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Abstract

The Ginibre point process (GPP) is one of the main examples of determinantal point
processes on the complex plane. It is a recurring distribution of random matrix theory as
well as a useful model in applied mathematics. In this paper we briefly overview the usual
methods for the simulation of the GPP. Then we introduce a modified version of the GPP
which constitutes a determinantal point process more suited for certain applications, and
we detail its simulation. This modified GPP has the property of having a fixed number
of points and having its support on a compact subset of the plane. See Decreusefond
et al. (2013) for an extended version of this paper.
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1. Introduction

Determinantal point processes (DPP) form a class of point processes which exhibit repulsion
and are used to model a wide variety of phenomena. After their introduction by Macchi [11],
they have been studied in depth from a probabilistic point of view; see [15] and [16] for an
overview of their mathematical properties. Other than modeling fermion particles (see the
account of the determinantal structure of fermions in [17] and also [16] for other examples),
they are known to appear in many branches of stochastic matrix theory (see, e.g. [16] or the
thorough overview of [1]) and in the study of the Os of Gaussian analytic functions; see [7].
The Ginibre point process (GPP) in particular was first introduced in [4] and arises in many
problems revolving around DPPs. To be more specific, the eigenvalues of a Hermitian matrix
with complex Gaussian entries (which is a subclass of the so-called Gaussian unitary ensemble
(GVE)) are known to form a GPP (or rather, a so-called truncated GPP). The GPP models the
positions of charges of a two-dimensional Coulomb gas in a harmonic oscillator potential, at a
temperature corresponding to fJ = 2; see [4]. Furthermore, the GPP is the natural extension of
the Dyson point process to the complex plane. The Dyson model is a DPP on lR which is of
central importance, as it appears as the bulk-scaling limit of a large class of DPPs; see [2].

The simulation of a general DPP is mostly unexplored, and was in fact initiated in [6] wherein
the authors presented a practical algorithm for the simulation of a DPP. Theoretical discussion
of the aforementioned algorithm as well as statistical aspects have also been explored in [8].
More specifically, the GPP as a model has spiked interest since its introduction in [4]. The
simulation procedure which is hinted in [4] was fully developed in [10]. To the best of the
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authors' knowledge, the first use of the OPP as a model traces back to [9]. More recently,
in [12], [18], and [19], different authors have used the OPP to model phenomena arising in
networking. Indeed, this particular model has many advantages with regards to applications. It
is invariant with respect to rotations and translations, which gives us a natural compact subset
on which to simulate it; namely, the ball centered at the origin. Moreover, the electrostatic
repulsion between particles is found to be fitting for many applications. The main problem that
arises in the usual simulation procedure of the OPP is that although the eigenvalues of matrices
in the OUE ensemble form a (so-called truncated) OPP, these eigenvalues are not compactly
supported, although after renormalization, they tend to be compactly supported as N, the size
of the OUE matrix, tends to 00 (this is known as the circular law in stochastic matrix theory).
Additionally, we remark that the usual simulation techniques of the OPP do not transpose well
to the Ginibre a-DPP, defined in [15]. Indeed, in order to simulate the associated a-DPP,
the general algorithms of [6] are required for the simulation. We thus introduce a modified
version of the OPP, which tends weakly to the usual GPP as the parameter N tends to 00.

Moreover, since our point process is a projection DPP, it is defined on a compact subset and its
simulation follows from a simplified version of the algorithm in [6]. As a pleasant side-effect,
the simulation procedure may also be extended to the a-DPP case.

We proceed as follows. We start in Section 2 by general definitions relating to point processes.
In Section 3 we present more specifically the OPP, and discuss its usual simulation. We then
introduce our modified version of the GPP, gives its Janossy density, prove its convergence to
the OPP, and conclude by discussing its simulation.

2. Preliminary notions of point process theory

Let E be a Polish space, and 93 the Borel a -algebra on E. Let 'A be a Radon measure on
(E, 93). For a set ACE, define IAI to be the cardinal of A, with the convention IAI = +00 if
the set A is not finite. Let X be the space of locally finite subsets of E, sometimes called the
configuration space:

X = {~ C E: LA n ~ I < 00 for any compact set AcE}.

