtain naturally satisfies H�

i /L�
g � 1. When chosen in this way, the Weber

number at the slot is the only free parameter in the problem, as shown by Weinstein et al.
(2019). However, here we wish to explore the effect of gravity on the solution to determine
the possibility of upward-bending curtains, so we cannot embed gravity in a length scale.
To this end, we utilize H�

i as the only relevant scale, and introduce the Froude number as
a dimensionless group that allows the effect of gravity to be explored as

Fr = U�2
i

gH�
i
. (3.6)

The angle α defines the local slope of the curtain, tan(α) = dy�/dx�, and 1/R� is the local
curvature. For a standard ballistic trajectory, both quantities are negative. The pressure field
is assumed constant throughout the liquid curtain. The quantity Q� = U�

i H�
i is introduced

as the volumetric flow rate per unit length of the curtain, and it is constant along the flow
development.

By employing the inlet curtain velocity and thickness as reference quantities,

U�
r = U�

i , H�
r = H�

i , (3.7a,b)

the dimensionless form of the system (3.4a)–(3.4c) is obtained:

u
du
dx

= − 1
H

sin(α)

R
1

We
, (3.8a)

u
dv

dx
= 1

H
cos(α)

R
1

We
− 1

Fr
, (3.8b)

dy
dx

= v

u
, (3.8c)

where

H = 1√
u2 + v2

,
sin(α)

R
= y′′y′

(1 + y′2)2 ,
cos(α)

R
= y′′

(1 + y′2)2 , (3.9a–c)
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and y′ = dy/dx, y′′ = d2y/dx2. The Weber We and Froude Fr numbers are defined in (1.1)
and (3.6), respectively.

The system (3.8a)–(3.8c), together with (3.9a–c), is solved iteratively in MATLAB by
means of the classic fourth-order Runge–Kutta scheme, assuming as the initial tentative
solution for y′′ the distribution of the pure ballistic trajectory (namely for We = ∞) for a
given Fr. Values of the three unknown functions (u, v, y) are prescribed at the inlet section
(x = 0) as follows:

u = cos(αi), (3.10)

v = sin(αi), (3.11)

y = 0, (3.12)

with αi being the curtain centreline angle at the inlet. Although we ultimately explore
whether αi = αs or not, here we choose them to be the same for all testing conditions as
they are permitted mathematically. As can be seen by (3.10)–(3.11) and (3.8c), specifying
αi = αs sets the slope of the curtain at the slot exit since dy/dx = v/u. Although
counter-intuitive, this does not preclude any conclusions about the shape of the liquid
curtain near the slot as will be seen. In fact, as shown in § 4.4, applying (3.10)–(3.12) in the
1-D model agrees with experiment and 2-D simulations only for supercritical conditions
(We > 1), but not in subcritical regimes (We < 1).

As stated above, the 1-D model introduced here is mathematically equivalent to that of
Weinstein et al. (2019), who derived their equations in arc-length (curvilinear) coordinates.
By combining (3.8a)–(3.8c), the normal-to-curtain momentum balance equation can
indeed be easily derived:

Frl

(
1 − 1

Wel

)
= R

H
cos(α), (3.13)

where the local Froude number is defined as in (3.6), but considering local (instead of
inlet) values of velocity U� and thickness H�. Note that (3.13) is singular at the critical
location, namely where the local Weber number Wel equals unity (see also Weinstein et al.
2019). As shown in § 4.4, (3.13) is used as the key condition to check the accuracy of the
1-D model in the subcritical regime.

4. Results

4.1. Experimental measurements
The volumetric flow rate per unit length through the slot-extrusion die is varied in the
range Q� ∈ [1.23, 3.7] cm2 s−1, and the side-profile shapes of the curtain produced are
recorded via both photograph and video capture. Note that, in obtaining all images and
videos, care was taken to pre-wet the Lexan walls with ethylene glycol solution, so that the
curtain was free to take on a shape without pinning on its edges. Observations of standing
waves described in § 2.3 are used to determine if the flow is supercritical everywhere in
the curtain (We > 1), or if it manifests a subcritical-to-supercritical transition (We < 1 to
We > 1).

