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Abstract

This paper introduces a new Lagrangian surgery construction that generalizes Lalonde–

Sikorav and Polterovich’s well-known construction, and combines this with Biran and

Cornea’s Lagrangian cobordism formalism. With these techniques, we build a framework

which both recovers several known long exact sequences (Seidel’s exact sequence,

including the fixed point version and Wehrheim and Woodward’s family version) in

symplectic geometry in a uniform way, and yields a partial answer to a long-term open

conjecture due to Huybrechts and Thomas; this also involved a new observation which

relates projective twists with surgeries.
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1. Introduction

1.1 Motivations and overview
Lagrangian cobordisms were first introduced by Arnold [Arn80a, Arn80b] and subsequently
studied by Eliashberg [Eli84], Audin [Aud85], Chekanov [Che97], etc. More recently, Biran and
Cornea, in their celebrated series of papers [BC13, BC14, BC17], considered Floer theories on
them, and have achieved great success encapsulating information of the triangulated structures
of the derived Fukaya category. A particularly attractive application is that they establish the
long-expected relation between Lagrangian surgeries [LS91, Pol91] and the mapping cones in
derived Fukaya categories.

A primary purpose of this paper is to revisit such surgery-cobordism relations with an
emphasis on applications to Dehn twists. The underlying philosophy of our approach is to
understand the functors between Fukaya categories via Lagrangian cobordisms. This functor-level
point of view has been exploited in several other contexts by many authors [WMW, WW16, AS15]
etc.

We explore this direction through the eyes of Lagrangian correspondences. Intuitively, one
may regard Lagrangian correspondences as symplectic mirrors of kernels of Fourier–Mukai
transforms. The observation is that almost all exact sequences involving Lagrangian Dehn twists
can be interpreted as cone relations between these ‘kernels’. Explicitly, Lagrangian cobordism
constructions geometrically realize all these cones on the correspondence level and provide a
completely analogous picture on the symplectic side, versus various twist constructions on derived
categories. This point of view greatly simplifies the proof of several known exact sequences and
leads to new cone relations in Floer theory such as Lagrangian CPn-twists, partially verifying a
conjecture due to Huybrechts and Thomas.

To this end, much work needs to be done on the general geometric framework. We designed a
new approach to Lagrangian surgeries called the flow surgery, which is coordinate-free and easy
to compare with other constructions such as Dehn twists. The construction also allows many
variants open for future exploration.

Another geometric observation is that Dehn twists along various projective spaces are
equivalent to Lagrangian surgeries with certain immersed spheres. Using the aforementioned
idea from the complex side, we package this information in product symplectic manifolds.

Readers who are cautious about technical conditions throughout the paper will find a list by
the end of this introduction.

1.2 Flow surgeries and flow handles
Recall that for two Lagrangians L1 t L2 = {x}, their Lagrangian surgery at x is given by adding
an explicit Lagrangian handle in the Darboux chart [LS91, Pol91]. Then a Lagrangian cobordism
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can be obtained by using ‘half’ of a Lagrangian handle of one dimension higher [BC13]. This
line of thought has led to remarkable breakthroughs in both constructions of new examples of
Lagrangian submanifolds [Pol91] and cobordism theory [BC13].

To implement this construction to Lagrangian ‘fiber sums’ (surgery along clean intersections),
the patching of local models requires delicate consideration on the choice of connections on
normal bundles. On top of that, in most of our applications, the main difficulty is to show
that the resulting manifold is Hamiltonian isotopic to certain given Lagrangians, usually those
obtained by Lagrangian Dehn twists.

Our basic idea to solve both problems at once is to use a reparametrized geodesic flow,
mimicking the original construction of the symplectic Dehn twist by Seidel, to produce a new
Lagrangian surgery operation called the flow surgery (see § 2.2). This flow surgery recovers
the usual Lagrangian surgery when the auxiliary data is chosen appropriately, but has much
better flexibility. For example, the resulting Lagrangian handle needs not be diffeomorphic to
a punctured ball (or a bundle with punctured-ball fibers in the clean surgery case). Moreover,
Biran and Cornea’s cobordism construction via surgeries is easily seen to fit into this framework.

The main examples we have are the following (see § 3 for relevant definitions).

Theorem 1.1. Consider the following embedded submanifolds in M :

(1) Sn ↪→ M is a Lagrangian sphere embedding;

(2) C ↪→ M is a spherically coisotropic submanifold embedding;

(3) S ↪→ M is a Lagrangian embedding where S is diffeomorphic to either RPn, CPn or HPn;

(4) CP ↪→ M is a projectively coisotropic submanifold embedding.

Let τSn , τC , τS and τCP denote the corresponding Dehn twists. One has the following surgery
equalities up to Hamiltonian isotopies in M ×M− (see § 2.2 for relevant notation).

(1) The graph of a Dehn twist along a sphere is the surgery of Sn×Sn with the diagonal, that
is,

(Sn × (Sn)−)#∆Sn ,E2
∆M = Graph(τ−1

Sn ). (1.1)

(2) Let C̃ ↪→ M ×M− be the Lagrangian submanifold associated to C. Then the graph of
family Dehn twist along C is the surgery of an associated Lagrangian C̃ and the diagonal,
that is,

C̃#D,E2
∆M = Graph(τ−1

C ). (1.2)

(3) The graph of projective twist along S is the surgery of two copies of S×S− along with the
diagonal, that is,

(S × S−)#Dop,E2
(S × S−)#∆S ,E2

∆M = Graph(τ−1
S ). (1.3)

(4) Let C̃P ↪→ M ×M− be the Lagrangian submanifold associated to CP . Then the graph of
family Dehn twist along CP is the surgery of two copies of the associated Lagrangian C̃P
and the diagonal, that is,

C̃P#Dop,E2
C̃P#D,E2

∆M = Graph(τ−1
CP

). (1.4)

The surgery equalities immediately lead to the existence of corresponding Lagrangian
cobordisms. Note that in case (1), a similar cobordism construction was established in [AS15]
using Lefschetz fibrations independently.
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Figure 1. A surgery with an immersed S1.

To motivate our construction, we point out a direct point of view on projective twists via
immersed Lagrangian submanifolds as follows: for each Lagrangian projective space S, there
is a naturally associated immersed Lagrangian sphere S#. Then the Dehn twist of L along S is
equivalent to performing a surgery with a copy of S# for each intersection L ∩ S.

Example 1.2. The simplest instance of a projective twist can be demonstrated concretely in
M = T ∗S1, see Figure 1. Here we consider S# ⊂ M to be an immersed circle with a unique
transverse immersed point. Here L is given by the cotangent fiber at a point, and we assume
it passes through the unique immersed point of S#. While the base is regarded as an RP1, the
surgery Lagrangian S##L is τRP1L. Here the surgery is performed through one of the branches
of S# at the immersed point.

This surgery can be recast into a Lagrangian cobordism in T ∗S1 × C. The cobordism can
be constructed so that it naively satisfies Biran and Cornea’s definition, i.e., outside T ∗S1 ×K
for some compact set K, it is a union of products between rays and immersed Lagrangian
submanifolds in T ∗S1. However, it is evident that the self-intersection cannot be clean since they
form a ray. In general, any surgery process involving resolution of an immersed point will suffer
from the same shortcoming. Therefore, we will need a modification for the Floer theory to be
well defined.

For the general case, the above approach becomes rather technical. Our key novelty is to
apply the surgery construction to Lagrangian submanifolds in product manifolds, such as the
graph of projective twists, to package the same information in a way better suited for doing Floer
theory, hence case (3). More precisely, one should imagine that the two copies of S × S− in
case (3) are obtained from breaking an immersed Lagrangian relevant to the Dehn twist, similar
to the fact that S# in Example 1.2 can be obtained as a Lagrangian surgery between two copies
of zero section.

Remark 1.3. Formal proofs will only be given in the case of Sn and CPn, since the HPn and RPn
cases will follow from the proof of CPn word by word. The common feature for these manifolds
we used is the existence of a metric gS with the following property: for any point x ∈ S, the
injectivity radius at x equals π, and S\Bx(π) is a smooth closed submanifold, where Bx(π) is
the open ball of radius π around x in the round metric on S.
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We include a detailed discussion on gradings involved in Lagrangian surgeries (see § 4), which
allows us to compute the connecting maps later on (Appendix A). But we emphasize that the
grading is a vital part of the foundation of Lagrangian surgeries for an intrinsic reason. Consider
the simple case when all the involved Lagrangians (including those considered in general surgery
constructions) are Z-graded and embedded. According to the cone relation proved in [BC13], the
algebra instructs that a surgery happen only at degree-zero cocycles. This principle was noticed
first by Paul Seidel [Sei00].

Such a principle interprets several known phenomena in a uniform way. First of all there
are two different surgeries at a single point (see [FOOO09, ch. 10]) and they should be viewed

as two different cones Cone(L0
c−→ L1) and Cone(L1[−n]

c∨[−n]
−−−−→ L0), which are a priori very

different. When the resolved intersections involve generators with different degrees, in many
cases this leads to obstructions in Floer theory, as exemplified in [FOOO09, ch. 10]. In better
situations when resolved intersections have zero degree modulo N , the surgery at least collapses
Z-gradings to Z/N -gradings. This can also be checked directly on the Maslov classes of the
surgered Lagrangians.

For our applications, we extend this principle to clean surgeries. The upshot is that, for
two graded Lagrangians L0, L1 with L0 ∩ L1 = D being a clean intersection with zero Maslov
index, L1 and L0[dim(D) + 1] can be surgered to produce a graded Lagrangian. This matches
well with predictions from homological algebra dictated by Lagrangian Floer theory with
clean intersections [FOOO09, ch. 10]. It also extends the surgery exact sequence to the clean
intersection case.

1.3 Cone relations in functor categories via Lagrangian cobordisms
From the surgery equalities in Theorem 1.1 and the corresponding cobordisms, we immediately
recover Seidel’s exact sequence and Wehrheim and Woodward’s family Dehn twist sequence on
the functor level, assuming all monotonicity conditions discussed in § 6, as follows.

Theorem 1.4 (See [Sei03, WW16, BC17], also Theorems 6.4 and 6.6). Let M be a monotone
symplectic manifold. When Sn ⊂ M is a monotone Lagrangian sphere, there is a cone in
End(TwFuk(M)).

hom(Sn,−)⊗ Sn // id

��
τSn

[1]

gg
(1.5)

When C ⊂ M is a spherically coisotropic submanifold with appropriate monotonicity
assumptions (see Theorem 6.6), there is a cone in End(TwFuk(M)).

Ct ◦ C // id

��
τC

[1]

cc

(1.6)

(Here, Ct is the transpose of a Lagrangian correspondence, and ◦ denotes the composition. See
§ 5 for the precise definitions.)

Besides invoking Biran and Cornea’s general cobordism formalism and Theorem 1.1, we
derived natural sufficient conditions for Lagrangian cobordisms to be monotone/exact in
Lemma 6.3 and 6.2, which are particularly adapted to the surgery setting.
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Through our methods, we can cover the case when C ⊂M is of codimension one, under the
assumption that π1(M) is torsion. For more general symplectic manifolds, our method reduces
the problem of proving exact sequences to only checking the monotonicity conditions as in
Theorem 6.6 for codimension one spherically coisotropic manifolds.

In another direction, since our construction holds for arbitrary symplectic manifolds, when
combined with the general framework due to Fukaya et al. [FOOO09], it yields a proof for Seidel’s
exact sequence in an arbitrary symplectic manifold.

Remark 1.5. There are interesting consequences of these cones of endofunctors of Fukaya
categories. For example, one may prove that for the Milnor fibers of any ADE-singularities, the
auto-equivalences of the Fukaya category induced by compactly supported symplectomorphisms
are split generated by those induced by compositions of Dehn twists along vanishing cycles,
modulo aligning some technical ingredients (such as establishing the cobordism theory in the
wrapped context, as pointed out to us by Sheel Ganatra). This is a generalization (though in
a weaker categorical sense) of a result in dimension 4, which says that for surface An-Milnor
fibers, any symplectomorphism is Hamiltonian isotopic to certain compositions of Dehn twists
along vanishing cycles [Eva11, Wu14]. This part will appear separately soon.

1.4 The Huybrechts–Thomas conjecture and projective twists
There is a natural extension of the Dehn twist along spheres to arbitrary rank-one symmetric
spaces, which has been known for a long time. Seidel’s long exact sequence associated to a Dehn
twist along a sphere should be viewed as the mirror of a spherical twist in derived categories
[ST01]. Also, such a cone relation on the A-side has become a foundational tool in the study of
homological mirror symmetry, especially in the symplectic Picard–Lefschetz theory [Sei08a].

Since then, how to describe the effect of the Dehn twists along a rank-one symmetric space
in Floer theory has remained a mystery.

Fortunately, one could at least formulate a conjectural algebraic expression from homological
mirror symmetry in this case. On the B-side, Huybrechts and Thomas [HT06] first defined
Pn-objects in the derived category. Recall that an object E ∈ Db(X) for a smooth projective
variety is called a Pn-object if E ⊗ ωX ∼= E and Ext∗(E , E) is isomorphic as a graded ring to
H∗(Pn,C). Then they constructed an auto-equivalence of Db(X) called the Pn -twist associated
to E , which is the Fourier–Mukai transform with kernel

Cone(Cone(E∨ � E [−2]
h̄∨×id− id×h̄−−−−−−−−→ E∨ � E)

ev−→ O∆). (1.7)

Here h̄ ∈ hom2(E , E) is a representative of the generator in cohomology. They then
conjectured the Pn-twist is exactly the mirror auto-equivalence of the one induced by a Dehn
twist along Lagrangian CPn on the derived Fukaya categories. Written explicitly in the derived
Fukaya category, the conjecture reads as follows.

Conjecture 1.6 ([HT06], see also [Har11]). Given a monotone Lagrangian CPn in M4n,
denoted by S, and a compact monotone Lagrangian L, then in DπFuk(M)

τCPn(L) ∼= Cone(Cone(hom(S,L)⊗ S[−2]
µ2(−,h)×id− id×µ2(h,−)
−−−−−−−−−−−−−−−−→ hom(S,L)⊗ S)

ev−→ L). (1.8)

Here the right-hand side is an iterated mapping cone, DπFuk(M) denotes the Karoubi
completion of the derived Fukaya category generated by compact Lagrangian branes, and
h ∈ hom2(S, S) is the Floer cochain in degree 2 representing the dual of the hyperplane class in
cohomology.
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Richard Harris studied the conjecture in A∞ context: he formulated a projective twist as
an A∞-autoequivalence of an A∞ category [Har11]. His construction spelled out a conjectural
algebraic expression about τSL in the twisted complexes of a Fukaya category (up to quasi-
isomorphisms, of course).

As an application of the surgery equalities in Theorem 1.1, we show the following cone
relations.

Theorem 1.7 (See Theorem 6.7). For any given monotone Lagrangian submanifolds L0, L1 and
S in M with minimal Maslov numbers at least two such that S is diffeomorphic to CPn, there
is a quasi-isomorphism of cochain complexes

CF ∗(L0, τSL1)
∼= Cone(CF ∗(S,L1)⊗ CF ∗−2(L0, S) → CF ∗(S,L1)⊗ CF ∗(L0, S) → CF ∗(L0, L1)). (1.9)

Here, the right-hand side is an iterated mapping cone. That is, we used Cone(A → B → C)
as a shorthand for Cone(Cone(A→ B) → C) for chain complexes A,B and C. On the categorical
level, Biran and Cornea’s cobordism framework and (1.3) imply a cone relation between product
Lagrangians, and this translates, using the M’au–Wehrheim–Woodward functor [WMW], into
a cone relation between endofunctors. This allows one to verify the (A∞) Fukaya categorical
version of the conjecture in the monotone case.

Theorem 1.8 (See Theorem 6.10). Huybrechts–Thomas conjecture 1.6 is true modulo determi-
nation of connecting maps.

The proof of Theorem 1.8 follows from the construction of a cobordism representing an
iterated cone on the functor level, see Theorem 1.1 and Lemma 4.18. With some extra work, our
proof implies that, on the A∞ level, our geometric expression matches Harris’s construction up
to quasi-isomorphisms. Our method applies well on RPn or HPn, as well as their family versions
(see Theorem 6.11). However, even if all the geodesics on a Lagrangian are closed, our method
cannot apply when the geodesics do not have a common period. Examples of these manifolds
include free quotient of spheres by finite groups of order greater than two, and their Dehn twists
are studied in a forthcoming paper by the authors.

We should mention that the A∞ version should also hold for Fukaya categories of exact
symplectic manifolds: however, at the time of writing, the construction of infinitesimal Fukaya
categories is not fully carried out, and the wrapped version of Lagrangian cobordism theory in
the present situation requires independent efforts (see [Gao17]).

Remark 1.9. While it is not difficult to find examples of Lagrangian RPn in problems in
symplectic topology ([She15], [Wu14] etc.), the search of interesting examples of Lagrangian
CPn is more intriguing. In [HT06] the authors suggested several sources of Pn-objects in derived
categories. An interesting instance is given by sheaves pulled back from the zero section of a
holomorphic Lagrangian fibration on a hyperkähler manifold. From the Strominger–Yau–Zaslow
(SYZ) point of view, this should correspond to a Lagrangian CPn section on the SYZ mirror.
While the role of Pn objects on either side of mirror symmetry remains widely open so far, it is
interesting to know whether such objects split generate either side of mirror symmetry.

Another significant source of Lagrangian projective spaces is due to Manolescu [Man07].
In particular, he constructed a family of exact symplectic manifolds which admit certain
symplectic fibrations. The monodromies of such fibrations are closely related to projective twists.
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Conjecturally, the Khovanov–Rozansky homology of a link can be recovered by HF (L,L′), where
L is certain Lagrangian submanifold on the fiber, and L′ is the parallel transport of L back to
the same fiber over a path on the base. Therefore, it seems that the projective twist formula
should imply interesting information on Khovanov–Rozansky homology, which will be explored
in the future.

Remark 1.10. In a different direction, the Pn-cone relation should be interesting in understanding
some basic problems in symplectic topology, such as mapping class groups of a symplectic
manifold and the search of exotic Lagrangian submanifolds. For instance, while a Lagrangian
CPn-twist is always smoothly isotopic to identity (see [Sei00, Proposition 4.6]), it is usually not
Hamiltonian isotopic to identity. A simplest model result along this line is to generalize Seidel’s
twisted Lagrangian sphere construction [Sei99]: in the plumbing of three T ∗CPn, the iterated
Dehn twists along CPn in the middle should generate an infinite subgroup of the symplectic
mapping class group. It is not as clear how to obtain a free group in the mapping class group
from two projective twists, though, as exhibited by Keating in the spherical case [Kea14].

Remark 1.11. With Theorem 1.1 the projective twist cone formula easily generalizes to RPn and
HPn. The only difference between the formulas is the grading shift of the first term, as specified
in Theorem 6.10.

