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A LOWER BOUND FOR A REMAINDER TERM ASSOCIATED
WITH THE SUM OF DIGITS FUNCTION

by D. M. E. FOSTER

(Received 2nd May 1989)

For a fixed integer <jS2, every positive integer k = '£rzoar(<l<k)qr where each ar(q,k)e{0,l,2,...,q— 1}. The
sum of digits function a(q,k) = Yjr^oaAi,k) behaves rather erratically but on averaging has a uniform
behaviour. In particular if A(q,n) = Yjcz\tx(q,k), where n>l , then it is well known that A(q,n)~
{{(q—l)f\ogq)n\ogn as n-»oo. For odd values of q, a lower bound is now obtained for the difference
2S(q,n) = A(q,n)— i(q — l)[logn/logg]n, where fjogn/logq] denotes the greatest integerglognflogq. This
complements an upper bound already found.

1980 Mathematics subject classification (1985 Revision): 11A

1. Introduction

If q^.2 is a fixed integer it is well known that every positive integer k may be
expressed uniquely in the form

k= t 0,(^)4'where ar(<z,/c)e{0,1,...,q-1} (1.1)
r = 0

and the "sum of digits" function u(q, k) is given by

a(q,k)=tar(q,k), (1.2)
r = 0

both the above sums being finite. It is not difficult to see that, although the behaviour of
a(q,k) itself is somewhat erratic, its average behaviour is more regular and has been
widely studied.

For an integer n> 1, let

and define A(q, l) = 0. Behaviour in the special case n = qs suggests the asymptotic result

) ~ ^ ^nlogn as n->co,
logq
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122 D. M. E. FOSTER

a result obtained by Bush [2] in 1940. Later work by Bellman and Shapiro [1], Mirsky
[11] and Drazin and Griffiths [6] gave estimates for the remainder term

) n l o g n .
logq

The case q = 2 in particular has yielded the most precise results. In this case (and also
for q = 3) the results of Drazin and Griffiths are best possible and they have also been
obtained by Mcllroy [10] and Shiokawa [12].

In 1975, Delange [5] obtained a very elegant analytical form for the remainder term,
involving a periodic, continuous but nowhere differentiable function, thereby generaliz-
ing an earlier result concerned with the case q = 2 of Trollope [14]. In 1977, Stolarsky
[13] considered the average of a more general sum of the type

k=l

when q = 2 and d ̂  0. (Stolarsky's paper also contains an excellent account of the history
of related problems). More recently, Coquet [3] has obtained some very precise
estimates for Aj^q, n) using probabilistic techniques.

In the mid 1960s, Trollope [15] also considered the related problem concerned with
Cantor representations of integers, and Kirschenhofer and Tichy [8] have since
generalised Delange's result, mentioned above, to this situation too. The appropriate
remainder term now takes the slightly different form

in the special case when the Cantor representation of an integer k becomes a <?-adic
representation of the form (1.1) for some q. As usual, [log n/log q] denotes the greatest
integer less than or equal to logn/logq. (A sum of this type has very recently been
considered by Larcher and Tichy [9] in connection with the Gray code number system.)
Thus, in the original digits problem, one can consider directly an estimate for S(q, n)/n.
The best possible upper bound for all q^.2 is q— 1; see [7]. For q = 2, 3, 4, 5 and 7 the
best possible lower bounds are —2/3, —2/7, —9/23, —7/13 and —6/19 respectively. The
proofs for q = 2 and 3 are contained in [7]. Each of these inequalities is deduced from a
more precise result.

Clearly every positive integer n^0(mod<j) is of the form n = nm where

+'», (1.3)

for some m e N u {0}, ro = O, positive integers tut2,...,tm and non-zero coefficients
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ao,au...,ame{l,2,...,q— 1}. For convenience of notation, given such an integer n
introduce

n_1=0, no = ao and ni = a0 + a1q'1 + h a 1 g " + " + "

for 1 ^ i ̂  m. Then it is not difficult to see that S(q, nm) has the following simple form:

