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Abstract

Using a variational method introduced in [D. Azé and J.-N. Corvellec, ‘A variational method in fixed
point results with inwardness conditions’, Proc. Amer. Math. Soc. 134(12) (2006), 3577–3583],
deriving directly from the Ekeland principle, we give a general result on the existence of a fixed point
for a very general class of multifunctions, generalizing the recent results of [Y. Feng and S. Liu, ‘Fixed
point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings’, J. Math.
Anal. Appl. 317(1) (2006), 103–112; D. Klim and D. Wardowski, ‘Fixed point theorems for set-valued
contractions in complete metric spaces’, J. Math. Anal. Appl. 334(1) (2007), 132–139]. Moreover, we
give a sharp estimate for the distance to the fixed-points set.

2000 Mathematics subject classification: primary 54H25, 47H10.

Keywords and phrases: complete metric spaces, generalized set-valued contractions, Ekeland’s
variational principal.

1. Introduction

Recently some interesting extensions of Nadler’s theorem (see [10]) were given
in [6, 8]; this was the first generalization to multifunctions of the classical Banach–
Picard theorem. In the papers quoted, the authors observed that the assumption that
the multifunction is a contraction with respect to the Hausdorff metric could be slightly
weakened by requiring only local information on the approximate projection of a point
to its image. This observation was anticipated in [1, Example 1.6]. In this work we
give a general result on the existence of a fixed point for a large class of multifunctions
satisfying a very weak contraction assumption. Moreover, a sharp estimate for the
distance to the fixed-points set is given. As a by-product, we derive a very light version
of the Banach–Picard theorem.

2. A basic lemma

DEFINITION 2.1. Let (X, d) be a metric space, and let f : X→ R ∪ {+∞} be a
function. A point x ∈ X is said to be a d-point of f if

f (x) < f (z)+ d(z, x) ∀z ∈ X \ {x}.
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Here is the well-known Ekeland variational principle in its simpler form (see
[4, 5, 11, 15]).

THEOREM 2.2. The following are equivalent:

(a) the metric space (X, d) is complete;
(b) every proper (not identically equal to +∞), lower semicontinuous, and lower-

bounded function f : X→ R ∪ {+∞} has a d-point.

Given x ∈ X , let us set M(x)= {z ∈ X | f (z)+ d(x, z)≤ f (x)}. It is an immediate
consequence of the triangle inequality that a d-point of the restriction of f to the
subset M(x) is a d-point of f on the whole of X . Thus we have the following result.

COROLLARY 2.3. Let (X, d) be a complete metric space. Assume that the function
f : X→ R ∪ {+∞} is proper lower semicontinuous and bounded from below. Then,
for all x ∈ X, there exists a d-point of f belonging to M(x).

For λ ∈ R, we denote by [ f≤λ] the sublevel set f −1((−∞, λ]) and we define [ f < λ],
[ f > λ], and similar notation analogously. The following simple lemma along the lines
of [2, 7, 9, 14] is our basic tool in what follows.

LEMMA 2.4. Let f : X→ [0,+∞] be a proper lower semicontinuous function
defined on a complete metric space (X, d), and let 0< µ≤+∞ be such that
[ f<µ] 6= ∅. Assume that

∀x ∈ [0< f<µ] ∃z 6= x such that f (z)+ d(x, z)≤ f (x).

Then [ f≤0] 6= ∅, and, for all x ∈ [ f<µ], we can find z ∈ [ f≤0] such that d(x, z)≤
f (x).

PROOF. Given x ∈ [ f<µ], then M(x)⊂ [ f<µ]. Then, a d-point z of f which
belongs to M(x), whose existence is guaranteed by Corollary 2.3, is in [ f≤0] since,
from our assumption, an element of [0< f<µ] is not a d-point, and z satisfies