Elements of X are called configurations in what follows. The configuration space X is naturally
topologized by the vague topology, which is the weakest topology such that for all continuous
and compactly supported functions! on E, the mapping ~ ~ (!,~) := LYE~ !(y) is
continuous. We denote by :F the corresponding Borel a-algebra. Next, let XA = {~ c
A: I~ I < oo} be the space of all finite configurations on a compact set A of E, equipped with
the trace a -algebra :FA = :F Ix A' A point process is defined as a probability measure J.L on
(X, :F). A point process J.L is said to have correlation functions (Pn)nEN if for any At, ... , An
disjoint bounded Borel subsets of E,

rnHAdJL(d~) = r Pn(Xl, ... , xn)}"(dxd ... }"(dxn).
Jx ;=1 JAIX ... xAn

Recall that PtdA is the particle density and Pn(Xt, ... , Xn)A(dxt)··· A(dxn) is the probability
of finding a particle in the vicinity of each Xi, i = 1, ... , n. For any compact set ACE,
we also define the Janossy density iA of J.L, which is such that for any measurable integrable
f: XA -+ IR,

r f(~)JL(d~) = L ~ f !({Xl, ... , Xn})iA({Xt, ... , xn})'A(dxt)··· A(dxn).lx n:::O n. A"
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In what follows, we write j~ (Xl, ... ,Xn ) := jA ({Xl, ... , xn }) for the nth Janossy density,
i.e, the associated symmetric function of n variables, for a configuration of size n EN. In
fact, j~ (Xl, ... ,Xn) = n! Pnf~ (Xl, ... ,xn), where Pn = JL(I~ n A I = n) and f~ is the joint
density of the points, given that the number of points is n.

3. Simulation of the GPP

3.1. Overview of the standard methods

For details on DPPs, we refer the reader to [15] and [16]. The GPP is defined as the
detenninantal process on e with kernel

K(x, y) = 2.eXYe-<lxI2+IYI2)/2, x, y E C, (1)
n

with respect to dA := dl, the Lebesgue measure on e (Le. dl(x) = da db, when X = a + ib).
In (1), zdenotes the conjugate of a complex Z E C. The kernel (1) is decomposed in the basis
of its eigenvectors as

K (x, y) = L 4>n (x)4>n (y),

n2:0

X,y E e, (2)

where 4>n(x) := (I/J]"(n!)e-lxI2j2xn, for n E N and X E C. It can be easily checked that
(¢n)neN is an orthonormal family of L2(C, dz). In fact, (4)n)neNis a dense subset of L2(C, dz),
The GPP is known to be stationary and isotropic, which as mentioned already makes it useful
for modeling.

First, we mention the truncated Ginibre point process (TGPP), defined for N ~ 0 by its
kernel

(3)x,y E C,
N-l

N '""'" -K (x, y) = L..J 4>n (x)4>n (y),

n=O
which is in fact a truncation of the sum in (2). As it is a projection kernel (see, e.g. [16]), the
TGPP has N points almost surely. It is clearly not translation invariant anymore; however it
remains isotropic. From a physical point of view, the TGPP is the distribution of N polarized
electrons in a perpendicular magnetic field, filling the N lowest Landau levels, as is remarked
in [13].

The simulation of the TGPP with kernel given by (3) is in fact quite well known. Since it
has N points almost surely, one only needs to simulate the positions of the N points. It was
proven in [4] that the eigenvalues of an N x N Hermitian matrix with complex Gaussian entries
are distributed according to a TGPP. Generating such a Hermitian matrix and computing its
eigenvalues numerically is by far the most efficient method to simulate the TGPP.

Recall that the joint law of the TGPP is computed in [7, Theorem 4.3.10] as

Xl, ... ,Xn E C,

which has support on CN . Thus, one runs into a practical problem when simulating this point
process: the support of its law is the whole of eN. Moreover, projecting onto a compact subset
randomizes the number of points in the point process. Thus, this first point process is mostly
useful in applications where the point process has a fixed number of points that need not be in
a fixed compact subset of C.
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3.2. Truncated Ginibre process on a compact subset

In this section we begin by studying the truncated Ginibre point process on a compact subset
(TGPPC), and specifically discuss the most judicious choice of the compact subset onto which
to project. Namely, define K~ to be the projection of the integral operator associated to the
kernel K N (defined in (3)) onto L 2 (93R, de), where 93R C C is the closed ball centered at the
origin and of radius R. The associated kernel may be explicitly computed (see [14]) as

N-l

K': (Xl, X2) = L A:</J:(XI)</J:(X2),
n=O

(4)

Here, y is the lower incomplete gamma function defined as y(z, a) := J; e:' t z- I dt for z E <C
and a ~ O. We emphasize that the decomposition (4) does not hold in general for the projection
on a compact set, but is rather due to the fact that (</J: (·»)n~O is still an orthonormal family of
L 2 (93R, de).