S(q,nm)= £ ar{a,-l)q<° + » + -+''+ £ {2ar-(q-l)tr}nr_l. (1-4)
r = 0 r = 0

It is easily verified that, if s e N,

so that we may assume that n is of the form (1.3) for some integer m^O. In [7] it was
proved that

with equality when nm=(q —1)(1 +q + q2 + • • • +qm), together with a similar precise result
for the lower bound when q-2 and 3 and subsequently (but not published) for q=4, 5
and 7. However the details are rather complicated, slightly more so when q is even, and
the object of the present paper is to obtain an asymptotic result for all odd values of
q^9. Numerical evidence for 5^q^l3 obtained by my colleague Mrs M. F. McCall
has suggested that the likely critical case for odd q occurs when nm is of the form

where

«-i=Zl

r = 0

and /? is the unique odd integer satisfying

+2, (1.5)

unless the even integer 8q2 — 9q +1 is a perfect square. If we introduce

then, as we shall see later, if m—l remains fixed
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a s m —• oo.

Theorem. For all odd q^9,

%,«-).

The sequence of odd integers (flq) increases with q and starts off as follows:

'3 if 9 = 3,5,7,

5 if 9 = 9,11,...,19,

7 if 9 = 21,23,...,31,

9 if 9 = 33,35,...,43.

When 9 = 3, 5 or 7, as mentioned earlier, there is a more precise result, namely

S(q,nm)^

nm ~ q

where

6(3™ _
and

In each of these cases hq(m) | /i, as m f 00.
In the special case when 892 —9g + l=(2x)2 for some positive integer x, it may be

verified that either choice of Pq=3q — 2x or 3q — 2x + 2 in (1.5) gives rise to the same
value of hq in (1.6). This case can only arise when 9= 1 (mod 4), so that we can express
q=l+4y where y(32_y + 7) = x2. Let d=hcf(x,y) with x = x^d and y=yid for positive
coprime integers x, and yv Then yl(32dyl + 7) = dx\ giving d = yty2 for some integer
y2. This leads to _y2(x

2-32.y2) = 7 so that y2 = l or 7. If y2 = l, x\-7>2y\ = l which is
insoluble since X! must be odd giving x2 = l (mod 4). Thus y2 = l and we are left with
the Pell equation x2 —32_y2 = l whose general solution for positive integers xt and _yt is
given by

reN.

This solution arises from the continued fraction expression of V32. (See, for example,
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A LOWER BOUND FOR A REMAINDER TERM 125

Davenport [4]). The two smallest values of q which occur are 253 (r=l) and 291313
(r = 2); and when q = 253 it is easily verified that /?, = 45 or 47.

It is convenient to prove the theorem in the following equivalent form. Introduce

«../,.-! so,ha, „,.* - 3 ; :v , + i ) ' • <17>

Then

/_4_ 15 6 49 72 99

and

/42 23 200 81 290 341\
(a21>a23>a25>a27>a29a3l) — I jg> g ' gg ' 2 5 ' 01 ' 07 ) '

and so on. For m^Owe define

(1-8)

r = O

r = O

Then the inequality of the theorem is equivalent to

T(q,nm)>0. (1.9)

I am very grateful to Mrs McCall for her help in giving me a feel for the general
result. I should also like to thank the referee for his very careful corrections of many
errors in the original draft.

In this section we prove three lemmas which will be needed in the proof of the
theorem.

Lemma 2.1. 3 g ) 3 , - a < 5 . (2.1)
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Proof. We have, using (1.7) and rearranging,

In fact, if 8q2-9q + l is not a perfect square, then as both 8q2—9q + l and Pq—3q are
even integers it is clear that

= 3 ? -
(2.2)

a result which will be of use later.
Similarly,

using (..5).

Once again, if Sq2 — 9q+l is not a perfect square then

(2.3)

Lemma 2.2. Let e and f be real numbers and let x0 be a positive integer with
(q— l)x0 — e^ l . Then, if the inequality

holds for x = x0, it also holds for all integers x >x0.

Proof. Clearly fqx° ~l ^ 4. If we take x = x o + 1 we have

-e} = 4{{q-l)xo-e}+4(q-l)

provided that

which is true.