Figure 7 shows the standing waves associated with a flow rate of Q� = 3.7 cm2 s−1,
and it is clearly observable that the flow satisfies We > 1 near the slot exit: the curtain
is thus supercritical throughout. Figure 8 shows a side view of the curtain shape for this
supercritical condition. It is evident that the curtain centreline at its top has an oblique
angle that is identical to that of the slot, namely αi = αs = −50◦.
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Shapes of liquid curtains flowing from a non-vertical slot

Figure 7. Standing waves demonstrating that a volumetric flow rate per unit length of Q� = 3.7 cm2 s−1 leads
to Wel > 1 everywhere in the curtain (see also figure 4). The standing waves have been enhanced with a red
line to facilitate the visualization.

Slot

Wedge
50°

Lexan cutout
–50°

Liquid curtain

F
lu

id
 flo

w

Coating die

Figure 8. Side view of the curtain shape corresponding to a volumetric flow rate of Q� = 3.7 cm2 s−1 and
Wel > 1 everywhere in the curtain, as evidenced by the standing waves in figure 7. The angle of the curtain
centreline at its top is identical to that of the slot.
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(b)(a) (c)

Figure 9. Standing wave observations for a volumetric flow rate of Q� = 1.23 cm2 s−1 as (a–c) an obstacle is
moved towards the die slot. Note that the standing wave breadth approaches the horizontal (θ → π/2; see also
figure 4) as the obstacle moves upwards in the curtain. Panel (c) shows the approximate location in the curtain
where the local Weber number is equal to Wel = 1, as the waves become nearly horizontal. The standing waves
have been enhanced with red lines to facilitate their visualization.

Slot

Wedge

50°

–50°

Liquid curtain

Fluid

flow

Coating die

Lexan cutout

Figure 10. Side view of the curtain shape corresponding to a volumetric flow rate of Q� = 1.23 cm2 s−1 and a
subcritical (Wel < 1) to supercritical (Wel > 1) flow transition, as evidenced by the standing waves in figure 9.
After entrance region adjustments, the curtain becomes vertical, the centreline at its top having a different angle
from that of the slot.

Figure 9 provides a sequence of standing wave observations for a flow rate of Q� =
1.23 cm2 s−1. The sequence indicates that the Wel = 1 condition is in fact achieved within
the curtain (this occurs approximately 1 cm below the die) as per the previous discussion.
Figure 10 provides a side-view image of the liquid curtain corresponding to this flow rate.
It is clearly observed that the angle of the curtain centreline does not match that of the slot
exit, namely αi /=αs, and that the curtain shape is vertical downstream. Also observed is
the underwetting of the lip with a slight interfacial curvature (the teapot effect; see Kistler
& Scriven 1994), indicating some flow rearrangement as anticipated by Weinstein et al.
(2019).
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Name Variable Value Unit

Gas density ρg 1.177 kg m−3

Liquid density ρl 1100 kg m−3

Gas viscosity μg 1.84 × 10−5 Pa s
Liquid viscosity μl 0.02 Pa s
Surface tension coefficient σ 32.9 × 10−3 N m−1

Gravitational acceleration g 9.81 m s−2

Inlet liquid mean velocity U�
i 1.04, 0.89, 0.78, 0.39 m s−1

Inlet curtain thickness H�
i 0.3 × 10−3 m

Die slot exit angle αs 50 deg.

Table 1. Dimensional physical quantities used in the 2-D numerical simulations reported in § 4.2.

Name Relation Value

Density ratio rρ = ρg/ρl 0.001
Viscosity ratio rμ = μg/μl 0.001
Reynolds number Re = ρlU�

i H�
i /(2μl) 8.58, 7.31, 6.46, 3.23

Froude number Fr = U�2
i /(gH�

i ) 367.52, 267.34, 208.32, 51.95
Weber number We = ρlU�2

i H�
i /(2σ) 5.42, 3.95, 3.07, 0.77

Table 2. Dimensionless governing parameters used in the 2-D numerical simulations reported in § 4.2. Note
that Re, Fr and We are varied by changing the inlet velocity U�

i (see table 1).