Since the sum in (4) has N terms, the TGPPC has less than N points almost surely (see,
e.g. [16]). Therefore, it suffices to calculate the Janossy densities j~, ... , j~ to characterize
the distribution of the TGPPC. These are given by the next proposition.

Proposition 1. The DPP with kernel given by (4) has less than N points almost surely, and its
Janossy densities are given by

for 0 ~ k ~ N, A(i I, ... , ik) := (ik - k, ... , i2 - 2, i1 - 1), and Xl, ... ,xk E 93R. Here, s is
the Schur polynomial defined as

(6)

where, for any i i, ... , ik E N,

is known in the literature as the generalized Vandermonde determinant, while noting that
VI, ...,k(XI, ... ,Xk) is the usual Vandermonde determinant. The Schur polynomial is known to
be symmetric, and is a sum ofmonomials; see, e.g. [5Jfor further details.

Proof. Since the spectrum of K~ is included in (0, 1), the local interaction operator J N [93R]

(defined by (I - K~)-l K~) associated to the TGPPC can be decomposed in the same basis
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N ~y(n+l,R2) R --
J [2R](XI,X2) = =0 r(n + 1, R2/n (XI)</J!!(X2),

where I' is the upper incomplete gamma function defined as fez, a) := laoo e-ttz- 1 dt for
z E ce and a ~ 0, which by definition verifies y(., a) + T'(>, a) = T'(«) for all a ~ 0 (T'(v) is the
usual gamma function). Here, we note that j~ can be computed easily since the determinant
which appears is a Vandermonde determinant:

for Xl, ... , XN E 93R. Moreover, the hole probability, i.e. the probability of having no point in
93R, can be expressed as

N-l N-l I'( 1 R2)
det(! - K N ) = n(1 - AR) = n n +, .

R n n!
n=O n=O

(7)

By [15, Lemma 3.4], the Nth Janossy density has the following form:

j% (Xl, ... , XN) = det(! - K~) det(JN[93R](Xi, Xj))I~i,j~N

1 N-I 1 N 2
= - n -e- Lp=Ilxpl n [x - X 1

2 for X X E 931fN p' P q 1,···, N R·
p=O . I~p<q~N

Now, if we take k < N, we have again

IN[~R](XI,'''' Xk) = AN (Xl, ... , xk)AN (Xl, ... , Xk)*,

where this time A N (x I, ... , Xk) is a rectangular k x N matrix defined by

Hence, by application of the Cauchy-Binet formula, we have

detJ[93R](XI, ... ,Xk) = L [det A": ...,ik(XI,.",Xk)1 2,

{il , ... ,ik }c{l, ... ,N}

where we have set, for 1 :s p, h :s k,

A i l ,...,h( )
ph Xl, ... , Xk :=

which is a square matrix. We now consider a fixed {il, .. " ik} c {I, ... , N} and evaluate
Idet Ail, ...,ik (Xl, ... , xk)12. Namely, observe that

k
[det A": ...,ik ( )12 n 1 e-L;-llxpI2/1T ( )1 2

XI,···,Xk = f(. R2) - Y;t,···,;k XI,···,Xk ,
p=l n lp,
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where Vil, ...,ik(XI, •.. , Xk) is the generalized Vandermonde determinant. Applying the defini­
tion of the Schur polynomial (6) yields

At this point, we obtain (5) by applying [15, Lemma 3.4], noting that (7) holds.

Next, we wish to determine which R :::: 0 to choose in the projection of the point process
onto 93R. In this regard, we recall that the particle density PI of the general Ginibre process is
constant, and PI (x) = K (x , x) = 1/n for x E C. However, the particle density of the TGPP
is not constant. If we denote by P~ the nth correlation function of the TGPP, then

1 2 N-I Ixl 2k

pf (x) = _e-1xl L -- for x E C.
n k=O k!