It is convenient at this point to introduce some useful substitutions for am_,,am_2,.
chosen to reflect the critical case when « = «„. These take the form
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A LOWER BOUND FOR A REMAINDER TERM 127

and (2.4)

where 5l,S2,...,SmeZ.
The final lemma facilitates some routine calculations which are repeated throughout

the proof of the theorem at all the different stages.
If / is any integer satisfying 2 ^ / ^ m + 1, for convenience of notation introduce

Fm(l-l) = am(am + «q)q'>+-+'"+ £ A £ !>
r = m-l+l (s = r+l

It is useful to rearrange Fm(/ — 1) as follows. We have

Fm(/-1)= £ ar(ar+ «,)<?'•+ - + ( ' + £ 4 £
r = m-l+\ r = m-l+l (

where the double sum may be expressed as

Thus

s=m-l+2 s=m-/+2

r=m-l+l

X (2.5)
r = m-l+l

As «_! =0, putting / = m +1 we have in particular

Fm(m)=T(q,nJ. (2.6)

Lemma 2.3. / / 2 g / g m + l , tm = tltl_1 = ••• = t m _ l + 2 = l, am = l and flm_i,
a m _ 2 ) . . . , a m _ , + 1 are given by (2.4) t/icn

X 9'-
2-sk(5J) + 4^,-1) + «-7-2a, + 2^, (2.7)

5 = 1

wlicre
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and

In the particular case when 1 = 2 the summation

1-2

z
J = l

is assumed to be vacuous.
Proof. When / = 2 we have

together with tm = am=l and 2am-l = q-f}q+25l. Thus

Using (1.7) to eliminate <xq from the last term we eventually obtain

4Fm(l)g-<" + "-+<- '>

When / = 3, we have

Fm(2) = Fm(l) + am-2{2(am + am_l)-

together with tm = tm _ t = am = 1,

51 and 2am_2

Using the above simplification of Fm(l) we see that

The terms involving am_2 are

(q-l-2d1+2d2)(-q-l+2S1+2S2

following rearrangement. Thus

and this takes the required form
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A LOWER BOUND FOR A REMAINDER TERM 129

The general case is now quite easy. Assume that (2.7) holds for some integer /
satisfying 2 ^ l g m and look at Fm(l). We have

By the hypothesis of this case, we have

tm = t»-i = -"=t«- i+ i = l and a m =l

together with the usual substitutions for am_1,...,am_,. Thus on substituting we obtain

Using (2.7) we see that

s=l

Since 2am_, = q —1 —25,_1+25, we have a similar calculation as in the evaluation of
Fm(2), with an obvious change of notation. This leads to

s = l

and this is (2.7) with / replaced by / + 1 .

3. Proof of the theorem

We proceed by induction on the integer m^O. Initially

since a 0 ^ 1 and a , > 0 V q ^ 9 . Thus we now choose m ^ 1 and assume that

l. (3.1)

The proof runs through several stages, ending up with the main inductive step once the
critical form for nm begins to emerge.
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Stage 1 (m ̂  1). We can express

By the induction hypothesis (3.1), T(q,nm_l)>0 and it will therefore follow that
T(i>nm)>0 provided that

qq" + -+t'". (3.2)

If 2am^(q— l)tm, (3.2) follows easily. Thus suppose that (q— \)tm>2am. Since

the inequality (3.2) will hold provided that

(q-l)tm-2am<am(am + «q)q'™-1. (3.3)

If tm = 2, (3.3) takes the form

2{q-l)<am{(am +

which holds easily Vam^2. When am=l, the inequality becomes (a,— l)g+4>0. For
q^l5, a ,> l and for 9^q^ 13, a ,< l and the inequality is equivalent to qaq>q—4
which holds for 4= 13. Thus we are left only with the cases q = 9 and 11.

If tm = 3, (3.3) becomes

which holds for all am^.\ and q^9. As (q—l)tm—2am^.l we can now appeal to Lemma
2.2 to deduce that (3.3) holds for all integers tm^3 when q^9.

Thus we have proved that T(q, nm) > 0 except in the following cases:

or

If m=l , we have

The only cases which we need consider are I(i) and I(ii). In the first case, tt = 1 and
«! ̂  1 so that
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We now make the usual substitution for a0 namely

2ao = 2am-1=q-P9

and using the case / = 2 of Lemma 2.3 we see that

By Lemma 2.1, 3^ /? , -a ,g5 so that q-7-2aq + 2Pq^q-l. Also, for integral values of
<5t the two least values of h{8i) occur when 8l=0 and 1. Clearly h(0) = 0 and

,—j?,^ — 1. Thus in the worst case

In the remaining case I(ii) when q = 9 or 11 we have (tm; am)=(t1; al) = (2; 1). Hence

Directly,

and

7X11,11!) = 121(1 +a11) +

with a9 = 4/23 and a u = 15/29 and in each case T(q,n1)>0Vao^l.
We can now assume that m ̂  2 and proceed to the next stage of the argument.