RPn also gains a special feature: in this case the associated sphere S# is equivalent to RPn
equipped with a non-trivial Z2-local system in the Fukaya category (see [Dam12, AB14, She15]).
Therefore, the iterated cone relation can be packaged directly into a long exact sequence without
invoking the iterated cones.

Structure of the paper
The geometric construction on Lagrangian surgeries via flow handles is part of the technical heart
of the paper, and will occupy the first three sections: § 2 describes the basic constructions, § 3
explains how flow surgeries could be compared to Dehn twists, and § 4 investigates the grading
issues in Lagrangian surgeries in general. This proves Theorem 1.1, including the consideration
of gradings. After briefly recalling the Wehrheim–Woodward quilted theory in § 5, we give proofs
of all claimed long exact sequences in § 6. Appendix A is devoted to some computations of the
connecting maps.

Conventions

• Throughout the paper, we assume any Lagrangian submanifold L of a symplectic manifold
(M,ω) under consideration to be exact or monotone, which means the following.

– (exactness) We have ω = dα for some α ∈ Ω1(M), and α|L = df for some smooth
function f on L.

– (monotonicity) For any β ∈ π2(M,L), ω(β) = λµ(β). Here λ > 0 and µ denotes the
Maslov class, the minimal Maslov number satisfies µmin > 2, and M is compact without
boundary.

More precisely, results in §§ 2–4 do not involve Floer theory and are valid without these
assumptions.

• All Lagrangian embeddings are assumed to be proper unless specified otherwise. In most
situations, Lagrangian embeddings to M are compact even in the exact setting, while
Lagrangian embeddings to M × C are usually non-compact.
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• The Hamiltonian vector field Xh of a Hamiltonian function h is defined by ιXhω =
ω(Xh,−) = −dh and the time-t flow under Xh is denoted as φht .

• We will also denote by M− = (M,−ω) the negation of the symplectic manifold (M,ω).

1.5 A note on coefficients
Throughout this paper we will use coefficient rings Z/2 or ΛZ/2. Using characteristic zero
coefficients is possible up to checking orientations for the general framework on Lagrangian
cobordisms for [BC13, BC14]. As far as the coefficients are concerned, however, the Huybrechts–
Thomas conjecture might not hold in general for C-coefficients: for example, CP2k are not spin
thus will be constrained to Fukaya categories defined over Z/2 in many cases.

2. Dehn twist and Lagrangian surgeries

2.1 Dehn twist
Let S be a connected closed manifold equipped with a Riemannian metric g(·, ·) such that every
geodesic is closed of length 2π (i.e., the shortest period of every unit-speed geodesic is 2π). We
identify T ∗S with TS by g and switch freely between the two. The following lemma is well
known.

Lemma 2.1. The Hamiltonian σ : T ∗S → R defined by

σ(ξ) = ‖ξ‖

for all q ∈ S and ξ ∈ T ∗q S has the property that its Hamiltonian vector field Xσ generates the
normalized geodesic flow on T ∗S\{0section} (this is the flow that parallel transports every tangent
vector at unit-speed along the geodesic starting from it).

To define the Dehn twist, we need to introduce an auxiliary function. We first consider the
case when S is not diffeomorphic to a sphere. For ε > 0 small, we define a Dehn twist profile to
be a smooth function νDehn

ε : R+
→ R such that (see Figure 2):

(1) νDehn
ε (r) = 2π − r for r � ε;

(2) 0 < νDehn
ε (r) < 2π for all r < ε; and

(3) νDehn
ε (r) = 0 for r > ε.

Definition 2.2. If S is not diffeomorphic to a sphere, the model Dehn twist (τS , ν
Dehn
ε ) on T ∗S

is given by
τS(ξ) = φσνDehn

ε (‖ξ‖)(ξ)

on T ∗S − {0section} and identity on the zero section.

We will simply write τS instead of (τS , ν
Dehn
ε ).

When S is diffeomorphic to a sphere, the spherical Dehn twist profile νDehn,sp
ε is picked with

(1), (2) above replaced by:

(1′) νDehn,sp
ε (r) = π − r for r � ε; and

(2′) 0 < νDehn,sp
ε (r) < π for all r < ε.

In this case, the Dehn twist (τS , ν
Dehn,sp
ε ) is defined analogously but the antipodal map is

used to extend smoothly along the zero section instead of the identity map.
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Figure 2. A Dehn twist profile νDehn
ε when S 6= Sn.

Example 2.3. Let T ∗S1 = R/2πZ×R with coordinates (q, p) ∈ R/2πZ×R be equipped with the

standard symplectic form ωS1 = dp∧dq. For a spherical profile νDehn,sp
ε , (τS1 , νDehn,sp

ε ) is defined
by

τS1(q, p) =


(
q + νDehn,sp

ε (‖p‖) p

‖p‖
, p

)
for p 6= 0,

(q + π, 0) for p = 0.

Consider the double cover ιdouble : T ∗S1
→ T ∗RP1 = R/2πZ× R given by

ιdouble(q, p) = (2q, 1
2p) = (q̃, p̃). (2.1)

For (q̃, p̃) = ιdouble(q, p) ∈ T ∗RP1, we define

T (q̃, p̃) = ιdouble ◦ τS1(q, p)

which is independent of the choice of the preimage (q, p) of (q̃, p̃). It is an easy exercise to
show that T is Hamiltonian isotopic to τRP1 for the new Dehn twist profile under the change of
coordinates (2.1). Also, if we identify T ∗RP1 with T ∗S1 so that τS1 is well defined on T ∗RP1,
then T is also Hamiltonian isotopic to τ2

S1 for an appropriate choice of spherical profile.

This example has the following well-known immediate generalizations.

Lemma 2.4. Let ιdouble : T ∗Sn → T ∗RPn be the symplectic double cover obtained from the
double cover of the zero section. For (q̃, p̃) = ιdouble(q, p) ∈ T ∗RPn,

T (q̃, p̃) = ιdouble ◦ τSn(q, p)

is well defined and T is Hamiltonian isotopic to τRPn for an appropriate choice of auxiliary
function defining τRPn .

If n > 1, the choice of auxiliary function defining τRPn is irrelevant up to Hamiltonian isotopy.

Proof. Since the Hamiltonian function is radial and invariant under the antipodal map on Sn, the
time-t flow on T ∗RPn lifts to a time-t flow on T ∗Sn. More precisely, the function σ̃ := σ ◦ ιdouble :
T ∗Sn → R is given by σ̃(ξ) = ‖ξ‖ with respect to the pull-back bundle metric from T ∗RPn by
ιdouble so we have ιdouble ◦ φσ̃t = φσt ◦ ιdouble. In particular, we have

ιdouble ◦ φσ̃νDehn
ε (‖ξ‖)(ξ) = φσνDehn

ε (‖ιdouble(ξ)‖) ◦ ιdouble(ξ) (2.2)

for any Dehn twist profile νDehn
ε . Since the shortest period of geodesics of Sn with respect to

the pull-back Riemannian metric by ιdouble is 4π instead of 2π, the left-hand side of (2.2) equals
ιdouble ◦ τSn(ξ) when ‖ξ‖ 6= 0. The right-hand side of (2.2) equals τRPn ◦ ιdouble(ξ) when ‖ξ‖ 6= 0,
so the result follows. 2
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Figure 3. Picture of an admissible curve.

Lemma 2.5 (See [Sei00] or [Har11]). For T ∗S2 = T ∗CP1, τ2
S2 is Hamiltonian isotopic to τCP1 .

As usual, one may globalize the model Dehn twist.

Definition 2.6. A Dehn twist along S in M is a compactly supported symplectomorphism
defined by the model Dehn twist as above in a Weinstein neighborhood of S and extended by
identity outside.

For more details and the dependence of choices used to define τS , see [Sei99] and [Sei03].

2.2 Lagrangian surgery through flow handles
2.2.1 Surgery at a point. We first recall the definition of a Lagrangian surgery at a

transversal intersection point from [LS91], [Pol91] and [BC13].

Definition 2.7. Let a(s), b(s) ∈ R. A smooth curve γ(s) = a(s) + ib(s) ∈ C is called λ-admissible
if (see Figure 3):
• (a(s), b(s)) = (−s+ λ, 0) for s 6 0;
• a′(s), b′(s) < 0 for s ∈ (0, ε); and
• (a(s), b(s)) = (0,−s) for s > ε (note that b(ε) = −ε).

The part of a λ-admissible curve with s ∈ [0, ε] can be uniquely captured by νλ(r) :=
a(b−1(−r)) ∈ [0, λ]. The main property of an admissible curve can be translated into properties
of νλ as follows:

(1) νλ(0) = λ > 0, and ν ′λ(r) < 0 for r ∈ (0, ε);

(2) ν−1
λ (r) and νλ(r) have vanishing derivatives of all orders at r = λ and r = ε, respectively.

Such a function will also be called λ-admissible. We will frequently use the two equivalent
descriptions of admissibility interchangeably.

We also define a class of semi-admissible functions, by relaxing (2) to:

(2′) ν ′λ(0) = −α ∈ [−∞, 0]. Here α =∞ if νλ is admissible.

See an example of admissible and semi-admissible function in Figure 4.
Note that in all definitions of (semi-)admissibility there is an extra variable ε. We will see

that the dependence on ε is not significant in this paper: we fix ε for each pair of Lagrangian
submanifolds (L1, L2) once and for all. In any surgery constructions appearing later, the resulting
surgery manifold yields a smooth family of Lagrangian isotopic submanifolds as ε varies. In the
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Figure 4. Admissible and semi-admissible functions.

context of Dehn twists, this family becomes Hamiltonian isotopic. As a result, we will suppress
the dependence of ε unless necessary.

Given a λ-admissible curve γ, define the handle

Hγ =
{

(γ(s)x1, . . . , γ(s)xn) | s, xi ∈ R,
∑

x2
i = 1

}
⊂ Cn.

Lemma 2.8. For a λ-admissible γ, Hγ is a Lagrangian submanifold of (Cn,
∑
dxi ∧ dyi).

Proof. Let J be the standard complex structure on Cn and g(·, ·) := ω(·, J ·) be the standard flat
metric. Observe that Tγ(s)xHγ = SpanR{γ′(s)x}⊕ γ(s)TxS

n−1, for x = (x1, . . . , xn) ∈ Sn−1 ⊂ Rn.
A tangent vector in the second summand can be represented by γ(s)y = γ(s)(y1, . . . , yn), where
y ∈ Rn and g(x, y) = 0. We have

ω(γ′(s)x, γ(s)y) = −g(γ(s)′x, J(γ(s)y))

= −g(a′(s)x+ b′(s)J(x),−b(s)y + a(s)J(y))

= a′(s)b(s)g(x, y)− b′(s)a(s)g(J(x), J(y)) = 0,

where γ(s) = (a(s), b(s)). The fact that ω|γ(s)TxSn−1 = 0 is obvious, so the result follows. 2

As a consequence, we have the following corollary.

Corollary 2.9. Let L1, L2 ⊂ (M,ω) be two Lagrangians transversely intersecting at p. Let
ι : U → M be the Darboux chart around p with a standard complex structure so that ι−1(L1) ⊂
Rn and ι−1(L2) ⊂ iRn are disks centered at the origin. Then one can obtain a Lagrangian
L1#p,stL2 by attaching a Lagrangian handle ι(Hγ) to (L1 ∪ L2)\ι(U).

The Lagrangian L1#p,stL2 is called a Lagrangian surgery from L1 to L2 following [LS91,
Pol91]. Note that, the Lagrangian L2#p,stL1 obtained by performing Lagrangian surgery from
L2 to L1 is in general not even smoothly isotopic to L1#p,stL2.

Now, we present an new approach to performing Lagrangian surgery which also motivates
the definition of Lagrangian surgery along clean intersections.

Definition 2.10. Given the zero section L ⊂ T ∗L, a Riemannian metric g on L (hence inducing
a bundle metric on T ∗L), a point x ∈ L, and a choice of σ as in Lemma 2.1, we define the flow
handle Hν with respect to a λ-admissible function ν to be (see Figure 5)

Hν = {φσν(‖p‖)(p) ∈ T
∗L : p ∈ (T ∗xL)ε\{x}},

where (T ∗xL)ε denotes the cotangent vectors at x ∈ L with length 6 ε.

2496

https://doi.org/10.1112/S0010437X18007479 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007479


Dehn twist exact sequences through Lagrangian cobordism

Figure 5. A flow handle.

The following elementary fact about geodesics will be repeatedly used.

Lemma 2.11. Let L, x and Hν be as above. Let γ : [0, c] → L be a unit-speed geodesic starting
at γ(0) = x. Then there is an induced symplectic embedding T ∗[0, c] → T ∗L and

T ∗[0, c] ∩Hνα =

{(
ν(‖p‖)p
‖p‖

, p

)
∈ T ∗[0, c]

∣∣∣∣ p ∈ (0, ε], ν(p) 6 c

}
.

Proof. We have an embedding γ∗ : T [0, c] → TL. The tangent bundles can be dualized to
an embedding T ∗[0, c] → T ∗L using the standard metric on T [0, 1] and TL. To see that this
embedding is symplectic when γ is a geodesic, we can pick a geodesic ball U with a normal
coordinate system q = (q1, . . . , qn) centered at x. We can assume γ(t) = (t, 0, . . . , 0). Let
0 6= v ∈ T [0, c] and γ∗v ∈ TL. By definition, the dual of γ∗v ∈ TL, denoted by (γ∗v)∗ :=
g(−, γ∗v) ∈ T ∗L, vanishes when it is evaluated at vectors perpendicular to γ∗v. Since U is
a geodesic ball, vectors perpendicular to Rγ∗v = R∂q1 are spanned by vectors ∂q2 , . . . , ∂qn .
Therefore, (γ∗v)∗ = |v| dq1 where |v| is the norm of v measured in standard metric in [0, c]. As
a result, the embedding T ∗[0, c] → T ∗L is given by (q′, p′) 7→ (q, p) = ((q′, 0, . . . , 0), (p′, . . . , 0))
which is clearly symplectic. By definition, we have T ∗[0, c]∩Hνα = {(ν(‖p‖)p/‖p‖, p) ∈ T ∗[0, c]
| p ∈ (0, ε], ν(p) 6 c}, so the result follows. 2

Remark 2.12. The time-1 Hamiltonian flow of ν̃(‖p‖), where ν̃ ′(s) = ν(s), is φσν(‖p‖). For this
reason, the reader should keep in mind that Hν is automatically Lagrangian for any choice of
admissible ν. For our purposes, the discussion on ν will be more flexible so we suppress the role
of the actual Hamiltonian function ν̃ unless otherwise specified.

Lemma 2.13. Let Sλ(T ∗xL) be the radius λ-sphere in the cotangent plane of x. We use the
exponential map on the cotangent bundle via the identification of T ∗L and TL. If exp :
Sλ(T ∗xL) → L is an embedding, and ∂Hν ∩L= exp(Sλ(T ∗xL))⊂ L divides L into two components,
then Hν glues with exactly one of the components, as well as T ∗xL\(T ∗xL)ε, to form a smooth
Lagrangian submanifold coinciding with T ∗xL outside a compact set for a λ-admissible ν.

Proof. The only thing left to prove is the smoothness of gluing on ∂Hν = exp(Sλ(T ∗xL)). Note that
from the assumptions, λ is not a critical radius of the exponential map, hence the exponential map
is a diffeomorphism near Sλ(T ∗xL). The flow φσν(‖p‖), followed by the projection to L, is the same

as exp(ν(‖p‖) · (p/‖p‖)), which is a diffeomorphism. Therefore, near ∂Hν , the handle is a smooth
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Lagrangian section of T ∗L over the open shell exp(Bλ(T ∗xL)\Bλ−δ(T ∗xL)), which is a smooth open
submanifold of L. Here, Br(T

∗
xL) is the radius-r ball of T ∗xL centered at the origin. Moreover,

the section has vanishing derivatives for all orders on the boundary component Sλ(T ∗xL) due to
the assumption of admissibility on ν(r) near r = 0. The conclusion follows. 2

Example 2.14. One may match the Lagrangian handle Hγ and flow handle Hν for an admissible
γ and its corresponding admissible ν(r) = a(b−1(−r)) (see Definition 2.7 and the paragraph
after it) via the identification between T ∗Rn and Cn.

To see this, take an admissible curve γ(s) = (a(s), b(s)) and its flow handle Hγ . We consider
the flow handle

Hν =

{
φσν(‖p‖)(0, p) =

(
0 +

p

‖p‖
· ν(‖p‖), p

)
: p ∈ (T ∗0 Rn)ε

}
.

We now identify T ∗Rn with Cn by sending (q, p) 7→ q − ip, which matches the symplectic
form dp ∧ dq and (1/−2i) dz ∧ dz̄ = dx ∧ dy. Then by definition(

ν(‖p‖) p

‖p‖
, p

)
7→ ν(‖p‖) p

‖p‖
− ip

= (ν(‖p‖)− i‖p‖) p

‖p‖
= (a(b−1(−‖p‖)) + ib(b−1(−‖p‖))) p

‖p‖
= (a(s) + ib(s))x

by a change of variable s = b−1(−‖p‖) and x = p/‖p‖. By this identification, we will simply use
Hν to denote both handles.

Corollary 2.15. Let L1, L2 ⊂ (M,ω) be two Lagrangians transversely intersecting at p. Under
the assumption in Lemma 2.13, one can obtain a Lagrangian L1#ν

pL2 by gluing: (1) L2\U , for an
ε-neighborhood U of p; (2) the Lagrangian flow handle Hν ; and (3) an open set in L1 that glues
with Hν given by Lemma 2.13. For appropriately chosen ν, L1#ν

pL2 coincides with L1#p,stL2

defined in Corollary 2.9.

Proof. Clearly Hν glues smoothly with L2\U and the open set in L1 by Lemma 2.13, and the
result is a smooth Lagrangian submanifold. Let ν(x) = a(b−1(−x)) be chosen as in Example 2.14
for an admissible curve. The flow handle is then identified with the standard Lagrangian handle
defined by Lalonde and Sikorav, and Polterovich. 2

The following lemma addresses the independence of the surgery Lagrangians on the choice
of profile functions.

Lemma 2.16. If L1 is simply-connected, and the surgery profile and the injectivity radius of the
exponential map at x satisfies ν(0) < injg(x), then the Hamiltonian isotopy type of the surgery
Lagrangian is independent of the choice of ν(r).