We note that pf depends only on [x]; hence, we write pf (x) = pf (Ix!). As can be checked
easily, we have Ie pf (x) dl(x) = N as well as

N 1
PI (x):::; - for all x E C,

tt

and, in fact, it is known that pf (-/"Nx) ~ (l/rr) l{lxl~I} as N ~ 00, which is known as
the circular law in stochastic matrix theory. Therefore, it appears that it is judicious to project
onto 93.JN. To obtain more precise results on the error made by truncating the point process to
93.JN' we recall the following bounds on pf, which were obtained in [4]. For [x] ~ -/"N and
x = -/"N -u,

N rt: 1 1 2u 2
PI (vN-u)~-- e- ,

n 2,J2urr 3/ 2

as well as for lzl :::: -/"N and z= -/"N + u,

pf (..IN + u):S ,J21 e-2u2 as N ~ 00.
2 2uJr3/ 2

These bounds exhibit the sharp fall of the particle density around Ix I = -/"N.
From now on, we consider the truncated Ginibre process of rank N projected onto 93.JN.

Note that, by construction, the simulation of the TGPPC is straightforward. Indeed, taking an
N x N matrix with complex Gaussian entries, and conditioning on the points being in 93R yields
a DPP with kernel given by (4). Despite the ease of simulation, a significant disadvantage is
that the number of points is always less than a fixed parameter N. Additionally, we no longer
control the number of points as was the case with the TGPP, i.e, there is a random number of
points in the compact subset.

At least the latter disadvantage can be lifted by considering the TGPPC conditioned on the
number of points being equal to N. Since the projection onto 93.JN of the TGPP takes the form
of a DPP of kernel (4), we can easily compute the probability of all the points falling in 93.JN.
Indeed, we have
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It can be shown that this probability tends to 0 as N tends to 00. That is, if we are required to
simulate the Ginibre process on a compact, conditional on it having N points, the conditioning
requires an increasing computation time as N tends to 00.

Instead of simulating the conditioning numerically, we note that the point process resulting
from the conditioning is still a DPP with a kernel that may be stated explicitly. Namely, we set

(8)

x E C.

and where
A,.N(X) _ 1 e-lxI2/2xn 1
'Pn - vrry(n + 1, N) {x E9J.JN1,

We emphasize that this is in fact the TGPPC on 1B~ conditioned on having N points, this
result being due to [6, Theorem 7]. Moreover, the DPP associated with this kernel benefits from
the efficient simulation techniques developed in the fundamental algorithm from [6]. Here, the
fact that we can explicitly state the projection kernel associated with the conditioning is what
ensures the efficiency of the simulation.

Let us now prove proper convergence of the DPP defined by the kernel (8) to the GPP.

Theorem 1. The kernels j(N converge uniformly on compact subsets to K as N tends to 00.

Proof. Take a compact subset A ofC, andsetrad(A) := supllz], z E A}. Then, for x, yEA,

I
N

-
1

+00 I
IK(x, y) - j(N (x, y)1 = L: (lPn (x)lPn(y) -lP~(x)lP~(y)) + L: lPn(x)lPn(Y)

n=O n=N

N-I 1 I 1 1 I
:s; ?; -; rad(A)2n y(n + I, N) - n! l(x,Y)E(2v'N)2\

N-l 00

L: 1
2n L: 1

2n+ - rad(A) 1{(x y)d(9J r;;;)2} + - rad(A) .
Jrn! ' 'F vN Jrn!

n=O n=N

The third term in this inequality tends to 0 as the remainder of a convergent series, and the
second term also tends to 0 by dominated convergence. Concerning the first term, we need
more precise arguments, so let us start by writing it as

00

L: 1 2n 1
- rad(A) 1{(Zl Z2)E(9J r;;;)21 l{n<N-I}
11: y (n + 1, N) , v N -

n=O
N-l

""' 1 2n- L...J Jrn! rad(A) 1{(zl,z2)E(9J.jN)2},

n=O
(9)

and noting that y(n + 1, N) ~ n! as N tends to 00. Therefore, in order to conclude, we wish
to exhibit a summable bound to the summand of the first term in (9). To this end, we write

1 1 < 1
y(n + 1, N) {n:sN-I} - y(n + 1, n + 1)'

(10)

https://doi.org/10.1239/jap/1450802749 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802749


1010

and note that

L. DECREUSEFOND ET AL.

1 1

yen + l,n + 1) - n!JP>(LZ~: Xk:::: n + 1)