Stage 2 (m ̂  2). We subdivide T(q, nm) further as follows:

T(q,nm)= t a,{ar + «q)q
n+'+'r

r = m— 1

+ {2am-(q-l)tm}(nm_2+am-1q"+-+'"'->)

m_2). (3.4)

By (3.1), T(^,nm_2)>0 and so T(q,nm)>0 provided that

^q" + - + ' " - ' K ( a m + a , ) ^ + a m_1{2am-(q-l)tm + a m . 1 + a,}]. (3.5)

If (q-l)(tm + tm_1)-2(am + am_1)^0, the left-hand side of (3.5) is non-positive and the
right-hand side is positive since
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132 D. M. E. FOSTER

and a ,>0 Vg^9. Thus we shall assume henceforth that

(3.6)

As

it will follow that T(q,nm)>0 provided that

+ tm.1)-2(am + am_1)}

m-l{2am-(q-l)tm + am-i + «q}. (3.7)

Case I(i). Putting tm= 1, (3.7) takes the form

a,). (3.8)

When am = 2, we shall prove that (3.8) holds for all integers l^am_l^q — 1 and
tm-i ^ 1. Since the coefficient of am on the right-hand side of (3.8) is positive and that on
the left-hand side is negative, the inequality will then clearly follow for all integers
am^2. But first we make the usual substitution 2am_1 = q—fSq + 2d1 and then, after some
rearrangement, (3.8) becomes

+ 2*q{2(am-l)q-l}+2*q(3q-pq+l).

Using (1.7) to eliminate a, from the last term on the right-hand side we obtain the
following inequality:

+ 4(am-l)<xgq-lq-7-2<xq + 6pq. (3.9)

Putting am = 2 as indicated earlier, (3.9) becomes
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^461(51 + 5 + aq-pq)+nq-7 + 2xq(2q-l)-2pq. (3.10)

By (3.6) the integer (q-l)tm.1-5 + Pq-25l>0, and consequently the validity of (3.10)
for tm-! = l will follow for all integers fm-!>l by Lemma 2.2. Putting tm_, = l in (3.10)
leads to the inequality

4<51((51 + 7 + a , -0 , ) + 134 + 17 + 2(2<z-l)a,-6/?,^O. (3.11)

As 3g/?,—a,S5, the least value of <51(<51 + 7 + a,—/?,) occurs when 3l = -l if
q—aq^5 and when 31 = —2 if 3^/?,—a,^4. In the first case (3.11) becomes

which holds easily as Pq<6q, and in the second case (3.11) becomes

which again causes no problems.
The rest of Case I(i) is concerned with verifying (3.9) when am=l for all integers

£m_!^2. Once again we take tm_1 = 2 and then appeal to Lemma 2.2 to obtain its
validity for the integral values of tm_: >2. First putting am = 1 in (3.9) we have

q q q q (3.12)

When tm_! = 2, (3.12) rearranges to the form

q q q q q (3.13)

Since 3^Pq—ccq^5 and q^9 we have

and it follows that the least value of 3l(Sl + 3 + (xq—Pq + 2q~l) for integral 5t occurs
when dl =0 or 1. Putting 5t =0 we need to check the inequality

q2-154 + 2 0 3 , - ^ - 4 ^

As /?,—a, ̂ 3 it will suffice to prove that

(3.14)

If /J, = 5 we have 9 ^ q g l 9 and there is no problem. Thus suppose that /J,^7 giving
q^21. By (1.5), Pq^3q-y/{8q2-9q + l) + 2 and it will suffice to verify that
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which is easily true Vq^21. Now putting 5l = l we need to check the inequality

As ctq — fiq ̂  — 5, it will suffice to show that

and this has already been proved with 28 replaced by 20.
Thus in Case I(i) we are left only with am= 1 and tm_j = 1.

Case I(ii). Putting tm = 2 and am= 1 in (3.7) leads to the inequality

)q'"<->-1. (3.15)

For q = 9 and 11, (3.15) is easily verified for all l^am^1^q— 1 when tm_l = l. As the
right-hand side increases exponentially with tm-lt there is no problem when tm-i^2.