Proof. For any two flow handles with different surgery profiles, there is a Lagrangian isotopy
between them by a family of flow handles. We want to show that this Lagrangian isotopy can be
extended to a symplectic isotopy using (a minor modification of) Banyaga’s isotopy extension
theorem [MS98, Theorem 3.19].
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Let W be a Weinstein neighborhood of L1 and N be a neighborhood of a flow handle in W .
Following the proof of [MS98, Theorem 3.19], it is sufficient to show that the relative cohomology
H2(W,∂W ∪N ;R) vanishes. But this cohomology is nothing but the second cohomology of the
following space: take the Thom space of T ∗L1 (whose second cohomology vanishes when dim
L1 > 2), then collapse an additional cycle obtained from the connected sum of a fiber and the
zero section. Therefore, the vanishing of H2(W,∂W ∪ N ;R) can be obtained by the long exact
sequence of the relative cohomologies when L1 is simply connected and dim L1 > 2. When
dimL1 = 2, the long exact sequence reads

H1(L1;R) ∼= H1(D2#L1, S
1;R) → H2(W,∂W ∪D2#L1;R) → H2(W,∂W )

→ H2(D2#L1, S
1;R).

The last arrow is an isomorphism by restriction of the Thom form, hence the first arrow is
again surjective. The rest of the argument will then go through. To argue the symplectic isotopy
obtained by Banyaga’s argument is Hamiltonian, use the assumption of simply-connectedness
again. 2

We give two examples of flow handles that are different from standard handles.

Example 2.17. Let r(p) be the injectivity radius of p. For different choices of ν(r) with ν(0) <
r(p), these handles will define a family of different Lagrangian surgeries which are all Lagrangian
isotopic to each other.

The situation becomes more interesting when ν(0) > r(p). Some simple instances are given
by S = RPn, CPn or any finite cover of rank-one symmetric space. Take CPn and its standard
Fubini–Study metric as an example, for any p ∈ S, the flow surgery can be performed for
kr(p) < ν(0) < (k+1)r(p) for any k ∈ Z. Later we will see that such surgeries are indeed iterated
surgeries in the ordinary sense in Lemma 3.3 (although surgeries along clean intersections will
be involved).

Example 2.18. A less standard example is essentially given by exotic spheres in [Sei14]. Given
any f ∈ Diff+(Sn−1), one may form an exotic sphere Sf = B−

⋃
f B+ by gluing two copies B±

of Bn via f . There is a Riemannian metric on Sf so that all geodesics starting from the origins
0± ∈ B± are closed, passing through both 0±, and of the same length [Sei14, Lemma 2.1]. Take
p = 0− ∈ B−. When λ is below the injectivity radius, the corresponding flow handle surgery is
the original one considered in [Pol91]. When ν(0) > r(p), the generalized surgery defined above
is identified with an iterated surgery along p and q = 0+ ∈ B+ in a successive order, which is
exactly the family constructed in [Sei14] by the geodesic flow.

The following lemma can be found in [Sei99], but we feel that it is instructive to sketch its
proof from the point of view of flow handles to make our discussion complete.

Lemma 2.19 [Sei99]. Let x ∈ Sn be a point and consider L = τSn(T ∗xS
n) ⊂ T ∗Sn. Then

Sn#ν
xT
∗
xS

n is Hamiltonian isotopic to L through a compactly supported Hamiltonian, where
ν is an admissible function such that ν(0) < r(x), the injectivity radius of x under the round
metric.

Proof. Let Sn be equipped with the round metric such that every embedded closed geodesic has
length 2π. This induces a metric on T ∗Sn which we will use throughout. Denote by A : Sn → Sn

the antipodal map.
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We consider two embeddings of open geodesic balls Bπ(x) ↪→ Sn and Bπ(A(x)) ↪→ Sn into
the zero section, which are of radius π, and centered at x and A(x), respectively. Also fix a
normal coordinate system on each of these balls, which induces a trivialization (and a chart) on
T ∗Bπ(x) and T ∗Bπ(A(x)).

The two embeddings give two symplectomorphisms fx : T ∗Bπ(x) → T ∗Sn\T ∗A(x)S
n and

fA(x) : T ∗Bπ(A(x)) → T ∗Sn\T ∗xSn. Indeed, these symplectomorphisms come from the definition
of the canonical symplectic form on a cotangent bundle, which patches the forms dp∧ dq for the
two local charts on the zero section as above. Recall the notation of spherical Dehn twist profile
from the paragraph following Lemma 2.1, and ε is an arbitrary small positive constant. Under
these symplectomorphisms we have by Lemma 2.11

f−1
x (L) =

{(
νDehn,sp
ε (‖p‖) p

‖p‖
, p

)
∈ T ∗Bπ(x) : p ∈ Rn\{0}

}
and

f−1
A(x)(L) =

{(
π − νDehn,sp

ε (‖p‖)) p

‖p‖
, p

)
∈ T ∗Bπ(A(x)) : p ∈ Bε(0)

}
.

Here, we use the properties that Bπ(x) ↪→ Sn are geodesic ball embeddings.
On the other hand, suppose ν = νλ is such that νλ(0) = λ < π = r(x) (see § 2.2.1). Then

f−1
x (Hνλ) is given by

f−1
x (Hνλ) =

{(
νλ(‖p‖) p

‖p‖
, p

)
∈ T ∗Bπ(x) : p ∈ Rn\{0}

}
∪{(q, 0) ∈ T ∗Bπ(A(x)) : q ∈ Bπ(0)\Bλ(0)}.

Let δ > 0 be such that νDehn,sp
ε (r) = π − r for r < δ. We can pick νλ such that νλ(r) =

νDehn,sp
ε (r) for r > δ. The resulting Sn#νλ

x T
∗
xS

n hence coincides with L outside T ∗Bδ(A(x)).

Inside T ∗Bδ(A(x)), even though νDehn,sp
ε is not an admissible function, both Sn#νλ

x T
∗
xS

n and
L are graphs of exact 1-forms (although the primitive function does not vanish near the
boundary). Therefore, Sn#νλ

x T
∗
xS

n is Lagrangian isotopic to L by varying the primitive function
in T ∗Bδ(A(x)) but fixing them near the boundary, and hence Hamiltonian isotopic to L by a
compactly supported Hamiltonian due to the simply-connectedness of T ∗Sn and L. (Extending
an exact Lagrangian isotopy to a Hamiltonian isotopy is well known when the Lagrangian is
compact, but when the exact Lagrangian has cylindrical ends, then it requires a relative version of
Banyaga extension and the simply-connectedness assumption. See a completely parallel argument
in Lemma 2.16.) 2

Remark 2.20. Consider the setting as in Corollary 2.15. For semi-admissible να that is not
admissible, the gluing with L1 cannot be smooth in general (for example, consider a semi-
admissible profile where ν(0) < π in the case when L1 is a sphere with radius 1, then we will have
a corner locus which is the circle that we glue along). Lemma 2.19 is an instance when a surgery
using a semi-admissible profile νDehn

ε yields a smooth Lagrangian submanifold. Intuitively, the
lemma regards νDehn

ε as a degenerate case of an admissible function. The point is that, when
λ = r(p), we only need to glue Cl(Hν) with L2\U (compare with Lemma 2.13, which exemplifies
the more common case where Cl(Hν) glues with an open subset of L2), where Cl(·) denotes the
closure and U is an ε-neighborhood of p.

In the case when a semi-admissible function defines a smooth Lagrangian surgery manifold,

we will continue to denote it as L1#
ναλ
p L2. This applies to other surgeries along clean intersections

and will be used several more times in a parametrized version in the paper.
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2.2.2 Surgery along clean intersection. Let L1 and L2 be two Lagrangians in (M,ω) which
intersect cleanly at a submanifold D. In other words, we have TpD = TpL1 ∩ TpL2 for all p ∈ D.
The following well-known local proposition due to Pozniak allows us to extend the definition of
flow handles to this case.

Proposition 2.21 [Poź99]. Let L1, L2 ⊂ (M,ω) be two closed embedded Lagrangians with clean
intersection at L1 ∩ L2 = D. Then there is a symplectic embedding ϕ from a neighborhood U
of 0section ⊂ T ∗L1 to M such that ϕ(0section) = L1 and ϕ−1(L2) ⊂ N∗D, where 0section is the zero
section and N∗D is the conormal bundle of D in L1.

Definition 2.22. Fix a metric g on L. We define the flow handle for D ⊂ L with respect to an
admissible function ν to be

HD
ν = {φσν(‖ξ‖)(ξ) ∈ T

∗L : ξ ∈ (N∗D)ε\D},

where (N∗D)ε consists of covectors in the conormal bundle of D in L with length 6 ε.

Lemma 2.23. Let Sλ(N∗D) be the radius-λ sphere bundle in the conormal bundle of D. If
exp : Sλ(N∗D) → L is an embedding, and ∂HD

νλ
∩L ⊂ L divides L into two components, then HD

ν

glues with exactly one of the components to form a smooth Lagrangian submanifold coinciding
with N∗D outside a compact set.

The proof is exactly the same as Lemma 2.13 and we omit it. Below, we call r(D) > 0 the
injectivity radius of D, which is the supremum of r > 0 such that the (dual) exponential map of
(N∗D)6r is an embedding. It is positive since it is easy to check to be positive in a chart, and we
only consider the case when D is compact. As in the transversal intersection case, the surgery is
always well defined when we choose ν(0) = λ < r(D). Using Proposition 2.21, we globalize the
construction as follows.

Corollary 2.24. Let L1, L2 ⊂ (M,ω) be two Lagrangians intersecting cleanly at D. By
choosing a metric on L1, a symplectic embedding ι : (T ∗L1)ε → M such that ι(0section) = L1

and ι−1(L2) ⊂ N∗D, one can obtain a Lagrangian L1#ν
DL2 by attaching a Lagrangian flow handle

ι(HD
ν ) to (L1\U1) ∪ (L2\U2), with Ui ⊂ Li appropriate open neighborhoods of D, and ε being

sufficiently small.

As in Example 2.17, we denote L1#ν
DL2 by L1#DL2 if λ < r(D).

2.3 E2-flow surgery and its family version
We will introduce a generalization of flow handle which will be useful when performing surgeries
on Lagrangian submanifolds in product symplectic manifolds later. Heuristically, our previous
constructions have taken advantage of the fact that ‖p‖ has a well-defined Hamiltonian flow on
the whole cotangent bundle except for the zero section. More crucially, the resulting flow handle
should have an embedded boundary in L1. Indeed, any Hamiltonian function with such properties
will suffice for defining a meaningful Lagrangian handle.

A variant of the flow handle can therefore be defined as follows. Let L = Kn−m
1 × Km

2 be
a product manifold equipped with a product Riemannian metric. Then there is an orthogonal
decomposition T ∗L = E1⊕E2 given by the two factors respectively. Let D ⊂ L be of codimension
m and transverse to {p} ×K2 for all p ∈ K1. Let π2 : T ∗L → E2 be the projection to E2. One
may then use the function σπ(·) = ‖π2(·)‖g : T ∗L → R to define a new flow handle. Note that
σπ = ‖π2(·)‖g is smooth on T ∗L\E1.
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Figure 6. An E2-flow handle.

Definition 2.25. In the situation above, we define the E2-flow handle for D (or flow handle
along the E2-direction) with respect to an λ-admissible νλ to be (see Figure 6)

HD,E2
νλ

= {φσπνλ(‖π2(ξ)‖)(ξ) ⊂ T
∗L : ξ ∈ (N∗D)ε,E2\D},

where (N∗D)ε,E2 consists of covectors ξ in the conormal bundle of D in L such that ‖π2(ξ)‖ 6 ε.

We note that for any point ξ = (ξ1, ξ2) ∈ E1 ⊕ E2, φσπt (ξ) = (ξ1, φ
σ
t (ξ2)) so E2-flow is the

normalized (co)geodesic flow on the second factor and is trivial on the first factor.
Let Sλ(E2|D) be the radius-λ sphere bundle of E2 over D. We consider expE2

λ : Sλ(E2|D) → L,
which is the exponential map restricted on Sλ(E2|D) along the leaves of the foliation given by
second factor. We define the E2-injectivity radius rE2(D) of D as the supremum of λ such that
expE2

s is an embedding for all s < λ.

Lemma 2.26. Let D ⊂ L = K1 × K2 be of dimension n − m and transversal to {p} × K2 for

all p ∈ K1. If expE2
λ : Sλ(E2|D) → L is an embedding and ∂HD,E2

ν ⊂ L divides L into two

components, then HD,E2
ν glues with exactly one of the components of L to form a smooth

Lagrangian submanifold coinciding with N∗D outside a compact set.

Proof. The proof is again similar to that of Lemma 2.23. 2

Similarly to the cases we considered before, if L1 = K1 × K2 and L2 are Lagrangians
cleanly intersecting at D as above, we can add an E2-flow handle to L1 ∪ L2 outside a tubular
neighborhood of D to get a new Lagrangian submanifold for λ < rE2(D). We will denote the
resulting Lagrangian submanifold by L1#D,E2

L2, called the E2-flow surgery from L1 to L2

along D.

A family version of E2-flow surgery
We now consider the E2-flow surgery for a family over a symplectic base. Assume that we have
a smooth manifold pair (L = K1 ×K2, D), a decomposition T ∗L = E1 ⊕ E2 and a Lagrangian

handle HD,E2
ν as above.

Let (P, ωP) be a symplectic manifold equipped with a symplectic fiber bundle structure
π : P → B, such that it has a symplectic base (B, ωB) and fibers symplectomorphic to T ∗L.
Let i : B ↪→ B be a Lagrangian submanifold such that the structure group G of i∗P → B is a
subgroup of Isom(L) ↪→ Symp(T ∗L). In particular, G preserves L and we make the following
further assumptions on G.
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(i) G preserves D, the subbundles E1 and E2 and HD,E2
ν .

(ii) For any loop γ : R/Z → B, the symplectic monodromy around γ for the fiber bundle
π : P → B lies in G.

(iii) Let x ∈ P, b := π(x) ∈ B and Pb := π−1(b). Assume Kerx is the symplectic orthogonal
complement of the fiber TxPb ⊂ TxP at x, then we ask ωP(v1, v2) = 0 for any v1, v2 ∈ Kerx
such that π∗vi ∈ TB ⊂ TB for both i.

Since L and D are invariant under G, we can use symplectic parallel transport to obtain a
smooth manifold pair (L,D) in P. More precisely, let Pb = T ∗L be a reference fiber with based
point b ∈ B. We define L :=

⋃
γ∈IB Γγ(L), D :=

⋃
γ∈IB Γγ(D), where IB consists of all paths γ

from b to another point b′ ∈ B and Γγ is the symplectic parallel transport along γ. As a result,
(L,D) has a compatible fiber bundle structure over the base B, that is,

L // L

��
B

and

D // D

��
B

where the two bundle structures are compatible with the inclusions D ↪→ L ↪→ i∗P.
All previous symplectic constructions on T ∗L areG-invariant, by assumption (i), hence can be

glued over B. For example, N∗DL glues into N∗DL :=
⋃
γ∈IB Γγ(N∗DL). When i∗P is regarded as a

vector bundle over L, it comes with a natural splitting i∗P = E1⊕E2, where Ei :=
⋃
γ∈IB (Γγ)∗(Ei)

for i = 1, 2. Moreover, the E2-handle HD,E2
ν on fibers can be glued together, which gives a smooth

handle Hν :=
⋃
γ∈IB Γγ(HD,E2

ν ) ⊂ i∗P. The fact that Hν ↪→ P ⊃ i∗P is indeed a Lagrangian
embedding follows from the assumptions (ii) and (iii) on G.

Lemma 2.27. For two cleanly intersecting Lagrangians L0,L1 ⊂ (M2n, ω), if there is a
neighborhood of L0 which can be identified with (P, ωP) above (together with all the bundle
structures and assumptions on G) such that (L0,L1,L0 ∩L1) is identified with (L, N∗DL,D), then
the family E2-surgery between L0 and L1 can be performed and gives a Lagrangian submanifold
L0#ν

D,E2
L1 of (M,ω).

Despite the fact that many assumptions are imposed on (P, ωP) and G, there are practical
examples where Lemma 2.27 applies (see § 3.3).

Remark 2.28. It is easy to see that our construction works word by word as long as there is a
decomposition of the vector bundle T ∗L = E1 ⊕ E2. However, one needs to impose technical
conditions to make expE2

λ : Sλ → L an embedding even for small λ. An easy condition is to
assume that E2 is integrable at least near D, but it should also work in some cases when E2 is
completely non-integrable near D but integrable outside a small neighborhood. Considerations
along this line might result in delicate constructions of new Lagrangian submanifolds.

3. Isotopies: from surgeries to Dehn twists

This section contains the construction which relates Lagrangian surgeries to various kinds of
Dehn twists. The general idea is the same as in Lemma 2.19, which may also be interpreted as
deforming an admissible profile to a semi-admissible one. The deformation from an admissible
profile to a semi-admissible profile will correspond to a Lagrangian isotopy between appropriate
Lagrangians.
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Figure 7. Isotopy from νλ1 to νπ to ναπ (Dehn twist profile).

We first explain how this works in the CPn case, then give a proof of Theorem 1.1(1), (2),
(3), (4) using family versions of this observation.

3.1 Fiber version

In this section, we are interested in L being RPn, CPm/2 or HPn equipped with the Riemannian
metric such that every geodesic is closed of length 2π. All actual proofs will be given only
in the case of CPn but are easily generalized. Let x ∈ L be a point and Fx = T ∗xL. We also
let Dx = {y ∈ L | dist(x, y) = π} be the submanifold opposite to x. In the case of CPm/2,
Dx ' CPm/2−1.

Lemma 3.1. Let x ∈ L be a point and νλi , i= 1, 2, be λi-admissible functions such that (k−1)π <

λi < kπ for some positive integer k for both i = 1, 2. Then L#
νλi
x Fx for i = 1, 2 are isotopic by

a compactly supported Hamiltonian.
Moreover, if we choose a semi-admissible function ναkπ : (0,∞) → [0, kπ) that is monotonic

decreasing and all orders of derivatives vanish at r = ε such that ναkπ(r) = kπ − αr near r = 0

(α > 0), then L#
ναkπ
x Fx (see Remark 2.20 for the definition of L#

ναkπ
x Fx when ναkπ is semi-

admissible) is a smooth Lagrangian that is isotopic to L#
νλi
x Fx by a compactly supported

Hamiltonian.
Furthermore, these Hamiltonian isotopies can be chosen to be invariant under the action of

the group of isometries of L that fix x.

Corollary 3.2. For π < λ < 2π and L being RPn, CPm/2 or HPn, L#νλ
x Fx is Hamiltonian

isotopic to τL(Fx) for an admissible νλ.

Proof of Corollary 3.2. Observe that when α = 1 and k = 2, ναkπ(r) is a Dehn twist profile (see
Figure 7). The Corollary follows from Lemma 3.1. 2

Proof of Lemma 3.1. For the first statement, we observe that the space of λ-admissible functions
for (k−1)π < λ < kπ is connected. A smooth isotopy {νt} from νλ1 to νλ2 in this space results in a
smooth Lagrangian isotopy from L#

νλ1
x Fx to L#

νλ2
x Fx since ∂Hνt does not pass any critical locus.