The distinctly different flow behaviour for supercritical (We > 1) and subcritical
(We < 1) regimes was observed for all flow conditions examined in the experiments. In
supplementary material available at https://doi.org/10.1017/jfm.2023.811, we provide two
videos documenting the sequence of shapes traversed by the curtain as the flow rate is
varied in the range Q� ∈ [1.23, 3.7] cm2 s−1. The videos clearly show the transition from
angled (Wel > 1 everywhere in the curtain) to vertical (Wel = 1 in the curtain) shapes. In
the range of conditions surveyed experimentally, no upward-bending liquid curtains have
been observed.

4.2. Two-dimensional viscous simulations at low Reynolds number
To expand on the range of conditions examined experimentally, 2-D viscous numerical
simulations were performed by means of the BASILISK code. Table 1 summarizes the
dimensional quantities employed in the simulations shown in figure 11, for three cases
of supercritical regime (We > 1), and one case of subcritical regime (We < 1). Table 2
reports the corresponding dimensionless parameters. Note that the Reynolds number is
Re = O(1) for all cases, to simulate curtain flows of practical (experimental) occurrence.
Indeed, high-Reynolds-number flows are typically avoided in precision coating operations
to reduce the propensity for disturbance propagation; they are highly laminar in practice
(Weinstein & Ruschak 2004), and typical Reynolds numbers satisfy Re < 10 (Schweizer
2021).

The supercritical curtain shapes are reported in figures 11(a)–11(c), for We = 5.42, 3.95
and 3.07, respectively. The subcritical shape corresponding to We = 0.77 is shown in
figure 11(d). The curtain shapes are represented in terms of volume fraction C contour:
the liquid phase is depicted in yellow (volume fraction C = 1), the gaseous phase in blue
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Figure 11. Numerical 2-D curtain shape represented in terms of volume fraction C contour maps (C = 1 in
the liquid phase, C = 0 in the gas phase) by varying the Weber number: We = 5.42 (a); 3.95 (b); 3.07 (c);
(d) 0.77 (see also table 2). Note that the top-left white region in all panels is outside the computational domain.

(C = 0). Note that the top-left white region in all panels is outside the computational
domain, and that the spatial coordinates have been scaled with respect to the curtain inlet
thickness, namely x = x�/H�

i and y = y�/H�
i .

For all the supercritical simulations, the initial slope of the curtain centreline exhibits
an angle that coincides with that of the inlet slot (αi = αs = −50◦). Overall the curtain
shape follows the (expected) parabolic-like ballistic trajectory, with the ballistic range
decreasing as the Weber number diminishes. This is due to the effect of surface tension,
which pulls the curtain towards the vertical direction. These shapes qualitatively agree
with the supercritical experimental evidence previously shown in figure 8, as well as those
provided in the supplementary movies.

The 2-D simulation of the subcritical case We = 0.77, reported in figure 11(d), shows
that the curtain approaches a vertical shape moving downstream (y < −40). In a relatively
small region around the inlet slot, the combined effects of viscosity and surface tension
are responsible for the teapot effect (Kistler & Scriven 1994). In this region, the flow
rearrangement is such that the angle of the curtain centreline is not equal to that of the
die slot, precisely in agreement with the experimental finding already shown in figure 10.
Therefore, 2-D viscous simulations confirm the absence of upward-bending effect in the
subcritical regime.

It is worth noting that the subcritical regimes characterized by the teapot flow were
already observed by Keller & Weitz (1957) in crude experiments. Those authors, as well as
Benilov (2023), attribute the impossibility of observing the upward-bending behaviour to
the unstable nature of the solution. Our experimental and 2-D simulation results indicate,
however, that any potential upwards bending is inhibited by the viscous flow rearrangement
near the slot.
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Figure 12. Effect of the inflow velocity boundary condition on the 2-D simulation compared with the 1-D
model prediction. The solid curves represent the 2-D curtain centrelines for We = 2.5 and Re = 413.