Summing up, if m ̂  2 we have proved the result except in the following case:

If TO = 2, by (2.6) we have T(q, n2) = F2(2). Then, using condition II together with the
usual substitutions for ax and a0, we see from Lemma 2.3 that T(q,n2)>0 is equivalent
to

4{q-l)k(d1) + 4h(S2) + q-7-2aq + 2Pq>0 (3.16)

where as usual

Pq) and h(52) = 82(

As 3^Pq — aq^5, k(dl)^k(0) = 0 for all integers 5l and (3.16) is therefore a consequence
of

an inequality which has already been seen to be true at the end of stage 1 in the case
when TO= 1.

We now take m ̂  3 and let / be any integer satisfying 3 ̂  / ̂  TO.

Stage / ( 3 ^ / ^ T O ) . As a consequence of stages 1 and 2 we now make the inductive
assumption that

tm = tm-i = "-=tm-l+2 = l and am=l,

together with the substitutions in (2.4) for am-u am-2,...,am-i+l. Following the
customary procedure we express
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ffl ftl

T{q,nm)= £ ar(aP + a , )q ' 1 + ' + ' r + E {2ar-(q-l)tr}nr_1 + T(^nm_I). (3.17)

By (3.1), r(<3f,nm_,)>0 and we therefore have to prove that

[ £ {(<7-l)tr-2ar}~L_,
\_r - m -1 + 1 J

(3.18)

The expression on the right hand side of (3.18) is simply the Fm(l— 1) of Lemma 2.3, and
accordingly we obtain the following simplification of (3.18), namely

1 - 2

s = l

For each integral value of <5S, fc(<5s)^fc(0)=0 and 4/i(5,_1) + ^ - 7 - 2 a , + 2 / ? , > 0 as we
have already seen. Thus for each l ^ s ^ / — 2 the right-hand side of (3.19) is positive.
Hence it will suffice to consider the case when

As nm_,<<z'1 + ' " + ' m - | + 1 , (3.19) is a consequence of

l) £ g'-2-U(^) + 4^,-1) + q-7-2a , + 2^. (3.20)

We now prove that (3.20) holds for tm_l + 1 = 2, and then it will follow, from
Lemma 2.2, that it holds for all integers t m _ , + 1 > 2 . Hence putting tm_,+i = 2 in (3.20)
and rearranging we obtain the inequality
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Once again using the fact that k(5s)^0 for all integers 5S, we are left with inequality
(3.13), with <5j replaced by d,-!, whose validity has already been established. Thus it
remains to consider the case when tm_J+1 = 1, when (3.20) takes the form

4(9-1) I < 7 ' - 2 - m ) + 4Vi(<5/-i + 5 + a,-j3,)-3<z + 9-2 a < , -2 /?^0 .
s=i (3.21)

We now have to run through the possible values of /, namely 3,4,...,m. Initially /=3,
so that m ^ 3 , giving stage 3, and (3.21) becomes

2aq-2PqZ0. (3.22)

This splits into two cases.

(i) 3^/?, — <xq :S4. For integral values of St, the least two values of fe(^t) occur when
<51=0 and - 1 , and m.in[k(51):51eZ-{0,-l}'\ = k(l). Also S2(d2 + 5 + ocq-Pq) has a
minimum value for integral 82 when <52= — 1. We now show that (3.22) holds for all
integral values of <52 when <5i#0 or — 1. This will follow from the validity of the
inequality for (5l,82) = (l, — !)• 1° this case, after some rearrangement, (3.22) becomes

As Pq—a, ̂ 4 it will be sufficient to verify that

that is

3. (3.23)

As Pq^3q-yJ(8q2-9q+l) + 2, we have to verify that Uq-5^4y/(8q2-9q + l) or
equivalently q(7q — 34) ̂  9, which is obviously true for all q ̂  9. Thus we are left with the
cases 8l=0 or — 1.