This is a Hamiltonian isotopy because H1(L#νt
x Fx, ∂

∞(L#νt
x Fx);R) = 0 (cf. Example 2.17). Here,

∂∞(L#νt
x Fx) is the infinite end of L#νt

x Fx.
For the second statement, we only consider the case that k = 1 and L = CPm/2, and

the remaining cases are similar. In this case, denote να = ναπ . Then for a handle Hνα at x,
Cl(Hνα)\Hνα = Dx = CPm/2−1. We pick a local chart U ⊂ L with local coordinates (q1, . . . , qm)
adapted to Dx in the sense that U ∩ Dx = {q1 = q2 = 0} and c(t) = (tq1, tq2, q3, . . . , qm) are
unit-speed geodesics perpendicular to Dx at t = 0, for any (q1, . . . , qm) such that |q1|2 + |q2|2 = 1.
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It induces canonically a Darboux chart T ∗U in T ∗L. We write a point in T ∗U as (qa, qb, pa, pb),
where qa = (q1, q2), qb = (q3, . . . , qm) and similarly for pa and pb. Since Hνα is defined by the
geodesic flow, we have

T ∗U ∩Hνα = {(qa, qb, pa, 0) | qa = −αpa 6= 0} (3.1)

T ∗U ∩Dx = {(0, qb, 0, 0)} (3.2)

when U is sufficiently small. To see that it is true, we consider a unit-speed geodesic γ : [0, π] → L
from x to a point x′ ∈ Dx. By Lemma 2.11, we have a symplectic embedding T ∗[0, π] → T ∗L
and

T ∗[0, π] ∩Hνα =

{(
να(‖p‖)p
‖p‖

, p

)
∈ T ∗[0, π]

∣∣∣∣ p ∈ (0, ε]

}
. (3.3)

On the other hand, the symplectic embedding T ∗[0, π] ∩ T ∗U → T ∗U is given by

(q, p) 7→ (qa, qb, pa, pb) = ((π − q)c1, c2,−pc1, 0) (3.4)

for some c1, c2 such that |c1| = 1 because U is adapted to Dx (by the same reasoning as in
the proof of Lemma 2.11). When p > 0 close to zero, q = να(‖p‖)p/‖p‖ = π − αp so we have
(π−q) = αp and hence (π−q)c1 = αpc1. Therefore, (3.3) and (3.4) imply (3.1) when we consider
all possible unit-speed geodesics from x to points on Dx.

From the local description, it is clear that Hνα and Dx can be glued smoothly to become
Cl(Hνα). The gluing from Hνα to Fx − Bε is the same as in the admissible case. It results in a
smooth Lagrangian L#να

x Fx.
Finally, we want to show that L#να

x Fx is Hamiltonian isotopic to L#
νλi
x Fx. We can assume

α 6= 0, by a Hamiltonian perturbation if necessary. Locally near Dx, we have

T ∗U ∩ (Hνα ∪Dx) = {(−αpa, qb, pa, 0)} =

{(
qa, qb,−

1

α
qa, 0

)}
(3.5)

T ∗U ∩ L = {(qa, qb, 0, 0)}. (3.6)

Notice that, by the choice of U , we have dist2(·, Dx) = |qa|2 := |q1|2 + |q2|2 in U . It implies
that Hνα ∪Dx is the graph of d(−(1/2α)dist2(·, Dx)) in T ∗U . Since the definition of the graph of
d(−(1/2α)dist2(·, Dx)) is coordinate-free, by gluing charts that are adapted to Dx, we know that
there is a small δ > 0 such that (Hνα ∪Dx) ∩ T ∗Bδ(Dx) is the graph of d(−(1/2α)dist2(·, Dx))
over Bδ(Dx), where Bδ(Dx) is the δ neighborhood of Dx in L. Take a smooth decreasing function
f(r) : [0, δ] → R so that f = 0 near r = 0 and f(r) = −(1/2α)r near r = δ. Denote ft(r) =
tf(r)− (1− t)(1/2α)r.

Then the graph of d(ft ◦ dist2(·, Dx)) can be patched with Hνα\T ∗Bδ(Dx) to give a
Hamiltonian isotopy from L#να

x Fx to L#νλ
x Fx for some admissible νλ with 0 < λ < π. We remark

that the Hamiltonian isotopy is invariant under Isom(L)x, the isometry group of L fixing x. This
concludes the proof.

The following could be helpful to understand the construction. An alternative way to describe
the isotopy d(ft ◦ dist2(·, Dx)) is that we use a family of semi-admissible function {ναt}t∈[0,1)

(αt > 0) such that α0 = α and ναt approaches to νλ when t goes to 1. Then we will have
L#να

x Fx = d(ft ◦ dist2(·, Dx)) near Dx. 2

Later we will see that, when the surgery profile νλ has λ exceeding the injectivity radius, there
is no cobordism directly associated to such a surgery. To fit such a surgery into the cobordism
framework, in general we need to decompose the surgery into several steps. The following lemma
shows how this works in the case of CPn (which easily generalizes to RPn and HPn).

2505

https://doi.org/10.1112/S0010437X18007479 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007479


C. Y. Mak and W. Wu

Figure 8. Left and middle: identification of CPm/2#νλ
Dx
Qx and CPm/2#

νλ+π
x Fx. Right: isotopy

from an admissible function to a Dehn twist profile.

Lemma 3.3. Let x ∈ CPm/2 be a point and Fx = T ∗xCPm/2. Let Dx = {y ∈ CPm/2 | dist(x, y) = π}
be the submanifold opposite to x. Then there is an embedded Lagrangian Qx ⊂ T ∗CPm/2 such
that:

(1) Qx = Fx away from a neighborhood of zero section;

(2) Qx is Hamiltonian isotopic to CPm/2#x,stdFx;

(3) Qx intersects cleanly with CPm/2 at Dx;

(4) CPm/2#DxQx is Hamiltonian isotopic to τCPm/2(Fx).

As a result, as far as Hamiltonian isotopy class is concerned, we have CPm/2#Dx(CPm/2#xFx) =
τCPm/2(Fx).

Proof. Choose a semi-admissible profile ν0
π such that ν0

π = π near r = 0 and let Qx =

CPm/2#
ν0
π
x Fx. Then (1), (3) follows from definition, and (2) is a consequence of Lemma 3.1

and Corollary 3.2.
To see (4), note that near Dx, Qx coincides with the ε′-disk conormal bundle at Dx for

some ε′ � ε. Therefore, CPm/2#νλ
Dx
Qx coincides with CPm/2#

νλ+π
x Fx for any 0 < λ < π and an

appropriate choice of νλ+π (see Figure 8 for the demonstration). The latter is then Hamiltonian

isotopic to CPm/2#
ν0
2π
x Fx = τCPm/2(Fx) by Corollary 3.2. 2

3.2 Product version
In this section we prove Theorem 1.1(1), (3). The proofs here are similar to that in the last
section, and should be considered as family versions of it. In this subsection, we use S to denote
Sn, RPn, CPm/2 or HPn equipped with the Riemannian metric such that every geodesic is closed
of length 2π.

For a symplectomorphism τ : (M,ω) → (M,ω), we define the graph of τ as

Graph(τ) := {(p, τ(p)) ∈M ×M | p ∈M}.

In particular, Graph(τ) is a Lagrangian submanifold if we equip M ×M with the symplectic
form ω ⊕−ω.

For the moment, let S ⊂ (M,ω) be a Lagrangian sphere and S− := S ⊂ M−. One may
consider the clean surgery of L1 = S × S− and L2 = ∆ in M ×M−. In this case, they cleanly
intersect along D = ∆S ⊂ S × S−. In Definition 2.25, take E2 = S × (T ∗S)− ⊂ T ∗S × (T ∗S)−,
E1 = T ∗S × S− ⊂ T ∗S × (T ∗S)− and a π-admissible function νπ.
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Figure 9. Obtaining the graph of a Dehn twist by E2-flow surgery.

Let U ⊂ M be a Weinstein neighborhood of S which can be identified with T ∗ε S, the open
set of T ∗S consisting of covectors with length less than ε. It induces an identification between
U × U , a Weinstein neighborhood of L1, and T ∗ε S × T ∗ε S. Now consider a point (p, p) ∈ ∆U :=
∆ ∩ (U × U), where p can be considered as a point in T ∗ε S. The flow in Definition 2.25 defines
a symplectomorphism fixing the first coordinate in (T ∗S × (T ∗S)−)\E1; when restricted to ∆U ,
the E2-flow sends (p, p) 7→ (p, φσνπ(‖p‖)(p)). Therefore, the image of ∆U\∆S under the flow is an

open subset of the graph of τ−1
S (the inverse owes to the negation of symplectic form on M−),

except that we have used an admissible profile for the handle which is not a Dehn twist profile.
Lemma 3.4 below ensures that this could be compensated by a local Hamiltonian perturbation.
Hence modulo Lemma 3.4, this shows that (S×S−)#νπ

∆S ,E2
∆ = Graph(τ−1

S ) (see Figure 9). The

whole construction applies when S is RPn, CPm/2 or HPn, except that the admissible profile has
ν(0) = 2π.

Lemma 3.4. Let S be Sn, RPn, CPm/2 or HPn. Let νλi be λi-admissible functions such that
(k − 1)π < λi < kπ for some positive integer k for both i = 1, 2. Then the E2-flow surgered
Lagrangian manifolds (S×S−)#

νλi
∆S ,E2

∆ above with surgery profiles νλi are Hamiltonian isotopic.
Moreover, if we choose a semi-admissible function ναkπ such that ναkπ(r) = kπ − αr near

r = 0 (α > 0), then (S × S−)#
ναkπ
∆S ,E2

∆ is a smooth Lagrangian that is Hamiltonian isotopic to

(S × S−)#
νλi
∆S ,E2

∆.
Furthermore, these Hamiltonian isotopies can be chosen to be Isom∆(S) invariant, where

Isom∆(S) is the diagonal isometry group in Isom(S)× Isom(S) acting on T ∗S × (T ∗S)−.

We have the following corollary whose proof is similar to Corollary 3.2

Corollary 3.5 (Cf. Theorem 1.1(1)). For π < λ < 2π and S being RPn, CPm/2 or HPn
(respectively 0 < λ < π and S = Sn), (S × S−)#νλ

∆S ,E2
∆ is Hamiltonian isotopic to Graph(τ−1

S ).

Proof of Corollary 3.5. When α = 1 and k = 2 (respectively k = 1), (S×S−)#
ναkπ
∆S ,E2

∆ coincides

with Graph(τ−1
S ). Therefore, the result follows from Lemma 3.4. 2

Proof of Lemma 3.4. The proof of the first statement is exactly the same as Lemma 3.1. For the
second statement, we again only consider the case that k = 1 and S = CPm/2 and the remaining
cases are similar.
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Define Dop = {(x, y) ∈ S × S | dist(x, y) = π}. Projection to the first factor in S × S equips

Dop with a CPm/2−1-bundle structure over S = CPm/2. Therefore, a tubular neighborhood of

Dop in S × S− is the total space Ṽ of a fiber bundle π
Ṽ

: Ṽ → S, whose fibers V are total

spaces of topological O(1)-bundles over CPm/2−1. We pick an open subset UB ⊂ S and a local

trivialization UB×UF ' π−1

Ṽ
(UB) (so UF = V). Readers should note that the product structure

of UB × UF is not compatible with the product structure of L = S × S−, but {q} × UF is an

open set of {q}×S− for any q ∈ UB. In other words, we should regard UB as a parameter space

and points in UB are parameterizing some open subsets of S−.

Pick a chart UB×UF ′ on UB×UF with local coordinates (qB, qF ) = (qB1 , . . . , q
B
m, q

F
1 , . . . , q

F
m)

adapted to Dop in the sense that:

• (UB × UF ′) ∩Dop = {qF1 = qF2 = 0};
• c(t) = (qB, tqF1 , tq

F
2 , q

F
3 , . . . , q

F
m) are unit-speed geodesics for all (qB, qF ) such that |qF1 |2 +

|qF2 |2 = 1; and

• c(t) ∈ {qB} × S is perpendicular to {qB} × DqB ⊂ {qB} × S at t = 0 with respect to the

metric on {qB} × S = S, where DqB is the submanifold opposite to qB ∈ S.

Note that c(0) ∈ Dop and the projection of c(0) to the first factor is qB so c(0) ∈ {qB} ×DqB .

The inclusions UB×UF ′ ⊂ UB×UF ⊂ S×S− induces canonical inclusions T ∗(UB×UF ′) ⊂
T ∗(UB × UF ) ⊂ T ∗(S × S−). We write a point in T ∗(UB × UF

′
) as (qB, pB, qFa , q

F
b , p

F
a , p

F
b ),

where qFa = (qF1 , q
F
2 ), qFb = (qF3 , . . . , q

F
m) and similarly for pFa and pFb . We consider points

(qB, pB) ∈ T ∗UB as points in T ∗S (because UB ⊂ S).

For each point (qB, pB) ∈ T ∗S, there is a corresponding point φσ
νπ(‖pB‖)(q

B, pB) ∈ T ∗S− such

that ((qB, pB), φσ
νπ(‖pB‖)(q

B, pB)) ∈ Hνα ⊂ T ∗S × T ∗S−. There are also corresponding open sets

{(qB, pB)} × T ∗UF ′ ⊂ {(qB, pB)} × T ∗S− and {qB} × UF ′ ⊂ {qB} × S− such that {qB} × UF ′

is adapted to {qB} ×DqB in the sense that:

• {qB} × UF ′ ∩ {qB} ×DqB = {qB} × {qFa = 0}; and

• c(t) = (qB, tqF1 , tq
F
2 , q

F
3 , . . . , q

F
m) are unit-speed geodesics and perpendicular to DqB at t = 0,

for any qF ∈ UF such that |qF1 |2 + |qF2 |2 = 1.
Since φσνπ(‖·‖)(·) is defined by the geodesic flow on {(qB, pB)}×T ∗S− = T ∗S− and {qB}×UF ′

is adapted to {qB}×DqB , we know that φσ
να(‖pB‖)(q

B, pB) = (−αpFa , qFb , pFa , 0) when pB 6= 0 small

(as in the proof of Lemma 3.1). Now, we have a parametrized version of (3.5)

T ∗(UB × UF ′) ∩Hνα

= {(qB, pB,−αpFa , qFb , pFa , 0) | pB 6= 0, φσνα(‖pB‖)(q
B, pB) = (−αpFa , qFb , pFa , 0)} (3.7)

when UB and UF
′

are sufficiently small.

Here, both φσ
ναπ (‖pB‖)(q

B, pB) and (−αpFa , qFb , pFa , 0) are considered as points in T ∗ε S although

they belong to different factors of T ∗(S×S−). Therefore, in T ∗(UB ×UF ′)∩Hνα , fixing qB and

letting pB go to 0 linearly leads to fixing qFb and letting pFa go to zero linearly.

Since Hνα is globally defined, the above discussion is true for any charts UB×UF ′ on UB×UF
adapted to Dop. From the discussion using local charts on UB × UF and the fact that pFa goes

to zero linearly as pB goes to 0 linearly, we can see that Hνα and Dop can be glued smoothly

(linearity is not necessary for Hνα and Dop to be glued smoothly but it is sufficient). The fact

that Hνα can be glued smoothly with ∆ is because all orders of derivatives of να vanish at r = ε.

It results in a smooth Lagrangian, which we denote by (S × S−)#να

∆S ,E2
∆.
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Finally, we show that (S × S−)#να

∆S ,E2
∆ is Hamiltonian isotopic to (S × S−)#

νλ1
∆S ,E2

∆. We
can choose {ναt}t∈[0,1) interpolating να and νλ1 as in the proof of Lemma 3.1. This is a smooth
Lagrangian isotopy which is invariant under the diagonal Isom(S) action. 2

In parallel to Lemma 3.3, we have the following.

Lemma 3.6 (Theorem 1.1(3)). Let S be RPn, CPm/2 or HPn and

Dop = {(x, y) ∈ S × S− | dist(x, y) = π}.

Up to Hamiltonian isotopy in T ∗S × (T ∗S)−, we have

(S × S−)#Dop,E2
((S × S−)#∆S ,E2

∆) = Graph(τ−1
S ).

Proof. The proof is similar to that of Lemma 3.3 and we again assume S = CPm/2. We use the

function ν0
π in Lemma 3.3 to define S = (S × S−)#

ν0
π

∆S ,E2
∆, which is Hamiltonian isotopic to

(S × S−)#∆S ,E2
∆ by Lemma 3.4. Now, S intersects S × S− cleanly along Dop. We can perform

another E2-flow surgery from S×S− to S. Then S×S−#Dop,E2
S is identical to S×S−#

νπ+λ

∆S ,E2
∆

for some admissible function νπ+λ. By Lemmas 3.4 and 3.3, S × S−#
νπ+λ

∆S ,E2
∆ is Hamiltonian

isotopic to S × S−#
ν0
2π

∆S ,E2
∆ = Graph(τ−1

S ) so we obtain the result. 2

3.3 Family versions
One may also generalize the above example to the case of family Dehn twists [WW16] which
we now recall. Let G be SO(l + 1) with Lie algebra g. A connection one form on a principal G
bundle π : P → B is a one form α ∈ Ω1(P, g) satisfying the following two conditions:
• α(ξP ) = ξ for any ξ ∈ g, where ξP is the vector field generating the action of ξ;
• g∗α = Ad(g)−1α for any g ∈ G, where the adjoint action is on the values of α.

We have a splitting

TP = ker(α)⊕ ker(Dπ)

which is invariant under the group action.
Suppose B admits a symplectic structure ωB. We equip (T ∗Sl, ωT ∗Sl) with the Hamiltonian

G-action induced by the isometry of the zero section G = Isom(Sl) ⊂ Symp(T ∗Sl), where ωT ∗Sl
is the canonical symplectic structure on T ∗Sl. We denote the moment map by Φ : T ∗Sl → g∨.
The minimally coupling form on P × T ∗Sl is defined by

ωP×T ∗Sl,α := π∗Pπ
∗ωB + π∗SωT ∗Sl + d〈π∗Pα, π∗SΦ〉 ∈ Ω2(P × T ∗Sl), (3.8)

where πP : P × T ∗Sl → P and πS : P × T ∗Sl → T ∗Sl are projections to the first and second
factors, respectively. The two form ωP×T ∗Sl,α has the property that ιξP×FωP×F,α = 0 and it

descends to a symplectic form ωP (T ∗Sl) on P ×G T ∗ε Sl for some ε > 0, where ξP×F is the vector

field in P × F generating the diagonal action of ξ and T ∗ε S
l consists of the cotangent vectors

with norm less than ε. Moreover, π ◦ πP : P × T ∗Sl → B descends to a symplectic fiber bundle
map πP (T ∗Sl) : P ×G T ∗ε Sl → B. An important feature of ωP (T ∗Sl) is the following.