4.3. The 2-D numerical and 1-D modelling results in the inviscid limit
We now broaden the range of Reynolds number and Froude number in the exploration
of possible solutions. In particular, we focus on low-gravity (high Fr) and inviscid (high
Re) regimes, that are not accessible in our experiments. To do so, we first validate the
1-D inviscid model predictions in this regime by detailed comparisons with the 2-D
simulations. Once established, the 1-D model suffices to explore trends.

Figure 12 shows a typical comparison between the curtain shape predicted by the 1-D
inviscid model (dashed red curve) and the curtain centreline extracted by 2-D viscous
simulations. In particular, the 2-D results have been obtained by enforcing as an inlet
boundary condition either a fully developed parabolic (Poiseuille) velocity profile (3.3a)
(continuous black curve) or a plug inlet velocity profile (u = 1; continuous blue curve);
both are chosen to have the same average velocity at the slot. The Reynolds number
in the 2-D simulations is Re = 413, a value that is sufficiently high to simulate the
inviscid limit. In both the 1-D and 2-D cases, the Weber number is We = 2.5. Overall,
a good agreement can be observed between the 1-D and the 2-D plug solutions. Note
also that, for the Poiseuille inflow boundary condition, the curtain centreline features a
larger (approximately 30 %) ballistic deflection. As discussed previously, this discrepancy
demonstrates the important effect of viscous relaxation near the slot. The 1-D inviscid
model assumes that the flow is plug across the film at each arc-length location s� (figure 5).
When a plug flow is applied in the numerical simulation at the top of the curtain, there is
little flow rearrangement required downstream as the effects of viscous traction at the slot
walls are minimized. However, when a parabolic profile having the same average velocity
at the slot as for the plug flow is implemented, there is significant vorticity in the flow that
needs to dissipate before the inviscid model is valid downstream. Although not shown here,
we have established that the inviscid 1-D model can be brought into agreement with the
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Figure 13. One-dimensional model prediction of the curtain centreline by varying We for two values of the
Froude number: Fr = 10 (a); Fr = 1000 (b).

2-D simulation with the parabolic profile by adjusting the magnitude of the plug velocity
profile in the 1-D model at the slot. This adjustment may be viewed as the effect of the
viscous entrance region on the reference velocity used in the inviscid 1-D model. The
agreement between the 1-D model and 2-D simulation shown in figure 12 is typical of all
other cases we have surveyed.

With the 1-D model thus validated, we can use its predictions to survey the parameter
space more fully. Figure 13 illustrates the influence of the Weber number on the 1-D
curtain shape for cases of low and high Froude numbers, Fr=10 and Fr = 1000, in
figures 13(a) and 13(b), respectively. The high-Froude-number regime is particularly
relevant, because the previous analysis by Benilov (2019) considered the case of low
gravity as a favourable physical scenario for the upwards bending of the curtain. All
the curves reported in figure 13 are physically consistent. For both Fr values, the
absence of surface tension (We = ∞) determines a curtain shape exactly reproducing the
standard parabolic trend of the ballistic bullet. In low-gravity conditions (Fr = 1000),
the high inertia effects inhibit the presence of high curvatures with respect to the
lower-Froude-number case (Fr = 10), therefore mitigating the influence of the surface
tension. Note that the curtain assumes the vertical behaviour as soon as the Weber number
drops below unity; for all other We subcritical values, the curtain shape remains vertical.

4.4. Influence of inlet boundary conditions in subcritical regime
As anticipated in § 3.2, the boundary conditions play a crucial role in predicting the curtain
behaviour in the subcritical regime. Therefore, the boundary condition on the curtain
location can be set, whilst the second one is that of removing the singularity at the critical
location, i.e. where Wel = 1. This has been done analytically by Weinstein et al. (2019),
who found that the inlet curtain slope angle has to be αi = −π/2, namely the curtain has
to be vertical, regardless of the slot angle αs and the subcritical Weber number We.