(ii) 4<Pq — aq^5. For integral values of (5,, the two least values of fc(5x) occur when
^ = 0 and 1 and min[k(S1):51eZ-{0,l}] = k(-l). Also 52(82 + 5 + aq-Pq) has a
minimum value when 82 = 0. We now test (3.22) with (8i,d2) = ( — l,0) and obtain the
inequality

As Pq — <xq>4 it will suffice to verify that

or equivalently
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which is (3.23) again. The cases 8l = 0 or 1 remain.
If/=m = 3 we have to consider the case when t3 = t2 = tl = l and a3 = l together with

8i = 0 or - 1 when 3^/S, -a ,^4 or ^ = 0 or 1 when 4 < 0 , - a , ^ 5 . By (2.6),
T(q,n3) = F3(3) and so, with the usual substitutions for a2, at and a0, it follows from
Lemma 2.3 that the condition T(q, n3) > 0 is equivalent to

once again easily seen to be true for all integers Su 82 and 83.
Summing up, if 1=3 the only cases which remain to be considered occur when

tm = tm-i = tm-2 = l and am = \

together with

" fO or - 1 i

J or 1 i f 4 < / ? a £ 5 ( '

We next take 1 = 4, so that m=4, giving stage 4, and then (3.21) becomes

4{q— 1) {qk(d1) + k(82)} +4S3(S3 + 5 + xq — /?,) — 3q + 9 — 2<xq — 2/?q^0. (3.25)

When 5l=0 repetition of the argument at stage 3 leaves

_fO or - 1 if 3g /3 , - a , ^4
2 )0 or 1 i

When Si = -l, so that Z = Pq-aq = 4, (3.25) becomes

q-Pq) = O.

In this case, min[k(S2):82eZ — {0, — l}] = fc(l) and 53(S3 + 5 + aq—/?,) has a minimum
value when 83= — 1. Putting (<52><53) = (1> —1) in (3.25) leads to the inequality

which is true. When <5X = 1, so that 4</?, — a,^5, (3.25) becomes

(3.26)

This time, for integral values of S2, the two least values of k(d2) occur when 82 = 0 or 1
and the min[k(S2):82eZ — {0, 1}] = &( — 1). Also <53(<53 + 5 + a,—/?,) has a minimum
value when <53=O so that putting (^2,^3)=( — 1,0) in (3.26) gives

4(<z - 1)2(5 + a, - )S,) + 5q +1 + 2(/?, - a,) - 40,^ 0,
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which is true.
Thus if 1 = 4 the only cases which remain to be considered occur when

^ = ^ - 1 = ^ - 2 = ^ - 3 = 1 and am=\

together with

f(0,0),(0,-l),(-l,0) or ( - 1 , - 1 ) if3£/?,-a,£4
1 u 2) j(0,0),(0,l),(l,0) or (1,1) i f 4 < / ? a £ 5 ( ' '

If l = m = 4, we can assume that t^ = t3 = t2 = t1 = \ and a4 = l together with condition
(3.27). In this case, using Lemma 2.3 again, the condition T(q, n4) = F4(4) > 0 is
equivalent to

which is true.
At stage 5 we have /=5, so that m = 5. Then the inequality (3.21) takes the form

If dl=0, (3.28) is essentially the same as (3.25) with an obvious change of notation.
Thus repetition of the argument at stage 4 leaves the following values of (52, d3) namely

(8 , ) = f ( 0 , 0 ) , (0,-1), (-1,0) or ( - 1 , - 1 ) i f3£/? , -a f £4
1 2> 3) |(0,0),(0,1),(1,0) or (1,1) i f4<j? , -a^5 . l " '

If 5t = - 1 , so that 3^f t , -a ,g4 , (3.28) becomes

q (3.30)

The left-hand side of (3.30) takes a minimum value when (<52,<53,<54) = (0,0, —1) and in
this case the inequality becomes

4q2(q-l)(pq-aq- 3) -3q - 7 - 6 ^ + 2/9^0. (3.31)

If 8q2-9q+l is not a perfect square, Pq-<xq-3>l/(3q) by (2.2), and (3.31) will be a
consequence of

or equivalently

4q2-l3q-2l
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As /?,—a, ̂ 3 it will suffice to show that

which is easily true. If %q2 — 9q +1 is a perfect square and /?, — a, = 3, (3.30) reduces to

4{q-l) {qk(d2) + k{53)} + 4<54(<5 4 + 5 + a, - /?,) - 3g + 9 - 2a, - 2)3, ̂  0,

which is (3.25) again with an obvious change of notation. Hence the values of (d2, S3)
which remain are