Lemma 3.7. We have ωP×T ∗Sl,α(v1, v2) = 0 for any v1 ∈ ker(α) and v2 ∈ T (T ∗Sl). Therefore,

the symplectic orthogonal complement of fibers of πP (T ∗Sl) in P ×G T ∗ε Sl is the image of ker(α)

under the quotient map P × T ∗ε Sl → P ×G T ∗ε Sl.
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Proof. We have a decomposition T (P ×T ∗Sl) = ker(α)⊕ ker(Dπ)⊕T (T ∗Sl). Since v1 ∈ ker(α),
we have v1 ∈ ker(π∗SωT ∗Sl) and v1 ∈ ker(π∗S dΦ). Since v2 ∈ T (T ∗Sl), we have v2 ∈ ker(π∗Pπ

∗ωB)
and v2 ∈ ker(π∗P dα). The result follows from (3.8). 2

Corollary 3.8. For the symplectic fibration πP (T ∗Sl) : P ×G T ∗ε Sl → B, the monodromy of
each loop in B by symplectic parallel transport lies in G.

Proof. By definition, those monodromies of parallel transports with respect to α in P lie in G.
Therefore, so is P×T ∗ε Sl and hence P ×GT ∗ε Sl. The result follows because symplectic orthogonal
complement of fibers coincides with the image of ker(α), by Lemma 3.7. 2

Recall that a spherically fibered coisotropic manifold i : C2n−l ↪→ M2n is a coisotropic
submanifold so that there is a fibration ρ : C → B2n−2l over a symplectic base, whose fibers
are leaves of the characteristic foliation (also called null-leaves) and are diffeomorphic to Sl. In
other words, ρ∗ωB = i∗ωM . Moreover, we equip the fibers with round metrics such that all their
geodesics are closed of length 2π and ask that the structure group of ρ lie in SO(l + 1).

A neighborhood U of C can be symplectically identified with P ×SO(l+1) T
∗
ε S

l, where P is
the principal SO(l + 1)-bundle associated to C. The family Dehn twist τC can then be defined
fiberwise as the fiberwise Hamiltonian function ν̃Dehn

ε (‖p‖) (see Remark 2.12) is preserved by the
structure group. With respect to the fiberwise metric gv, the function h(·) = ν̃(‖ · ‖gv) defines a
flow along fibers whose time-1 map is the desired Dehn twist (with a continuation over C defined
by the fiberwise antipodal map on C).

Equivalently, we can choose a reference fiber F = T ∗Sl of the symplectic fibration πP (T ∗Sl)

and the family Dehn twist restricted to any fiber F ′ is defined to be τC |F ′ := Γγ−1 ◦τSl ◦Γγ , where
γ is a path from the base point of F ′ to the base point of F , Γγ is symplectic parallel transport
along γ and τSl is the Dehn twist on F . By Corollary 3.8, Γγ−1 ◦ τSl ◦Γγ is independent of γ
and gives a symplectomorphism of F ′. The fiberwise symplectomorphisms patch together to a
diffeomorphism τC . To see that τC is a symplectomorphism of P×SO(l+1)T

∗
ε S

l, it suffices to check
that

ωP (T ∗Sl)((τC)∗v1, (τC)∗v2) = ωP (T ∗Sl)(v1, v2) (3.9)

for any v1, v2 ∈ ker(α) because T (P×SO(l+1)T
∗
ε S

l) = ker(α)⊕T (T ∗ε S
l), (ker(α))

ω
P (T∗Sl) = T (T ∗ε S

l)
by Lemma 3.7 and we already know that τC is fiberwise symplectic. By construction, (τC)∗vi ∈
ker(α) and (πP (T ∗Sl) ◦ τC)∗vi = (πP (T ∗Sl))∗vi for i = 1, 2 so (3.9) follows from (3.8).

Now consider the natural Lagrangian embedding C̃ := C ×B C ↪→ M ×M , where M is a
symplectic manifold such that we have an inclusion i : C2n−l ↪→ M2n making C a spherically
fibered coisotropic manifold. Explicitly, the image of this map is

C̃ = {(x, y) ∈ C × C ⊂M ×M : π(x) = π(y)},

where π : C → B is the Sl-bundle projection. Indeed, C̃ = Ct ◦C is a composition Lagrangian in
the sense of (5.2). Here we have abused the notation by identifying C with its Lagrangian image
in B ×M defined by

{(x, y) ∈ B × C ⊂ B ×M : π(y) = x}.

Note that C̃ is a fiber bundle over B with fiber Sl × Sl and structure group the diagonal
SO(l + 1).

We continue to use U to denote a neighborhood of C in M which can be identified with
P ×SO(l+1) T

∗
ε S

l. Consider a symplectic trivialization U0 := B0 × T ∗ε Sl of the symplectic fiber
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bundle πP (T ∗Sl) : U = P ×SO(l+1) T
∗
ε S

l
→ B for some contractible open set B0 ⊂ B. Any point

contained in ∆ ∩ (U0 × U−0 ) ⊂ M ×M− thus takes the form ((x, p), (x, p)), where x ∈ B0 and
p ∈ T ∗ε Sl. In this setting, the graph of τ−1

C in U0 × U−0 consist of points

Graph(τ−1
C ) = {((x, p), (x, φσνDehn(‖p‖)(p))) | x ∈ B0, p ∈ T ∗ε Sl}.

This is true for any contractible open subset B0 ⊂ B and Graph(τ−1
C ) coincides with ∆ outside

U × U−.
As before, we want to realize Graph(τ−1

C ) as a surgery from C̃ to ∆. In this case, we want
to perform a family E2-surgery.

In the notation of § 2.3, let L = Sl × (Sl)−, D = ∆Sl ⊂ L, P = U × U−, B = B × B−,
i : B → ∆B ⊂ B be the diagonal embedding, L = C̃, N∗DL = ∆U , D = ∆U ∩ C̃, and G =
SO(l+ 1) = Isom∆(L) ⊂ SO(l+ 1)× SO(l+ 1) is the diagonal isometry group. It is clear how to
define the fiber bundle structures

L // L

��
B

and

D // D

��
B

compatible with the inclusions D ↪→ L ↪→ i∗P. As in the calculation for Lemma 3.7 and
Corollary 3.8, we know that the symplectic orthogonal complement of the fibers of π : P → B is
given by the product horizontal distribution ker(α)⊕ (ker(α))− and the symplectic monodromy
for loops in B lies in the diagonal isometry group G. We leave it as an exercise for readers to
check that G satisfies all the other assumptions in § 2.3. As a result, we can define a global
Lagrangian handle Hνπ ⊂ P.

By the same token, we can define a projectively fibered coisotropic manifold which is a
coisotropic manifold with null-leaves complex (or real, quaternionic) projective spaces. Family
Dehn twists for these spaces are defined similarly.

Lemma 3.9. Let C ⊂ (M,ω) be a spherically (respectively projectively) coisotropic submanifold
with base B. Let νλi be λi-admissible functions such that (k − 1)π < λi < kπ for some positive

integer k for both i = 1, 2. Then the family E2-flow surgered Lagrangian manifolds C̃#
νλi
D,E2

∆
for i = 1, 2 are Hamiltonian isotopic.

Moreover, if we choose a semi-admissible function ναkπ : (0,∞) → [0, kπ) such that ναkπ(r) =

kπ−αr near r = 0 (α > 0), then C̃#
ναkπ
D,E2

∆ is a smooth Lagrangian that is Hamiltonian isotopic

to C̃#
νλi
D,E2

∆.

Corollary 3.10 (Theorem 1.1(2), (4)). For spherically (respectively projectively) coisotropic
submanifold C, the family E2-flow clean surgery C̃#D,E2

∆ (respectively C̃#Dop,E2
C̃#D,E2

∆) is

Hamiltonian isotopic to Graph(τ−1
C ). Here Dop is a Dop-bundle over the base B and Dop is as

in Lemma 3.6.

Proof of Lemma 3.9. We give the proof for the spherical case and the other cases are similar.
Since the construction in Lemma 3.4 is SO(l + 1) invariant, we can apply Lemma 3.4 to C̃ and
∆U inside P = U × U− fiberwise to obtain the desired Lagrangian isotopy from C̃#

νλ1
D,E2

∆ to

C̃#
νλ2
D,E2

∆ and from C̃#να

D,E2
∆ to C̃#

νλi
D,E2

∆.
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What remains to show is that the Lagrangian isotopies are Hamiltonian isotopies. We

prove the case where the Lagrangian isotopy is from C̃#να

D,E2
∆ to C̃#

νλi
D,E2

∆. The other case

is similar. Let ιK,t : K → T ∗Sl× (T ∗Sl)−1 be the Lagrangian isotopy from (S×S−)#
ναkπ
∆S ,E2

∆ to

(S × S−)#
νλi
∆S ,E2

∆ in Lemma 3.4, which is SO(l + 1) invariant. Let b ∈ B be a reference based

point. We define the Lagrangian isotopy ιK,t : K → M ×M− by

ιK,t(x) = Γγ−1 ◦ ιK,t ◦ Γγ(x),

where t ∈ [0, 1], γ : [0, 1] → B is a path from the based point of x (i.e., projection of x to B)

to b and K = C̃#να

D,E2
∆. It is well defined because the monodromy of K → B is inherited from

i∗P → B.

Since ιK,t : L → T ∗Sl × (T ∗Sl)−1 is a Hamiltonian isotopy, it is an exact isotopy (i.e

θ0 := ι∗K,t(ωcan ⊕ −ωcan)(∂ιK,t/∂t, ·) is exact). Since the fiberwise symplectic form and the

isotopy are SO(l + 1)-invariant, so is θ0 and its primitive. These primitives on fibers can be

patched together to form a function f : K → R such that θ − df vanishes on fibers, where

θ := ι∗K,t(ωM ⊕−ωM )(∂ιK,t/∂t, ·). As a consequence of Lemma 3.7, the distribution of symplectic

orthogonal complements of fibers of P → B coincides with ker(α)⊕ (ker(α))−. Let Ker ⊂ T (K)

be the horizontal distribution with respect to the fiber bundle K → B that is mapped into (and

actually also onto) the diagonal horizontal distribution ker(α)∆ ⊂ ker(α)⊕ (ker(α))− under the

inclusion K → P. By definition, θ vanishes on Ker. Since f is SO(l+1)-invariant, df also vanishes

on Ker and hence θ = df . This implies that ιK,t is an exact, thus a Hamiltonian, isotopy. 2

Corollary 3.10 is now an immediate consequence of Lemma 3.9 by setting k = 1 for spherical

case and k = 2 for the projective cases.

4. Gradings and energy

In this section we discuss the gradings in Lagrangian surgeries. We follow mostly the exposition

in [AB14] to review the definition of gradings in § 4.1. The subsequent subsections provide

computations for sufficient and necessary criteria to perform graded surgeries. Starting from

§ 5, all surgeries between graded Lagrangians will be graded surgeries. Our discussion stays in

the Z-graded and exact case but the corresponding results for Z/N -gradings in the monotone

setting can be obtained by modifying our argument using the setting in [Sei00] and the statements

will be a modulo-N reduction of what we have here.

4.1 Basic notions

We assume 2c1(M) = 0 and fix once and for all a nowhere-vanishing section Ω2 of

(Λtop
C (T ∗M,J))⊗2.

Let ιL : L → M be an exact Lagrangian immersion (i.e., ι∗Lα is exact). A grading on (L, ιL)

(sometimes simply denoted by ιL) is defined as a continuous function θL : L → R such that

e2πiθL = Det2
Ω(Im(DιL)), where Im(DιL) is the image of DιL and Det2

Ω is defined as

Det2
Ω(Λp) = Det2

Ω(X1, . . . , Xn) =
Ω2(X1, . . . , Xn)

‖Ω2(X1, . . . , Xn)‖
∈ S1

for any Lagrangian plane Λp ⊂ TpM at a point p and any choice of a basis {X1, . . . , Xn} for Λp.
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Given two transversal Lagrangian planes Λ0,Λ1 (of dimension n) at the same point with a

choice of θ0, θ1 such that e2πiθj = Det2
Ω(Λj) for both j, we can identify them as graded Lagrangian

vector subspaces of Cn. The index of the pair (Λ0, θ0) and (Λ1, θ1) is defined as

Ind((Λ0, θ0), (Λ1, θ1)) = n+ θ1 − θ0 − 2Angle(Λ0,Λ1) (4.1)

where Angle(Λ0,Λ1) =
∑n

j=1 βj and βj ∈ (0, 1/2) are such that there is a unitary basis

{u1, . . . , un} of Λ0 satisfying Λ1 = SpanR{e2πiβjuj}nj=1.

In general, when Λ0 ∩Λ1 = Λ 6= {0}, the definition of index for the pair (Λ0, θ0) and (Λ1, θ1)

is the same as above with the definition of Angle(Λ0,Λ1) modified as follows. Pick a path of

Lagrangian planes Λt from Λ0 to Λ1 such that both the following hold.

• We have Λ ⊂ Λt ⊂ Λ0 + Λ1 for all t ∈ [0, 1].

• The image Λt of Λt inside the symplectic vector space (Λ0 + Λ1)/Λ is a positive definite

path from Λ0 to Λ1.

Let βt be a continuous path of real numbers such that e2πiβt = Det2
Ω(Λt). Then, the

Lagrangian angle is defined as

2Angle(Λ0,Λ1) = β1 − β0.

Equivalently, we can define 2Angle(Λ0,Λ1) := 2Angle(Λ0,Λ1).

Definition 4.1. For two graded Lagrangian immersions (ιL1, θ1), (ιL2, θ2) (not necessarily

distinct), and points pj ∈ Lj for j = 1, 2 such that ιL1(p1) = ιL2(p2) = p, the index for the

ordered pair (p1, p2) is

Ind(p1,p2)(ιL1 , ιL2) = Ind(((ιL1)∗Tp1L1, θ1(p1)), ((ιL2)∗Tp2L2, θ2(p2))).

We also use the notation Indp(L1, L2) to denote Ind(p1,p2)(ιL1 , ιL2) if ι−1
L1

(p) = {p1} and

ι−1
L2

(p) = {p2}. Note that if L1 and L2 are two Lagrangian embeddings such that L1 intersects L2

cleanly along a connected submanifold D ⊂M , then Indp(L1, L2) = Indq(L1, L2) for all p, q ∈ D.

In this case, we denote the index as IndD(L1, L2).

Example 4.2. For a graded Lagrangian immersion (ιL, θ) and an integer k, ιL[k] is defined as

ιL[k] = (ιL, θ − k). In particular, we have

IndD(ιL1 [k], ιL2 [k′]) = IndD(ιL1 , ιL2) + k − k′.

Example 4.3. Let M = Cn be equipped with the standard symplectic form, complex structure

and complex volume form. Let L1 = Rn = {y1 = · · · = yn = 0} and L2 = {x1 = · · · = xn−k =

yn−k+1 = · · · = yn = 0} be two Lagrangian planes for some 0 6 k 6 n. We have Det2
Ω(L1) = 1

and Det2
Ω(L2) = (−1)n−k. Let θL1 = n − k − 1 and θL2 = (n− k)/2 be the gradings of L1 and

L2. Then, we have Ind0(L1, L2) = (n) + (n− k)/2− (n− k − 1)− 2(n− k)(1/4) = k + 1.

Definition 4.4. For a Lagrangian isotopy Φ = (Φt)t∈[0,1] : L× [0, 1] → (M,ω), if Φ0 is equipped

with grading θ0, then the induced grading on Φ1 is defined as follows. There is a unique way to

extend θ0 : L×{0}→ R continuously to θ : L× [0, 1] → R such that e2πiθ(·,t) = Det2
Ω(Im(DΦt(·)))

and the induced grading on Φ1 is defined by θ(·, 1).
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Example 4.5. Let L= R⊂ (R2, dx∧dy) and identify the latter with C equipped with the standard
complex volume form. Consider h : R → R given by h(q) = c(q2/2) for some constant c. The
graph of dh, Graph(dh), is given by {(q, cq) ∈ T ∗L | q ∈ L}. By setting q = x and p = −y
to identify C with T ∗L, Graph(dh) is given by {(x,−cx) ∈ C}. Using our sign convention,
Graph(dh) is the time-1 Hamiltonian flow of L generated by the Hamiltonian −h◦π : T ∗L → R,
where π : T ∗L → L is the projection. If we give a grading to L and induce from it a grading on
Graph(dh) by the Hamiltonian isotopy, then

Ind0(L,Graph(dh)) =

{
1 if c 6 0,

0 if c > 0.

In short, the index equals the Morse index of h at q = 0 if c 6= 0. We call the induced grading
on Graph(dh) by the Hamiltonian isotopy generated by −h ◦π the canonical induced grading on
Graph(dh).

Example 4.6. Let L = Rn ⊂ (Cn,
∑n

i=1 dxi ∧ dyi). Consider h : L → R given by h(q) =

c
∑k

j=1 (q2
j /2). If we let qi = xi and pi = −yi to identify Cn with T ∗L and equip Graph(dh)

with the canonical induced grading, then

IndRn−k(L,Graph(dh)) =

{
n if c 6 0,

n− k if c > 0,

where Rn−k is the last n− k qi coordinates.

Corollary 4.7. Let h : L → R be a Morse–Bott function with Morse–Bott maximum at
critical submanifold D1 of dimension k1 and minimum at D2 of dimension k2. If the zero
section L ⊂ T ∗L is graded and Graph(dh) is equipped with the canonical induced grading, then
IndD1(L,Graph(dh)) = n and IndD2(L,Graph(dh)) = n− k2.

4.2 Local computation for surgery at a point
The grading of a Lagrangian surgery in the local model was considered by Seidel [Sei00], and
we include an account for completeness. Let Hγ be a Lagrangian handle. We equip Cn with the
standard complex volume form Ω = dz1 ∧ · · · ∧ dzn.

Lemma 4.8 [Sei00]. Let Rn and iRn be equipped with gradings θr and θi, respectively. Then,
there is a grading θH on Hγ and a unique integer m such that θH can be patched with θr + m
and θi to give a grading on Rn#0iRn. If Ind0((Rn, θr), (iRn, θi)) = 1, we have m = 0.

Proof. As shown in Example 2.14, Hγ = Hν for some flow handle Hν . Since Hν is obtained by
Hamiltonian flow from iRn\{0}, Hν is canonically graded by θi using the Hamiltonian isotopy. We
call this grading θH and continuously extend it on Cl(Hν). Since Rn ∩ Cl(Hν) has one grading
induced from θr and one induced from θH , θH |Rn∩Cl(Hν) − θr|Rn∩Cl(Hν) is a locally constant
integer-valued function. If Rn ∩Cl(Hν) is connected, then there is a unique integer m such that
θH |Rn∩Cl(Hν) = θr|Rn∩Cl(Hν) +m. If Rn ∩Cl(Hν) is not connected, then n = 1 and one can check
directly that the same conclusion holds. As a result, this m is the unique integer such that θH
can be patched with θr +m and θi to give a grading on Rn#0iRn. In what follows, we want to
show that m = 0 if Ind0((Rn, θr), (iRn, θi)) = 1.