2

n!
as n -+ 00, (11)

where we define fn "'v gn as n ~ 00 to mean that fnlgn -+ 1 as n ~ +00, and where
Xl, ... , Xn are independent exponential random variables of parameter 1 defined on a prob­
ability space (n, A, JP». In (10), we have used the fact that yea, R)I rea) is the cumulative
distribution function of a rea, R) random variable, a > 0, and R ~ O. The asymptotic behavior
in (11) follows from the application of the central limit theorem to X I, ... , Xn- Hence,

00 00,,1 2n 1 ,,1 2n
L...J -; rad(A) y(n + 1, N) 1/(ZI,Z2)E(:B,jN)2j l/n :::N - l j ::: L...J rry(n + 1, n + 1) rad(A)
n=O n=O

< 00,

which means that by Lebesgue's domi~ted convergence theorem, (9) tends to 0 as N tends
to 00. Therefore, SUPx,yEA IK(x, y) - KN(X, y)1 -+ 0 as N ~ 00.

As a consequence of Theorem 1 and in [15, Proposition 3.10], the DPP associated with j(N
converges weakly to the GPP.

We now return to the problem of simulating the DPP with the kernel given by (8). As it
is a projection DPP, it is efficiently simulated according to the algorithm described in detail
in [6]. However, the first step of generating the Bernoulli random variables is not necessary,
as we are working conditional on there being N points. Finally, we note that the method
described in this section yields a DPP on 93v'N' In order to simulate on 93R, we need to apply a
homothetic transformation to the N points, which translates to a homothety on the eigenvectors.
To summarize and in order to make this paper more self-contained, the simulation algorithm
of the TGPpe of the kernel (8) on a centered ball of radius R ~ 0 is as follows.

Algorithm 1. (Simulation ofthe TGPPC.) The algorithm is as follows.

Define <Pk(X) = (NInR2y(k + 1, N))e-(N /2R
2
)lxI

2
(NxIR 2 )k for x E 93R and 0 ~ k ~ N -1.

Define vex) := (c/J~ (x), ... , c/J~-I (x)) for x E 93R.

Sample XN from the distribution with density PN(x) = IIv(x) 11 2IN, x E 93R.

Set el = v(XN)/lIv(XN)II.

for i = N - 1 -+ 1 do

Sample Xi from the distribution with density

Pi(X) = ~ [" V(X) 1
2

- I: lejV(X) 12l
J=l

Set ui; = V(Xi) - xt: (ejv(Xi))ej, and eN-i+l = willi will·

end for
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2.0 2.0 2.0
1.5 1.5 1.5
1.0 1.0 1.0
0.5 0.5 0.5
0.0 0.0 0.0

-0.5 -0.5 -0.5
-1.0 -1.0 -1.0
-1.5 - 1.5 -1.5
- 2.0 - 2.0 -2.0

-2.0 -1.0 0.0 1.0 2.0 - 2.0 - 1.0 0.0 1.0 2.0 -2.0 - 1.0 0.0 1.0 2.0

FIG URE 1: Probability density in the simulation of the TGPPC .

The resulting process is a DPP with kernel (8) . Its support is on the compact set $R and
has N points almost surely. We now give a brief example of the results of Algorithm 1 applied
for R = 2 and N = 9 at steps i = 8, i = 5, and i = 2, respectively. We plot the densities
used for the simulation of the next point in Figure 1. We note here that the density is supported

on$R ·
Thi s DPP presents the advantage of being easy to use in simulations, as well as having N

points almost surely. Moreover, Theorem 1 proves its convergence to the GPP as N tends to 00 .

We end this section by mentioning the difficulties arising in the simulation under the den sity
Pi , I :::: i :::: N - 1. As is remarked in [8] , in the general case , we have no choice but to simulate
by rejection sampling and the GPP is no different (except in the step i = N - 1, where Pi is
the density of a Gaussian random variable). Therefore in practice, we draw a uniform random
variable u on $R and choose Pi (U)/ SUPYE .2lR p i(Y ). Note that the authors in [8] give a clo sed
form bound on Pi, which is given by

X E C, (12)

where Xi+1, .. . , XN is the result of the simulation procedure up to step i. In practice
however, the error made in the previou s inequality is not worth the gain made by not evaluating
SUPYE.2lR Pi (Y )· Therefore, we have cho sen not to use (12 ).

Additionally, the simulation techniques in [8] use the Fourier basis. In this case, it is
clear that Pi :::: 1, and this bound is quite efficient. In the case of the GPP, implementing a
mathematical bound slows down the simulation procedure as it is in our experience often far

from SUPYE .2lR Pi (y).
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