(52,d3) = (0,0), (0,-1), (-1,0) or ( - 1 , - 1 ) . (3.32)

If c5, = 1, so that 4<p ' , - a ,g5 , (3.28) is

4</2(q -1) (5 + a,-/?,) - 3q + 9 - 2a, - 2/?,

+ 4 ( q - l ) {«fc02) + fc(<53)} + 4<54(<54 + 5 + a, - /?,) ̂  0. (3.33)

The left-hand side of (3.33) takes a minimum value when (^2,^3,^4)=(0,0,0) and in this
case the inequality becomes

4«J2(<J-1) (5+ a,-/?,)-34 + 9 ^ , - 2 / ^ 0 . (3.34)

If %q2-9q +1 is not a perfect square, 5 +a,—/?,> 1/(3 )̂ by (2.3), and consequently (3.34)
follows provided that

As /?,—a,>4, it will suffice to show that

which is true. On the other hand, if %q2-9q +1 is a perfect square and /?,—a, = 5, (3.33)
takes the form

Once again this is essentially the same as (3.25) and so the values of (<52,<53) which
remain are

(<52,«53)=(O,O),(O,l),(l,O) or (1,1). (3.35)

In the special case when l=m = 5 the condition T(q,n5) = Fs(5)>0 is equivalent to
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which is true.
Summing up stage 5, we have proved that T(q,nm)>0 except in the following cases:

tm = tm-i = "-=tm-4. = l and am=\

together with <5,=0 and (<52,<53) satisfying (3.29). In addition when Sq2 — 9q+l is a
perfect square

<51 = - 1 and (52 >53)e{(0,0),(0,- l) , (- l ,0) ,(- l , - l)}

or

<51 = 1 and (<52,<53)e{(O,O),(O,l),(l,O),(l,l)} when

By now the critical form for nm is beginning to emerge. When 8<j2—9q+\ is not a
perfect square, at the end of stage / for 5 ^ / ^ m we are left with the following situation:

tm = tm-i = ---=tm-,+i = l and am = l

together with

î = ̂ 2="=^i-4 = 0 and

IS 8 . = f(0,0),(0,-l),(-l,
I ,-3. 1-2) | (0)0),(0,l),(l,0) o

- l ) , ( - l , 0 ) or ( - 1 , - 1 ) if3£/J,-ot,£4
or (1,1) i f4</J , -a ,g5 .

In this case, by (2.5) and (3.17), we have

t [20, - (« - l )tj + 7X9,». -i) -

Using the usual substitutions for ar (r = m — 1+ l,...,m) together with tm = - - =tm_/+1 = 1
we obtain

Then, application of Lemma 2.3 gives

q m-l). (3.36)

Since 5ls...,<5n are all linearly bounded in terms of q and m, it follows from (1.8) and
(3.36) that

*(&<).+ u=nq'nm) -»0 as m -» oo if m-l remains fixed,
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and this is the critical form mentioned earlier. If l<m we proceed to stage Z+l, and so
on until l=m when the process comes to a halt yielding no further critical cases. In
particular, when l-m, at the end of stage m we have to consider T(q,nm) subject to the
conditions tm = tm-t = ••• =tt = l and am=\ together with <51 = <52 = • •=<5m_4=0 and
<5m_3, c5m_2E{0,1, - 1 } . Using Lemma 2.3 gives

As we have seen fc(x)^0VxeZ and so

>0

by the same argument as that towards the end of stage 1.
When Sq2—9q + l is a perfect square, it is clear that additional critical cases arise. In

particular, when /?,—a, = 3 we have k(5) = 5{5+l). In this case at the end of stage /
we are left with

<5i» ...,<5,-4,<5(-3,<5,_2e{0, —1}.

As fc(<5,) = 0 for 1 ^ j ̂  / - 2 and h(d, _ J = 5, _ i(5, _ t + 3 + a, - ft,) = (5,2_ t this leads to

and once again

and m —/ remains constant. If /<m we can proceed to the next stage as before. When
Pq—<xq = 5, k(8) = 5(5—l) and the critical cases occur when 51,...,dl-2e{0,l}; otherwise
the situation is similar.

November 1989. Since this paper was submitted for publication the analogous
theorem for even values of q has been obtained. A statement of the result and brief
outline of the proof will follow.
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