Pick a point x = (x1, . . . , xn) ∈ Sn−1. Let c(s) = γ(s)x ∈ Hγ , where γ is an admissible curve
(see Definition 2.7), and denote the image curve by Im(c). The Lagrangian plane Λs at c(s) is
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spanned by {γ′(s)x}∪{γ(s)vj}nj=2, where vj ∈ TxSn−1 forms an orthonormal basis. (See also the
proof of Lemma 2.8.) Therefore, we have

Det2
Ω(Λs) = ei2(arg(γ′(s))+(n−1) arg(γ(s)))

for all s. There is a unique continuous function θc : Im(c) → R such that:
• θc(c(s)) = n− 1 for s < 0;
• θc(c(s)) = n/2 for s > ε; and
• e2πiθc(c(s)) = Det2

Ω(Λs) for all s.
Therefore, we have θc−θH |Im(c) ∈ Z and θc describes the change of Lagrangian planes from Rn

to iRn along the handle. By comparing with Example 4.3 (for k = 0), we can see that if the graded
Lagrangians Rn and iRn inside Cn intersect at the origin with index 1, then m = 0. In other
words, θc determines a grading (θc)H on Hν when we consider all possible c = γx for x ∈ Sn−1.
The graded Lagrangians (Hν , (θc)H), (Rn, n−1) and (iRn, n/2) can be glued continuously. If the
graded Lagrangians Rn and iRn inside Cn intersect at the origin with index 1, we can equip Rn
and iRn with gradings n− 1 and n/2 by Example 4.3. This finishes the proof. 2

Corollary 4.9 [Sei00]. Let ιi : Li → (M,ω) for i = 1, 2 be two graded Lagrangian immersions
with gradings θ1 and θ2, respectively, intersecting transversally at a point p. If Indp((L1, θ1),
(L2, θ2)) = 1, then ι : L1#pL2 → (M,ω) can be equipped with a grading θ12 extending θ1 and
θ2. In this case, we call L1#pL2 together with its grading a graded surgery from L1 to L2.

4.3 Local computation for surgery along clean intersection
This subsection discusses the grading for Lagrangian surgery along a clean intersection. We start
with ordinary clean surgery (see § 2.2.2).

Lemma 4.10. Let L1, N
∗
D ⊂ T ∗L1 be equipped with gradings θr and θi, respectively. For any

λ-admissible function ν such that λ < r(D), there is a grading θH on HD
ν and a unique integer

m such that θH can be patched with θi, θr +m to become a grading on L1#ν
DN

∗
D.

Moreover, m = 0 if and only if IndD((L1, θr), (N
∗
D, θi)) = dim(D) + 1.

Immediately from Lemma 4.10, we have the following.

Corollary 4.11. Let L1, L2 ⊂ (M,ω) be graded Lagrangians cleanly intersecting at D. We
can perform a graded surgery L1#DL2 from L1 to L2 along D if and only if IndD(L1, L2) =
dim(D) + 1.

Proof of Lemma 4.10. The first statement of the lemma follows as in the first paragraph of the
proof of Lemma 4.8. Therefore, we just need to prove that m = 0 if and only if IndD((L1, θr),
(N∗D, θi)) = dim(D) + 1. Let dim(D) = k.

Pick a Darboux chart such that in local coordinates N∗D is represented by points of the
form (q, p) = (qb, 0, 0, pf ). Here (q, p) = (qb, qf , pb, pf ), qb = (q1, . . . , qk), qf = (qk+1, . . . , qn)
pb = (p1, . . . , pk) and pf = (pk+1, . . . , pn). We also require (qb, tqf ) are unit-speed geodesics
on L1 as t varies and perpendicular to D at t = 0, for any q such that |qf |2 = 1. As a result, the
handle HD

ν in local coordinates is given by (here, we suppose that the surgery is supported in a
sufficiently small region relative to the Darboux chart){

φσν(‖pf‖)(qb, 0, 0, pf ) =

(
qb, ν(‖pf‖)

pf
‖pf‖

, 0, pf

)}
,
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where qb ∈ Bk ⊂ Rk, pf ∈ Bn−k ⊂ Rn−k and Bk, Bn−k are some small open balls centered at the
origin.

We consider the standard complex volume form Ω = dz1 ∧ · · · ∧ dzn in the chart. Let eπ2 ∈
Sn−k−1 ⊂ Rn−k be a vector in the unit sphere of last n− k pi-coordinates. Let

c(r) =

(
0, ν(‖reπ2‖)

reπ2

‖reπ2‖
, 0, reπ2

)
= (0, ν(r)eπ2 , 0, reπ2)

be a smooth curve on HD
ν for r ∈ (0, ε]. We define c(0) = limr→0+ c(r).

We want to understand how the Lagrangian planes change from L1 to N∗D along the handle
and it suffices to look at how the Lagrangian planes change along c(r). The Lagrangian plane
Λr at c(r) is spanned by

{(ej , 0, 0, 0)}kj=1 ∪ {(0, ν ′(r)eπ2 , 0, eπ2)} ∪
{(

0, ν(r)
e⊥j
r
, 0, e⊥j

)}n−k
j=2

,

where ej ∈ Rk are coordinate vectors and e⊥j form an orthonormal basis for orthogonal

complement of eπ2 in Rn−k.
Then we have

Det2
Ω(Λr) = ei2(arg(ν′(r)−

√
−1)+(n−k−1) arg(ν(r)/r−

√
−1))

for all r. Here, the convention we use is still zi = qi −
√
−1pi. Observe that ν ′(ε) = 0 and

ν(ε)/ε = 0. When r goes to 0, ν ′(r) decreases monotonically to −∞. Similarly, ν(r)/r increases
monotonically to infinity when r goes to zero.

In particular, arg(ν ′(r)−
√
−1) increases from π to 3π/2 as r increases and arg(ν(r)/r−

√
−1))

decreases from 2π to 3π/2 as r increases. Therefore, there is a unique continuous function θc :
Im(c) → R such that:
• θc(c(r)) = n− k − 1 for r = 0;
• θc(c(r)) = (n− k)/2 for r = ε; and
• e2πiθc(c(r)) = Det2

Ω(Λr) for all r ∈ [0, ε].
By Example 4.3, we have IndRk((Rn, n− k− 1), (N∗(Rk), (n− k)/2)) = k+ 1. Hence, m = 0

if and only if IndD((L1, θr), (N
∗
D, θi)) = k + 1. 2

For the E2-flow surgery, we use the setting in § 2.3 and we have the following.

Lemma 4.12. Suppose D ⊂ L = K1 × K2 is a smooth submanifold of dimension k which is
transversal to {p} ×K2 for all p ∈ K1. Let L,N∗D ⊂ T ∗L be equipped with gradings θr and θi,
respectively. For any λ-admissible function ν such that λ < rE2(D), there is a grading θH on

HD,E2
ν and a unique integer m such that θH can be patched with θr + m and θi to become a

grading on L#ν
D,E2

N∗D.
Moreover, we have m = 0 if and only if IndD((L, θr), (N

∗
D, θi)) = dim(D) + 1.

Corollary 4.13. Let L1 = K1×K2, L2 ⊂ (M,ω) be graded Lagrangians cleanly intersecting at
D. Suppose D is transversal to {p} ×K2 for all p ∈ K1. Then we can perform a graded E2-flow
surgery L1#D,E2

L2 from L1 to L2 along D if and only if IndD(L1, L2) = dim(D) + 1.

Proof of Lemma 4.12. As explained before (cf. Lemmas 4.8 and 4.10), we just need to show that
m = 0 if and only if IndD((L, θr), (N

∗
D, θi)) = dim(D) + 1. Again denote k = dim(D).
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Pick a product chart U = U1×U2 for L = K1×K2 (i.e., Ui ⊂Ki for i = 1, 2). Points in U are
denoted by q = (qb, qf ), where qb ∈ U1 and qf ∈ U2. We also want that (qb, tqf ) is a unit-speed
geodesic as t varies and perpendicular to D at t = 0, for any qb, qf such that |qf | = 1. We can
also assume the origin belongs to D and denote a basis of the tangent space T0D of D at the
origin by {w1, . . . , wk} and wj = wjb + wjf , where wjb and wjf are the qb and qf components of

wj , respectively. Since D is transversal to the second factor, we can assume that wjb are the unit
coordinate vectors in the qb-plane for 1 6 j 6 k. Moreover, there is a U2-valued function qDf (qb)

of qb near the origin such that (qb, q
D
f (qb)) ∈ D.

This chart gives a corresponding Darboux chart on T ∗L and we define pDb as a function of
qb, pf near the origin such that (qb, q

D
f (qb), p

D
b (qb, pf ), pf ) ∈ N∗D. Note that pDb (·, ·) is linear on

the second factor. Near the origin (close enough to the origin so that qDf (qb) is well defined), the

handle HD,E2
ν is given in local coordinates by{
φσπν(‖pb‖)(qb, q

D
f (qb), p

D
b (qb, pf ), pf ) =

(
qb, q

D
f (qb) + ν(‖pf‖)

pf
‖pf‖

, pDb (qb, pf ), pf

)}
,

where qb ∈ Bk ⊂ Rk, pf ∈ Bn−k ⊂ Rn−k and Bk, Bn−k are small open balls centered at the origin.
We consider the standard complex volume form Ω = dz1 ∧ · · · ∧ dzn in the chart. Let eπ2 ∈

Sn−k−1 ⊂ Rn−k be a vector in the unit sphere in the pf coordinates. Let

c(r) = φσπν(‖reπ2‖)
(0, 0, pDb (0, reπ2), reπ2)

=

(
0, ν(‖reπ2‖)

reπ2

‖reπ2‖
, pDb (0, reπ2), reπ2

)
= (0, ν(r)eπ2 , p

D
b (0, reπ2), reπ2)

be a smooth curve in HD,E2
ν for r ∈ (0, ε]. We define c(0) = limr→0+ c(r).

The Lagrangian plane Λr of HD,E2
ν at c(r) is spanned by

{(wjb , w
j
f , κ(r, wj), 0)}kj=1 ∪ {(0, ν ′(r)eπ2 , p

D
b (0, eπ2), eπ2)} ∪

{(
0,
ν(r)

r
e⊥j , p

D
b (0, e⊥j ), e⊥j

)}n−k
j=2

,

where κ(r, wj) = ∂qjp
D
b (0, reπ2) = r(∂qjp

D
b (0, eπ2)) is linear in r and e⊥j form an orthonormal basis

for orthogonal complement of eπ2 in Rn−k. We note that (0, ν ′(r)eπ2 , p
D
b (0, eπ2), eπ2) = c′(r) and

the computation uses the fact that pDb (·, ·) is linear on the second factor.

Let κj(r, w
j) be the coefficient of wjb-component of κ(r, wj) (here, we identify the qb-plane

and the pb-plane). Notice that

Det2
Ω(Λr) = ei2(

∑k
j=1 arg(1−κj(r,wj)

√
−1)+arg(ν′(r)−

√
−1)+(n−k−1) arg(ν(r)/r−

√
−1))

for all r (here, we use the fact that wjb are unit coordinates vectors and we use the convention

zi = qi −
√
−1pi). Let K(r) =

∑k
j=1 arg(1− κj(r, wj)

√
−1).

As in the proof of Lemma 4.10, arg(ν ′(r) −
√
−1) increases from π to 3π/2 as r increases

and arg(ν(r)/r −
√
−1)) decreases from 2π to 3π/2 as r increases. Therefore, there is a unique

continuous function θc : Im(c) → R such that:
• θc(c(r)) = n− k − 1 +K(0)/π = n− k − 1 for r = 0;
• θc(c(r)) = (n− k)/2 +K(ε)/π for r = ε; and
• e2πiθc(c(r)) = Det2

Ω(Λr) for all r ∈ [0, ε].
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On the other hand, we can lift a path of Lagrangian planes ΛNr of N∗D over the path c2(r) =
(0, 0, pDb (0, reπ2), reπ2) connecting the origin and c(ε). The Lagrangian plane ΛNr is spanned by

{(wjb , w
j
f , κ(r, wj), 0)}kj=1 ∪ {(0, 0, pDb (0, eπ2), eπ2)} ∪ {(0, 0, pDb (0, e⊥j ), e⊥j )}n−kj=2 .

Therefore, the grading ofN∗D at the origin is the grading ofN∗D at c(ε) subtracted byK(ε)/π. If we
extend θc continuously over Im(c2) (note: Im(c)∩ Im(c2) = {c(ε)}), then θc(c2(0)) = (n− k)/2.

By an analogous calculation to Example 4.3, we have

IndD

(
(L1, n− k − 1),

(
N∗D,

n− k
2

))
= k + 1

and by comparing it with θc the result follows. 2

The following is a family version whose proof is similar.

Corollary 4.14. Let L0,L1 ⊂ (M2n, ω) as in Lemma 2.27 and let the dimension of D be k.
Assume L0,L1 are graded with grading θr and θi. Then IndD((L1, θr), (N

∗D, θi)) = k+ 1 if and
only if L0#ν

D,E2
L1 has a grading such that the grading restricted to L0,L1 coincides with θr

and θi, respectively.

4.4 Diagonal in product
We recall from [WW10b, Remark 3.0.5] how to associate a canonical grading to the diagonal in
M ×M−.

Let (R2n, ωstd) be the standard symplectic vector space and Lag(R2n) be the Lagrangian
Grassmannian. An N -fold Maslov cover LagN (R2n) is a ZN covering LagN (R2n) → Lag(R2n)
associated to the Maslov class in Hom(π1(LagN (R2n)),Z). More precisely, the modulo-N
reduction of the Maslov class defines a representation π1(LagN (R2n)) → ZN and the N -fold

Maslov cover is given as LagN (R2n) := ˜Lag(R2n)×π1(LagN (R2n))ZN → Lag(R2n), where ˜Lag(R2n)

is the universal cover of Lag(R2n).
More explicitly, for Λ0 ∈ Lag(R2n), the N -fold Maslov cover LagN (R2n,Λ0) of Lag(R2n)

based at Λ0 consists of homotopy classes of paths (relative to end points) Λ̃ : [0, 1] → Lag(R2n)
such that Λ̃(0) = Λ0, modulo loops whose Maslov index is a multiple of N . If we identify R2n with
Cn,− (see the identification in Lemma 4.15), then we can equip R2n with the standard complex

volume form Ω. A lift of a Lagrangian subspace Λ ∈ Lag(R2n) to ˜Lag(R2n,Λ0) determines a
grading θΛ : Λ → R (see § 4.1) which is a constant function. Conversely, a constant θΛ on Λ such

that e2πiθΛ = Det2
Ω(Λ) determines a lift of Λ to ˜Lag(R2n,Λ0). Therefore, we also call of lift of Λ

to ˜Lag(R2n,Λ0) (respectively LagN (R2n,Λ0)) a grading (respectively ZN -grading) of Λ.
Similarly, (R2n,−×R2n,−ωstd⊕ωstd) is a symplectic vector space and Λ−0 ×Λ0 is a Lagrangian

subspace so we can define the N -fold Maslov cover LagN (R2n,−×R2n,Λ−0 ×Λ0) based at Λ−0 ×Λ0.
For any Lagrangian subspace Λ ⊂ R2n and a path γ : [0, 1] → Lag(R2n) from γ(0) = Λ to γ(1) =
Λ0, the induced path (γ−×γ)(t) := (γ(t))−×γ(t) from Λ−×Λ to Λ−0 ×Λ0 gives an identification
between LagN (R2n,−×R2n,Λ−0 ×Λ0) and LagN (R2n,−×R2n,Λ−×Λ). If γ2 : [0, 1] → Lag(R2n) is
another path from γ2(0) = Λ to γ2(1) = Λ0, then (γ−×γ)∗((γ−1

2 )−×γ−1
2 ), where γ−1

2 is the inverse
path of γ2 and ∗ is the concatenation of path, has Maslov index 0 so the identification between
LagN (R2n,−×R2n,Λ−0 ×Λ0) and LagN (R2n,−×R2n,Λ−×Λ) is independent of the choice of γ.
Therefore, Λ− × Λ has a canonical lift to LagN (R2n,− × R2n,Λ−0 × Λ0), and hence a canonical
(ZN )-grading.
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To give a canonical grading to the diagonal ∆ ⊂ R2n,− × R2n, it suffices to give once and
for all an identification between LagN (R2n,− ×R2n,Λ− ×Λ) and LagN (R2n,− ×R2n,∆). This is
given by the concatenation of the two paths

(eJtΛ− × Λ)t∈[0,π/2], ({(tx+ Jy, x+ tJy) | x, y ∈ Λ})t∈[0,1],

where J is an ωstd-compatible complex structure on R2n. This canonical grading induces a
canonical grading on ∆M ⊂M− ×M for any symplectic manifold M .

In the following lemma, we consider the symplectic manifold M = Cn,− and compute the
index between a product Lagrangian with the diagonal ∆M .

Lemma 4.15 (Cf. [WW10b, § 3]). For any graded Lagrangian subspace Λ ⊂ Cn,−, we have

Ind∆Λ
(Λ− × Λ,∆Cn,−) = n,

where Λ− × Λ and ∆Cn,− are equipped with their canonical gradings in Cn × Cn,−.

Proof. It suffices to consider Λ = Rn ⊂ Cn,− and J = −Jstd = −
√
−1. Let zi = xi +

√
−1yi be

the coordinates of Cn and wi = ui+
√
−1vi be the coordinates of Cn,−. We consider the standard

complex volume form Ω = dz1 ∧ · · · ∧ dzn ∧ dw̄1 ∧ · · · ∧ dw̄n on Cn×Cn,− and equip Λ−×Λ with
grading 0. We have Det2(eJtΛ−×Λ) = e−i2nt, which induces a grading of −n/2 on eJ(π/2)Λ−×Λ.
We also have Det2({(tx+ Jy, x+ tJy) | x, y ∈ Λ}) = e−inπ for all t so the canonical grading on
∆ is −n/2.

To calculate Angle(Λ− × Λ,∆), we observe that (Λ− × Λ) ∩∆ = Span{(∂xi + ∂ui)}ni=1. We
can use Λt = (Λ− × Λ) ∩∆ + Span{(t(∂yi + ∂vi) + (1 − t)(−∂xi + ∂ui))} from Λ− × Λ to ∆ for
the calculation of Angle(Λ− × Λ,∆). As a result, we have 2Angle(Λ− × Λ,∆) = n/2 and hence

Ind∆Λ
(Λ− × Λ,∆Cn,−) = 2n+

(
−n

2

)
− 0− n

2
= n. 2

Corollary 4.16. Let L be a Lagrangian in M . With the canonical gradings of L×L ⊂M×M−
and ∆ ⊂M ×M−, one can perform graded clean surgery to obtain (L× L)[1]#∆L,E2

∆.