In the current work, the 1-D model system (3.8a)–(3.12) is solved numerically in a
different way from that of Weinstein et al. (2019). The mathematical flexibility of the
system enables two constraints to be applied at the top of the curtain. Therefore, we initially
imposed that the curtain centreline angle is the same as that of the slot, i.e. αi = αs (via
(3.10)–(3.11)), and that the location of the curtain centreline equals that of the slot, namely
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Figure 14. Curtain shape predicted by the 1-D model (a,b) and momentum imbalance error ε in the critical
location (c) by varying the curtain slope angle αi in subcritical conditions. The vertical red dashed line in
(c) denotes the value αi = αs. Here We = 0.95, Fr = 10.

y = 0 (via (3.12)). Results of the 1-D model integration performed using MATLAB are
shown in figure 14(a,b) (figure 14b represents a magnification of figure 14a near the slot
exit section), for a subcritical Weber number equal to We = 0.95. The Froude number
has been set to Fr = 10. In particular, the red dashed curve corresponds to αi = αs. It is
interesting to observe that the solver is robust enough to integrate through the singularity
(i.e. the critical location), predicting a liquid curtain which is vertical everywhere except in
a very small region near the slot. The region in which the curtain is not vertical lies within
an arc-length distance that is only 1 % of the thickness of the curtain at its top; the tight
curvature there does violate the slenderness assumption used to derive the 1-D model. For
all curtain shape predictions in figure 14(a,b), it is found, however, that the momentum
balance condition (3.13) used by Weinstein et al. (2019) is not exactly satisfied at the
critical location. This can be observed in figure 14(c), where the momentum imbalance
error ε, namely the difference between the right- and left-hand sides of (3.13), is plotted
as a function of the boundary condition αi.

Therefore, to improve the accuracy of the numerical solution at the critical location,
the computation was repeated for both higher and lower curtain slope angles in the range
αi ∈ [−π/2, 0]. It has been found that the imbalance error ε consistently decreases as the
curtain slope angle tends to αi = −π/2, which is the only value giving ε = 0 (figure 14c).
This is, in fact, a vertical liquid curtain (blue solid curve in figure 14a,b). Note that the
same trend has been obtained for all subcritical We and Fr values we surveyed.
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In summary, regardless of the Weber number, 1-D model curtain shapes issue vertically
from the slot when the flow is subcritical. This result agrees with the recent theoretical
finding by Weinstein et al. (2019). While one can retain the condition on the curtain
location at the inlet, the other condition is reserved to remove the singularity at the critical
location. Therefore, via a different form of the same equations, the conclusion that the
curtain must be vertical has been validated. It is interesting that the curtain inherently
adopts a vertical shape immediately after the slot, even when numerical errors enable
the imposition of the slope boundary condition. This indicates that the downward-falling
vertical configuration is a stable solution.

5. Conclusions

The behaviour of an oblique liquid curtain exiting a non-vertical slot and falling under the
influence of gravity, viscosity and surface tension has been investigated experimentally and
theoretically. Experimental results have been theoretically confirmed through 2-D viscous
numerical simulations performed by BASILISK, and by means of a simplified inviscid 1-D
model. Apart from the technological relevance of this class of flows in the film coating
process, one motivation of this work was to determine whether an upward bending of
the curtain, predicted theoretically by Keller & Weitz (1957) and Benilov (2019), may
be observed under subcritical conditions (We < 1 at the slot). We have found that when
We < 1 at the slot, an oblique liquid curtain attains a vertical shape everywhere except in
a relatively small region around the slot where the curtain is formed. There, viscous flow
rearrangement produces the characteristic teapot effect as is prevalent in many coating
flows. The vertical result agrees with the recent theoretical finding by Weinstein et al.
(2019), who proposed the impossibility of prescribing a slope boundary condition on
the curtain centreline at the slot exit when the die slot is inclined. The slope boundary
condition, appropriate for a 1-D model, is that the curtain must be vertical regardless of
the angle of inclination of the slot when the fluid leaves a slot under subcritical conditions.
This is precisely the condition needed to remove a singularity in the curtain that arises at
the critical location, namely where the local Weber number is 1. Note that we have not
observed upward-bending curtains in our wide parameter survey. Finally, we have once
again established the suitability of 1-D inviscid curtain models to match 2-D simulation
predictions with appropriate parameter adjustments for viscous relaxation near the slot
exit.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.811.
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