Proof. This is a direct consequence of Lemmas 4.12 and 4.15 because Ind∆L
(L × L[1],∆) =

Ind∆L
(L× L,∆) + 1 = dim(∆L) + 1 (see Example 4.2). 2

Corollary 4.17 (Cf. Theorem 1.1(1)). There is a graded clean surgery identity

(Sn × Sn)[1]#∆Sn ,E2
∆ = Graph(τ−1

Sn ).

Proof. This is a direct consequence of Corollaries 3.5 and 4.16. 2

Lemma 4.18 (Cf. Theorem 1.1(3)). There is a graded clean surgery identity

CPm/2 × CPm/2#Dop,E2
((CPm/2 × CPm/2)[1]#∆CPm/2 ,E2

∆) = Graph(τ−1

CPm/2
).

Proof. By Corollary 4.16, we can obtain a graded Lagrangian

L = (CPm/2 × CPm/2)[1]#∆CPm/2 ,E2
∆.

As explained in the proof of Lemma 3.4 and Lemma 3.6, L is Hamiltonian isotopic to a Lagrangian
Q cleanly intersecting with CPm/2 × CPm/2 along Dop such that Q coincides with the graph of
a Morse–Bott function with maximum at Dop near Dop. Therefore, we have IndDop(CPm/2 ×
CPm/2, Q) = 2m − 1. Here the first term 2m follows by Corollary 4.7 and the second term −1
comes from the grading shift of the first factor of L. Since Dop is of dimension 2m − 2, we get
the result by applying Lemma 4.12. 2

The cases for RPn and HPn can be computed analogously.
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Lemma 4.19 (Cf. Theorem 1.1(3)). There are graded clean surgery identities

RPn × RPn[1]#Dop,E2
((RPn × RPn)[1]#∆RPn ,E2

∆) = Graph(τ−1
RPn)

and
HPn ×HPn[−2]#Dop,E2

((HPn ×HPn)[1]#∆HPn ,E2
∆) = Graph(τ−1

HPn),

where Dop are defined similar to Lemma 4.18.

For the family Dehn twist, we have the following (see Corollary 3.10).

Lemma 4.20 (Cf. Theorem 1.1(2), (4)). There are graded clean surgery identities

C̃S [1]#D,E2
∆ = Graph(τ−1

CS
),

C̃R[1]#Dop,E2
C̃R[1]#D,E2

∆ = Graph(τ−1
CR

),

C̃C#Dop,E2
C̃C [1]#D,E2

∆ = Graph(τ−1
CC

),

C̃H [−2]#Dop,E2
C̃H [1]#D,E2

∆ = Graph(τ−1
CH

),

where CS (respectively CR, CC , CH) is a spherically (respectively real projectively, complex
projectively, quaternionic projectively) coisotropic submanifold.

5. Review of Lagrangian Floer theory, Lagrangian cobordisms and
quilted Floer theory

We first fix conventions for Lagrangian Floer theory for the rest of the paper, which follows that
of [Sei08a]. Note that this is different from the homology convention of [BC13].

Let L0, L1 ⊂ (M,ω) be a pair of transversally intersecting graded compact Lagrangian
submanifolds. For a generic one-parameter family of ω-compatible almost complex structure
J = {Jt}t∈[0,1], let

M(p−, p+) =

{
u : R× [0, 1] → M : us(s, t) + Jt(u(s, t))ut(s, t) = 0, u(s, 0) ∈ L0

and u(s, 1) ∈ L1 lim
s→+∞

u(s, t) = p+, lim
s→−∞

u(s, t) = p−

}/
R. (5.1)

Then the Floer cochain complex CF ∗(L0, L1) is generated by L0 ∩ L1 as a graded vector
space and equipped with a differential by counting rigid elements from M(p−, p+), i.e.,

dp+ =
∑

p−∈L0∩L1

#M0(p−, p+)p−.

We refer to [Sei08a] for the definition of Fukaya category Fuk(M) and the derived Fukaya
category DπFuk(M) that involves higher operations defined using pseudo-holomorphic polygons.

Definition 5.1. Let Li, L
′
j ⊂ (M,ω), 1 6 i 6 k, 1 6 j 6 k′ be a collection of Lagrangian

submanifolds. A Lagrangian cobordism V from (L1, . . . , Lk) to (L′1, . . . , L
′
k′) is an embedded

Lagrangian submanifold in M × C so that the following condition holds (see Figure 10).

• There is a compact set K ⊂ C such that V \(M×K) = (
⊔k
i=1Li×γi)t(

⊔k′

j=1L
′
j×γ′j), where

γi = (−∞, xi)× {ai} and γ′j = (x′j ,∞)× {b′j} for some xi, ai, x
′
j , b
′
j such that a1 < · · · < ak

and b′1 > · · · > b′k′ .
Each Li × γi or L′j × γ′j is called an end of the Lagrangian cobordism V .
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Figure 10. Projection of a Lagrangian cobordism.

The counterclockwise order for the ends starting from L′1 is L′1, . . . , L
′
k′ , L1, . . . , Lk. For the

grading we always choose the quadratic complex volume form on M × C to be the quadratic
complex volume form on M times the standard one on C. When V is graded, the restriction
induces a grading on each end. On an end, say Li×γi, we denote the induced grading as θii. Since
an end is a product Lagrangian, we can associate a grading θi to Li by requiring θi(p) = θii(p×z)
for all p ∈ Li and z ∈ γi. The same rule applies to L′j×γ′j . We use this grading convention between
a cobordism and its fiber Lagrangians over its ends throughout.

The main result we will utilize from Biran and Cornea’s Lagrangian cobordism formalism
reads as follows.

Theorem 5.2 [BC14]. If there exists a graded monotone (or exact) Lagrangian cobordism from
monotone (or exact) Lagrangians (L1[k− 1], L2[k− 2], . . . , Lk) to (L′1[k′− 1], L′2[k′− 2], . . . , L′k′),
then there is an isomorphism between iterated cones in DπFuk(M),

Cone(L1 → L2 → · · ·→ Lk) ∼= Cone(L′1 → L′2 → · · ·→ L′k′).

Here Cone(L1 → L2 → · · · → Lk) = Cone(· · ·Cone(Cone(L1 → L2) → L3) → · · · → Lk) and
the maps in the cones are given by counting appropriate pseudo-holomorphic polygons.

Note that CF ∗(K,Cone(L1 → L2 → · · ·→ Lk)) = CF ∗(K,L1[k−1])⊕· · ·⊕CF ∗(K,Lk) as a
graded vector space for any graded Lagrangian K transversally intersecting each Li. It explains
the seemingly weird grading shift of the Lagrangians Li, L

′
j for the cobordism.

We dedicate the rest of this section to quilted Floer theory developed in [WW10b, WW10a,
WW12, WMW].

Definition 5.3 [WW10b, Definition 2.1.3]. Given a sequence of symplectic manifolds
M0, . . . ,Mr+1, a generalized Lagrangian correspondence L = (L01, . . . , Lr(r+1)) is a sequence of

Lagrangian submanifolds such that Li(i+1) ⊂M−i ×Mi+1 are compact Lagrangian submanifolds
for all i. A cyclic generalized Lagrangian correspondence is one such that M0 = Mr+1.

For a Lagrangian correspondence L01 ⊂ M−0 × M1, Lt01 ⊂ M−1 × M0 is defined to be
Lt01 = {(x, y) | (y, x) ∈ L01}. Given two Lagrangian correspondences L01 ⊂ M−0 × M1 and
L12 ⊂M−1 ×M2, their geometric composition is defined as

L01 ◦ L12 = {(x, z) | ∃y such that (x, y) ∈ L01 and (y, z) ∈ L12}. (5.2)

For the composition to work nicely, we require the following.
• L01×L12 intersectsM−0 ×∆×M2 transversally inM−0 ×M1×M−1 ×M2, where ∆⊂M1×M−1

is the diagonal.
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• The projection π02 : L01×M1L12 → L01◦L12 ⊂M−0 ×M2 is an embedding, where L01×M1L12

is the fiber product between π01,1 : L01 →M1 and π12,1 : L12 →M1, and π02 is the projection
forgetting the M1 factor.

In this case, the composition L01 ◦ L12 is called embedded. We refer to § 3.3 for a non-trivial
example of Lagrangian correspondence and composition coming from coisotropic embeddings.

For a cyclic generalized Lagrangian correspondence L, the quilted Floer cohomology is defined
to be

HF ∗(L) := HF ∗(L01 × L23 · · ·L(r−1)r, (L12 × L34 · · ·Lr(r+1))
T )

in M−0 ×M1 × · · · ×M−r−1 ×Mr when r is odd, where (−)T : M−1 ×M2 × · · · ×M−r ×M0 →

M−0 × M1 × · · · × M−r−1 × Mr is given by transposition of the last factor to the first factor,
combined with an overall sign change in the symplectic form. When r is even, we have

HF ∗(L) := HF ∗(L01 × L23 · · ·Lr(r+1), (L12 × L34 · · ·L(r−1)r ×∆M0)T )

in M−0 ×M1 × · · · ×M−r ×Mr+1, where (−)T is defined analogously.
It is worth pointing out that for the quilted Floer cohomology to be well defined, L needs

to satisfy a monotonicity condition [WW10b, Definitnion 4.1.2(b)] stronger than having all
Li,(i+1) to be monotone. For monotone Lagrangian submanifolds L0 ⊂ {point}− × M0 and

L1 ⊂ M−1 × {point}, a sufficient condition for this stronger monotonicity to hold for L =
(L0, L01, L1) is when π1(L01) = 1 [WW10b, Lemma 4.1.3]. We refer readers to [WW10b] for
further details on monotonicity, as well as orientation, grading and so forth for a generalized
Lagrangian correspondence. The following theorems summarize the main properties that will
concern us.

Theorem 5.4 [WW10b, Theorem 5.2.6]. For a cyclic generalized Lagrangian correspondence L
such that:
• Mi are all compact monotone with the same positive monotonicity constant, or are all exact;
• Li(i+1) are all compact, oriented and monotone (or all exact) with minimal Maslov number

at least three;
• M0 = Mr+1 is a point;
• Li(i+1) = Li × Li+1 for Lagrangians Li ⊂Mi and Li+1 ⊂Mi+1 for some 1 6 i < r,

there is a canonical isomorphism

HF ∗(L) = HF ∗(L01, L12, . . . , L(i−1)i, Li)⊗HF ∗(Li+1, L(i+1)(i+2), . . . , Lr(r+1))

with coefficients in a field.

Theorem 5.5 ([WW10b, Theorem 5.4.1] and [LL13, Theorems 1, 2]). For a cyclic generalized
Lagrangian correspondence L such that:
• Mi are all compact monotone with the same positive monotonicity constant, or are all exact;
• Li(i+1) are all compact, oriented and monotone (or all exact) with minimal Maslov number

at least three;
• L is monotone, relatively spin and graded in the sense of [WW10b, § 4.3]; and
• L(i−1)i ◦ Li(i+1) is embedded in the sense above,

there is a canonical isomorphism

HF ∗(L) = HF ∗(L01, L12, . . . , L(i−1)i ◦ Li(i+1), . . . , Lr(r+1))

where the orientation and grading on the right are induced by those on L.

2522

https://doi.org/10.1112/S0010437X18007479 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007479


Dehn twist exact sequences through Lagrangian cobordism

Remark 5.6. In [LL13], Theorem 5.5 was extended to greater generality than stated here, which
should be useful for extending our results to negatively monotone cases.

For a graded symplectomorphism φ ∈ Symp(M), the fixed point Floer cohomology can be
defined as

HF ∗(φ) = HF ∗(∆,Graph(φ)) = HF ∗(Graph(φ−1),∆),

where the Lagrangian Floer cohomologies take place in M × M− (see [Sei00], [WW10b,
Definition 3.0.6 and Remark 3.0.7] for the details of graded symplectomorphisms and the
associated gradings on the graphs).

Remark 5.7. We follow the convention in [WW10b], where HF ∗(φ) = HF ∗(Graph(φ),∆) in
M− ×M . Therefore, we have HF ∗(φ) = HF ∗(∆,Graph(φ)) in M ×M−.

6. Proof of the long exact sequences

6.1 Exactness and monotonicity of surgery cobordisms
We construct Lagrangian cobordisms associated to the surgery identities in Theorem 1.1(1), (2),
(3), (4) and deduce the long exact sequences in this section. Throughout the whole section, we
assume all Lagrangians in M to be Z or Z/N -graded.

Lemma 6.1. Let L = L1#DL2, L1#D,E2
L2 or L1#D,E2

L2 as surgeries of graded Lagrangians.
Then there is a graded Lagrangian cobordism V from L1 and L2 (or L1 and L2) to L.

Proof. We give the proof for L = L1#D,E2
L2; the proofs for L1#DL2 and L1#D,E2

L2 are similar.
It suffices to consider M = T ∗L1 and L2 = N∗D is the conormal bundle of D in L1. As usual, we
assume that a product metric on L1 = K1 ×K2 is chosen and D t ({p} ×K2) for all p ∈ K1 so
that the E2-flow clean surgery can be performed.

First note that L1×R intersects cleanly with L2× iR at D×{0}. Let the grading of Li be θi.
We give a grading θ1r to L1 × R by requiring θ1r(p, z) = θ1(p) for all p ∈ L1 and z ∈ R. On the
other hand, we equip L2× iR with grading θ2i such that θ2i(p, z) = θ1(p)−1/2 for all p ∈ L1 and
z ∈ R. Then we have IndD×{0}(L1 × R, L2 × iR) = IndD(L1, L2) + Ind0(R, iR) = IndD(L1, L2).
Moreover, we also have IndD(L1, L2) = dim(D) + 1 by the assumption that graded E2-flow
surgery from L1 to L2 can be performed and Lemma 4.12 .

Pick the standard metric on R. By Lemma 4.12, we can perform the graded Lagrangian
surgery from L1×R to L2× iR resolving the clean intersection by a (E2 ⊕ R)-flow handle

HD,E2⊕R
ν , where we canonically identify T ∗(L1 × R) with an E1 ⊕ E2 ⊕ R bundle over L1 × R.

We note that E2 ⊕ R-flow is well defined to give a smooth Lagrangian manifold because we
stayed inside the injectivity radius (Lemma 2.26). Hence we have a graded embedded Lagrangian
cobordism with four ends in M × C.

Let π : M × C → C be the projection to the second factor and πH = π|
H
D,E2⊕R
ν

. We define

S+ = {(x, y) ∈ R2 | y > x} and W = π−1
H (S+). A direct check shows that W is a smooth

manifold with boundary π−1
H (0) = L. Let W0 = W ∩π−1([−3ε, 0]× [0, 3ε]). It has three boundary

components, namely L1×{(−3ε, 0)}, L2× (0, 3ε) and L×{(0, 0)}, while L×{(0, 0)} is the only
boundary component that is not cylindrical. One then applies a trick due to Biran and Cornea
(see [BC13, § 6]). This yields a Hamiltonian perturbation ϕ supported on π−1([−ε, ε] × [−ε, ε]),
so that ϕ(W ) has all three cylindrical ends. By extending ϕ(π−1

H (0)) to infinity and bending the
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Figure 11. Construction of a surgery cobordism.

cylindrical end corresponding to L2 to the left, we get the desired Lagrangian cobordism V (see
Figure 11).

Finally, by the identification of gradings from ends to fiber Lagrangians, we conclude that it
is a cobordism from L1 and L2 to L. 2

We call a cobordism obtained by Lemma 6.1 a surgery cobordism. When D is a single point,
it reduces to the usual Lagrangian surgery and Lemma 6.1 was discussed in [BC13, § 6] in detail.

Lemma 6.2. Let V be a surgery cobordism from L1, L2 to L and D is connected. If L1 and L2

are exact Lagrangians, then L is exact and V is also exact.

Proof. We give the proof for L = L1#D,E2
L2. Without loss of generality, we can assume M =

T ∗L1, L2 = N∗D is the conormal bundle. We first assume codimLi(D) > 2.

Since the E2-flow handle HD,E2
ν is obtained by a Hamiltonian flow of N∗D\D, it is immediate

that HD,E2
ν is an exact Lagrangian. Let f1, f2 and fH be primitives of α restricted on L1, L2 and

HD,E2
ν , respectively. Since we assume that D is of codimension two or higher, (fi− fH)|

Li∩H
D,E2
ν

are locally constant and hence constant for i = 1, 2, where HD,E2
ν denotes the closure of the

handle. By possibly adding a constant to f1 and f2, we can assume f1, f2 and fH are chosen in
such a way that they match together to give a primitive on L.

Now we drop the codimension assumption and only assume codimLi(D) > 1. We recall that
in the proof of Lemma 6.1, the first step for constructing V is to resolve L1×R and L2×iR along
D×{(0, 0)}, which has now codimLi×R(D) > 2. This process preserves exactness by what we just
proved. Then we cut the cobordism into a half, do Hamiltonian perturbation near L×{(0, 0)} and
extend the cylindrical end. All of these steps preserve the exactness of the Lagrangian and hence
V is exact. The restriction of V to the fiber over {(0, 0)} is precisely L, proving the exactness of
the surgery. 2

Lemma 6.3. Let V be a surgery cobordism from L1, L2 to L. If L1 and L2 are monotone
Lagrangians such that either:

(1) π1(L1, D) = 1 or π1(L2, D) = 1; or

(2) the image of π1(Li) in π1(M) is torsion for either i = 1, 2,

then L is monotone and V is also monotone.
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Proof. Again we give the proof for L = L1#D,E2
L2 and we first assume that codimLi(D) > 2.

For convenience we decompose L =
◦
L1 ∪

◦
L2. Here

◦
L2 is the closure of the image of L2\D under

the E2-flow defining the surgery, and
◦
L1 is the closure of the complement of

◦
L2.

In case (1) it suffices to prove the lemma when π1(L2, D) = 1, since the slight asymmetry of

L1 and L2 will be irrelevant. First it is easy to see that π1(U(D), U(D)\D) = π1(N∗D, N
∗
D\D) = 1

by our assumption on D, where U(D) is a tubular neighborhood of D in L2. Since the flow handle

HD,E2
ν is obtained by applying an E2-flow to N∗D\D, any path in

◦
L2 with ends at HD,E2

ν can be

homotoped to a path in HD,E2
ν , while HD,E2

ν in turn retracts to its boundary component that

lies on
◦
L1.

The upshot is, we can find for any element in π2(M,L) a representative u : D2
→ M with

boundary completely lying in
◦
L1. Since L1 is monotone, it finishes the proof for L.

Case (2) is similar. Without loss of generality, assume the image of π1(L2) → π1(M) is

torsion. Take again any disk u : D2
→ M with boundary on L, and assume ∂u intersects ∂

◦
L2

transversally. For any segment I ⊂ ∂u contained in
◦
L2 satisfying ∂I ⊂ ∂

◦
L2, one connects the

two endpoints of ∂I by I ′ ⊂ ∂
◦
L2 (the relevant boundary is connected due to the assumption

of connectedness and codimension of D). By assumption, we can take a disk v : D2
→ M with

∂v = m[I∪I ′] for some integer m. Then one may decompose mu so that m[u] = [mu−v]+[v], so

that ∂v ⊂
◦
L2. By performing such a cutting iteratively, one may assume ∂(mu−v) ⊂

◦
L1. Since ∂v

retracts to L2 ∩
◦
L2, the monotonicity follows from that of L1 and L2 with such a decomposition.

Now in either case the monotonicity of V is argued in a similar way as Lemma 6.2 because

all processes involved preserve monotonicity. The restriction to the fiber over the origin again

removes the assumption of codimLiD > 2 as in Lemma 6.2. 2

6.2 Proof of long exact sequences

Theorem 6.4 [Sei03, WW16, BC17]. Let (M,ω) be a monotone symplectic manifold and Sn

(n > 1) a graded embedded Lagrangian sphere. For any graded monotone Lagrangians L1 and

L2, there is a long exact sequence

· · ·→ HF ∗(Sn, L2)⊗HF ∗(L1, S
n) → HF ∗(L1, L2) → HF ∗(L1, τSn(L2)) → · · · .

Proof. By Corollaries 3.5, 4.17 and Lemma 6.1, there is a Lagrangian cobordism V from

Sn×Sn[1] and the diagonal ∆ to Graph(τ−1
Sn ) in M×M−, where M− = (M,−ω). By Lemma 6.3,

the monotonicity of (M,ω) implies the same property for Sn × Sn[1], ∆ ⊂ M ×M− and the

corresponding cobordism V .

In either case, Graph(τ−1
Sn ) is a cone from Sn × Sn to ∆ in the derived Fukaya category of

M ×M− by Theorem 5.2. In particular, we have a long exact sequence

· · ·→ HF ∗(L1 × L2, S
n × Sn) → HF ∗(L1 × L2,∆) → HF ∗(L1 × L2,Graph(τ−1

Sn )) → · · · .

From the Kunneth formula, HF ∗(L1 × L2, S
n × Sn) ∼= HF ∗(L1, S

n) × HF ∗(Sn, L2)

(recall that there is a negation on the symplectic form of the second factor). The identity

HF ∗(L1 × L2,∆) ∼= HF ∗(L1, L2) is also well known: in view of Lagrangian correspondence,

HF ∗(L1 × L2,∆) = HF ∗(L1,∆, L2) = HF ∗(L1,∆ ◦ L2) = HF ∗(L1, L2)

by Theorem 5.5. 2
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Corollary 6.5 [Sei08b, WW16]. In the same situation as Theorem 6.4, f ∈ Symp(M), then

· · ·→ HF ∗(τ ◦ f) → HF ∗(f) → HF ∗(f(Sn), Sn) → · · · . (6.1)

Proof. The exact sequence follows from applying the cohomological functor HF ∗(−,Graph(f))
to the cone given by the cobordism. 2

The above result is predicted by Seidel [Sei08b, Remark 2.11] in a slightly different form from
here. This is solely due to the cohomological convention we took. In the following theorem, we
assume all involved symplectic manifolds and Lagrangians have the same monotonicity constant
with minimal Maslov number at least three.

Theorem 6.6 (Theorem 1.4, see also [WW16]). Let C be a spherically fibered coisotropic
manifold over the base (B,ωB) in (M,ω). Given Lagrangians L1 and L2 and assume both
the following monotonicity conditions.

(i) The generalized Lagrangian correspondence (L1, C
t, C, L2) is monotone in the sense of

[WW10b].

(ii) The surgery cobordism corresponding to the surgery in Corollary 3.10 is monotone.

Then there is a long exact sequence

· · ·→ HF ∗(L1 × C,Ct × L2) → HF ∗(L1, L2) → HF ∗(L1, τC(L2)) → · · · .

In particular if the spherical fiber of C has dimension> 1 or π1(M) is torsion, (ii) is automatic.

Proof. The proof is analogous to Theorem 6.4 with Corollaries 3.5 and 4.17 replaced by
Corollary 3.10 and Lemma 4.20. Here we give a sketch. First, (L1, C

t, C, L2) being monotone
implies C̃ = Ct ◦ C being monotone (see [WW10b, Remark 5.2.3]). The Lagrangian cobordism
in Corollary 3.10 is monotone by Lemma 6.3. It is not hard to verify π1(C̃, C̃ ∩ ∆) = 1 when
codimMC > 2. Hence, Theorem 5.2 applies either in this case or when π1(M) is torsion, and we
obtain the long exact sequence

· · ·→ HF ∗(L1 × L2, C̃) → HF ∗(L1 × L2,∆) → HF ∗(L1 × L2,Graph(τ−1
C )) → · · · .

With our assumption on the monotonicity of (L1, C
t, C, L2), we apply Theorem 5.5 to obtain

the desired result. 2

There is a similar result on the fixed point version of family Dehn twist, and we will not
state it explicitly here.

The new proofs for Theorems 6.4 and 6.6 go through for projective Dehn twists, by using
Lemma 4.19. The family versions and (family) fixed point versions for projective Dehn twists
can be obtained similarly (cf. Lemma 4.20).

Theorem 6.7. Let (M,ω) be a closed monotone symplectic manifold. Let S be a graded
Lagrangian submanifold diffeomorphic to a complex (or real, quaternionic) projective space. For
graded monotone Lagrangians L0 and L1, there is a quasi-isomorphism of cochain complexes

CF ∗(L0, τSL1)
∼= Cone(CF ∗(S,L1)⊗ CF ∗−†(L0, S) → CF ∗(S,L1)⊗ CF ∗(L0, S) → CF ∗(L0, L1)). (6.2)
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for some maps in the mapping cones, where † = 2, 1, 4, respectively, for complex, real and

quaternionic projective space.
Similarly, let CP be a projectively coisotropic submanifold which satisfies the same

monotonicity conditions as in Theorem 6.6,

CF ∗(L0, τCPL1)
∼= Cone(CF ∗−†(L0 × CP , CtP × L1) → CF ∗(L0 × CP , CtP × L1) → CF ∗(L0, L1)). (6.3)

Proof. This is an immediate consequence of the cobordism of Theorem 1.1(3), (4), and [BC13,

Theorem 2.2.1] by plugging in N = L0 × L1 as the testing Lagrangian. 2

Remark 6.8. From elementary homological algebra, (6.2) leads to the following long exact

sequences (cf. Theorem 6.4),

· · ·→ HF ∗(S,L1)⊗HF ∗−†(L0, S) → HF ∗(S,L1)⊗HF ∗(L0, S) → H∗(C) · · ·

and

· · ·→ H∗(C) → HF ∗(L0, L1) → HF ∗(L0, τS(L1)) → · · ·

for some cochain complex C. Geometrically, C is the Floer complex between certain immersed

Lagrangian submanifold and L0 × L1 in the ambient symplectic manifold M ×M . The case is

similar for projectively coisotropic submanifolds CP .

We have focused on the monotone case so far for concreteness of the exposition. For exact

Lagrangian submanifolds, we have the following.

Theorem 6.9. Theorem 6.4 and the first half of Theorem 6.7 holds true for compact exact

Lagrangian submanifolds, and Corollary 6.5 holds for exact symplectic manifolds.

The proof for the exact cases are almost completely identical to the monotone cases with

Lemma 6.2 ensuring the exactness of the surgery cobordism involved, except for one instance,

that the identity

HF ∗(L1 × L2,∆) ∼= HF ∗(L1, L2)

does not fit into the general machinery of Lagrangian correspondences directly.

However, this statement is again well known to experts, and we give a rough argument here.

The chain group has a natural bijection sending L1 × L2 ∩ ∆ 3 (x, x) 7→ x ∈ L1 ∩ L2. For a

(J, J−)-holomorphic strip u = (u1, u2) : R× [0, 1] → M ×M−, where J = (Jt)t∈[0,1] is a family of

ω-compatible almost complex structures and J− = −J , one has an J ′ = (J ′)t∈[0,1]-holomorphic

strip

u′(s, t) =

{
u2(2s, 1− 2t) when 0 6 t < 1/2,

u1(2s, 2t− 1) when 1/2 6 t 6 1,
(6.4)

where J ′t = J1−2t for t ∈ [0, 1/2] and J ′t = J2t−1 for t ∈ [1/2, 1]. Conversely, given a J ′-holomorphic

strip u′, we can define u = (u2, u1), u1(s, t) = u′(s/2, (1 + t)/2) and u2(s, t) = u′(s/2, (1− t)/2).
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This gives a bijection between M((x, x), (y, y); J ⊕J−), the moduli space of J ⊕J−-holomorphic
strips connecting (x, x) and (y, y), and M(x, y; J), the J-holomorphic strips connecting x and y,
for x, y ∈ L1 ∩ L2. This concludes our discussion on exact cases for the long exact sequences.

6.3 Cones in Fukaya categories
We may recapitulate results from § 6 on the functor level using results in [BC14, WMW]. We
continue to use the monotone setting in this subsection.

The case of spherical twists and fibered Dehn twists are straightforward given the M’au–
Wehrheim–Woodward A∞-functor Φ, which is

Φ : Fuk(M ×M) −→ fun(Fuk#(M),Fuk#(M)), (6.5)

where Fuk#(M) is the A∞-category of generalized Lagrangians defined in [WMW]. When Gφ is
a graph of a symplectomorphism φ, the functor Φφ := Φ(Gφ) in fun(Fuk(M),Fuk(M)) is the
functor induced by φ.

Given Corollaries 3.5, 4.17 and Lemma 6.1, we constructed a Lagrangian cobordism from
Sn×Sn and ∆ to Graph(τ−1

Sn ). The main result from [BC14] then gives a cone in Fuk(M ×M)

Sn × (Sn)− → ∆ → Graph(τ−1
Sn )

[1]
−→ . (6.6)

Hence, under Φ this turns into a cone of functors

hom(Sn,−)⊗ Sn → IdTwFuk(M) → ΦτSn
[1]
−→ (6.7)

or, if φ× id is applied to the cobordism, the resulting cone reads

hom(φ(Sn),−)⊗ Sn → Φφ → ΦτSn◦φ
[1]
−→ . (6.8)

Evaluating (6.7) at any object L ⊂ Fuk(M) hence recovers Seidel’s cone relation [Sei08a]

→ hom(Sn, L)⊗ Sn ev−→ L → τSnL
[1]
−→ (6.9)

while further evaluating at another object gives the cohomological version: Theorem 6.4.
Corollary 6.5 follows from (6.8) by considering the morphisms to the identity functor in simple
cases. For the family Dehn twist Corollary 3.10, we may also interpret it as a cone of functors,
but we need to go to the general Lagrangian correspondence framework; by the time of writing, it
is not clear that the functor induced by C̃ in fun(Fuk#(M),Fuk#(M)) can descend to a functor
in fun(Fuk(M),Fuk(M)) even for spherically coisotropic manifolds.

For the case of projective twists, the same argument shows the following.

Theorem 6.10. Let S ⊂M be a monotone Lagrangian CPn (respectively RPn,HPn). Then the
auto-equivalence induced by Lagrangian S-twist is equivalent to the following iterated cone in
fun(Fuk(M),Fuk(M))

Cone(hom(S,−)⊗ S[−†] → hom(S,−)⊗ S → idFuk(M)),

where † = 2, 1, 4, respectively, for CPn, RPn and HPn. Evaluating an object L on these functors
recovers Theorem 1.8.
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Proof. The construction from Lemma 3.6 gives a Lagrangian cobordism from S×S[−†], S×S and

∆ to the graph of τ−1
S , and grading considerations from Lemmas 4.18, 4.19 endow the cobordism

with a well-defined grading that matches those on the ends. The main theorem in [BC14] gives

a quasi-isomorphism of iterated cones in Fuk(M ×M−)

Cone((S × S)[−†] → S × S → ∆M ) ∼= Graph(τ−1
S ).

The desired assertion is simply the image of this equality under the M’au–Wehrheim–

Woodward functor Φ. 2

Similarly, by replacing Lemma 3.6 with Corollary 3.10, and Lemmas 4.18 and 4.19 with

Lemma 4.20, we have the following.

Theorem 6.11. Given a projectively coisotropic manifold C ⊂ M satisfying the monotonicity

assumptions in Theorem 6.6, the auto-equivalence induced by the family projective twist is

equivalent to the following iterated cone in the category fun(Fuk#(M),Fuk#(M)),

Cone(C̃[−†] → C̃ → idFuk#(M)),

where † = 2, 1, 4, respectively, if the projective fiber is CPl, RPl and HPl.

We remark that the functor C̃ should be regarded as the composite of the functors Ct :

Fuk#(M) → Fuk#(B) and C : Fuk#(B) → Fuk#(M).
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Appendix A. Computations of connecting maps for the surgery formula

In this appendix, we briefly explain how to ‘compute’ some connecting maps involved in the

surgery exact triangle along a clean intersection through the following simple algebraic fact.

Lemma A.1. Given Z-graded cochain complexes A,B over a field K and c, c′ ∈ hom0(A,B) which

are closed, assume that 0 6= t ∈ K and [c] = t[c′]. Then cone(c) is quasi-isomorphic to cone(c′).

Proof. This is a straightforward verification by sending (a, b) ∈ A[1]⊕B to (a, tb+ η(a)), where

η is a chain homotopy between c and tc′. 2
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Figure A.1. Resolving the degree-zero intersection by surgery.

Lemma A.1 can be upgraded to a categorical level, for example, using the Yoneda lemma.
This means that the quasi-isomorphism type of a non-trivial mapping cone is determined by
the choice in PHom0(A,B), where Hom0(A,B) = H0(hom(A,B)). Hence, it suffices to compute
the connecting morphisms up to a rescaling factor when only the quasi-isomorphism type of the
mapping cone is concerned. In particular, when rank(Hom0(A,B)) = 1, the mapping cone from
A to B can have only one quasi-isomorphism type that is not the direct sum. The following
perturbation lemma will be useful for excluding the direct sum.

Lemma A.2. Let L1, L2 ⊂ M be a pair of Z-graded exact Lagrangian submanifolds. Assume
L1∩L2 = D with index IndD(L1, L2) = dim(D) = k and the intersection is clean. Let f : L1 → R
(respectively f : L2 → R) be a Morse–Bott function which attains maximum (respectively
minimum) at D and Morse elsewhere. Then the graph of df as a perturbation L̃1 of L1

(respectively L̃2 of L2) in a Weinstein neighborhood satisfies

L̃1 t (L1[1]#DL2) = (L̃1 t L1[1])\{D},

and respectively,
L̃2 t (L1[1]#DL2) = (L̃2 t L2)\{D},

as correspondences of intersection points preserving degrees.

Proof. Pick a Weinstein neighborhood W of L1 such that L2 can be identified as a conormal
bundle (Proposition 2.21). Let L̃1 be the graph of df and identify L̃1 as a Lagrangian in W and
hence in M . Pick a Darboux chart U ⊂ W centered at a point p ∈ D such that L1 is identified
with Rn and L2 is identified with N∗Rk . By choosing U to be a neighborhood of the zero section

of the cotangent bundle of a Morse–Bott chart on L1 near p, we can assume f = c
∑n−k

i=1 x
2
i for

some small negative constant c in U . In particular, Rk is the only critical submanifold of f in U .
Let L3 = L1[1]#DL2 and restrict our attention to (L3 ∩ U) ⊂ U . We have

Graph(df) = {(−→x , 2c−→x ) | −→x ∈ Rn}

in (T ∗B(r))r ⊂ U for some small r > 0. On the other hand, the flow handle is given by HD
ν =

{(exp(ν(‖v‖) · v/‖v‖), v) | v ∈ N∗Rk}, where exp denotes the exponential map. Since c < 0, one
sees that the two Lagrangians do not intersect in this Darboux chart U by checks on signs (cf.
Example 4.5, 4.6 for our conventions). Since p ∈D is arbitrary, the flow handle does not intersect
Graph(df) (see Figure A.1).

The perturbation L̃2 is constructed similarly, except f is taken to have a critical minimum
submanifold along D on L2. We leave the details to the reader. 2

2530

https://doi.org/10.1112/S0010437X18007479 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007479


Dehn twist exact sequences through Lagrangian cobordism

We exploit consequences of this simple fact. In the rest of this section all Lagrangians will
be assumed to be Z-graded and exact.

Corollary A.3 (Surgery exact triangle). Let L1, L2 be graded exact closed embedded
Lagrangians. Assume L1 ∩ L2 = D is connected such that IndD(L1, L2) = dim(D) = k and
the intersection is clean. Let L3 = L1[1]#DL2. Suppose also that there is a Morse–Bott function
f : L1 → R (or f : L2 → R) such that f attains local maximum (respectively minimum) exactly
at D (i.e., no points other than D attains a local maximum). Then there is an exact triangle

L1
[D]
−−→ L2 → L3 → L1[1],

where [D] is the fundamental class of D regarded as an element in HF 0(L1, L2) using Morse–Bott
model.

Proof. When D is a point, the exact triangle is known to Fukaya et al. [FOOO09] in its
cohomological version, and is a direct consequence of Biran and Cornea’s cobordism theory
in the categorical version. When D is not just a point, we still have an exact triangle
L1 → L2 → L3 → L1[1] by Lemma 6.1 and Biran and Cornea’s cobordism theory. We focus
on the derivation of the connecting map cs : L1 → L2.

We assume f : L1 → R attains local maximum exactly at D. The case for L2 is similar. Since
L1∩L2 = D and IndD(L1, L2) = dim(D) = k, there is a Hamiltonian perturbation L′1 of L1 such
that CF 0(L′1, L2) is rank one. By standard Lagrangian Floer theory, we have a quasi-isomorphism
Φ : CF (L1, L2) → CF (L′1, L2) and Φ∗[D] is a generator of HF 0(L′1, L2), which is at most rank
one. By Lemma A.1, it suffices to show that the first connecting map is non-zero.

By Lemma A.2 there is no degree-zero element in CF (L̃1[1], L3) (note: IndD(L̃1, L1) = n−
IndD(L1, L̃1) = 0 by Example 4.6). If the connecting map is zero, HF 0(L̃1[1], L3) = HF 0(L̃1[1],
L1[1])⊕HF 0(L̃1[1], L2), which is at least rank one, so we arrive at a contradiction. 2

Remark A.4. One may recover connecting maps for exact sequences in Seidel’s exact sequence or
Wehrheim and Woodward’s family Dehn twist by the same trick. The idea is to exploit the fact
that HF 0(Sn, Sn)

∼−→ HF 0(Sn × Sn,∆) has rank one. One then needs to understand the above
isomorphism explicitly and compare the image of identity with the evaluation map in Seidel’s
exact sequence. One obvious possibility is to study the quilt unfolding [WMW].
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