d(x, z)≤ f (z)+ d(x, z)≤ f (x). 2

3. Generalized contractions

A multifunction T from a set X into a set Y is a subset T ⊂ X × Y . For any x ∈ X ,
we define T (x)= {y ∈ Y | (x, y) ∈ T }. The domain of the multifunction T is the set
of those x ∈ X such that T (x) 6= ∅. We shall always assume that the domain of T
is nonempty. A fixed point of a multifunction T ⊂ X × X is a point x ∈ X such that
x ∈ T (x). We shall denote by FT the set of fixed points of T . Given a subset C ⊂ X of
a metric space and given x ∈ X , we set d(x, C)= infz∈C d(x, z) with the convention
d(x, C)=+∞ if C = ∅. For C , D ⊂ X , we shall also use e(C, D)= supx∈C d(x, D)
with the conventions e(C, D)= 0 if C = ∅ and e(C, ∅)=+∞ if C 6= ∅. As is well
known, e(C, D)= supz∈X (d(z, D)− d(z, C)).
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Given functions κ : (0,+∞)→ [0, 1) and b : (0,+∞)→ [b, 1], where b ∈ (0, 1],
and given a multifunction T ⊂ D × X defined on a subset D of a metric space X , we
will say that T satisfies assumption (H) if, setting dx = d(x, T (x)), we have

(H)

{
for all x ∈ D such that d(x, T (x)) > 0, there exists z ∈ D \ {x} such that

b(dx ) d(x, z)≤ d(x, T (x))≤ d(x, z) and d(z, T (z))≤ κ(d(x, z))d(x, z).

It is natural to assume that the function b(·) is nonincreasing since we need less
information when d(x, T (x)) decreases. Assuming that D = X , it is clear that if
T ⊂ X × X is a multifunction such that e(T (x), T (z))≤ κ(d(x, z)) d(x, z) for all
x , z ∈ X , an assumption used for example in [12, 14], then assumption (H) is
in force (taking z ∈ T (x) such that b(dx ) d(x, z)≤ d(x, T (x)), and d(z, T (z))≤
e(T (x), T (z))≤ κ(d(x, z))d(x, z)).

EXAMPLE 3.1. Observe that the setting developed by Klim and Wardowski in [8]
is contained in our framework. Namely, if T ⊂ X × X is a multifunction and if b :
(0,+∞)−→ (0, 1) is a function, let us define, for all x ∈ X such that d(x, T (x)) > 0,
the set

I x
b = {z ∈ T (x) : b(dx ) d(x, z)≤ d(x, T (x))},

so that I x
b is nonempty. A strengthened version of assumption (H) is then

∀x ∈ X such that d(x, T (x)) > 0, ∃z ∈ I x
b

such that d(z, T (z))≤ κ(d(x, z)) d(x, z).

In the case where b(t)≡ b ∈ (0, 1), we recover the setting of [8]. Observe also that
our framework allows non-self multifunctions, that is, multifunctions defined on a
subset D of X with values in X . We stress the fact that the point z in assumption (H)
is not required to belong to T (x), in such a way that there is no Lipschitz property for
T in this definition.

The following lemma is a significant extension of a result of Semenov in [13].

LEMMA 3.2. Let (X, d) be a metric space and let T ⊂ D × X be a multifunction
defined on a subset D of X. Assume that there exist a function κ : (0,+∞)→ [0, 1)
and a nonincreasing function b : (0,+∞)→ [b, 1] where b ∈ (0, 1], such that κ(·) <
b(·) and:

(1) T satisfies assumption (H);
(2) lim supt↓s b(t)−1κ(t) < 1 for all s > 0.

Then infx∈D d(x, T (x))= 0.

PROOF. Let x0 ∈ D. We may assume that d(x0, T (x0)) > 0 (otherwise there is
nothing to prove). Assume that there are known x0, . . . , xn ∈ D such that, for all
k ∈ {0, . . . , n}, d(xk, T (xk)) > 0 and for all k ∈ {0, . . . , n − 1},{

b(dxk ) d(xk, xk+1)≤ d(xk, T (xk))≤ d(xk, xk+1),

d(xk+1, T (xk+1))≤ κ(d(xk, xk+1)) d(xk, xk+1).
(3.1)
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From our assumptions, we can find a point xn+1 ∈ D such that{
b(dxn ) d(xn, xn+1)≤ d(xn, T (xn))≤ d(xn, xn+1),

d(xn+1, T (xn+1))≤ κ(d(xn, xn+1)) d(xn, xn+1).
(3.2)

If xn+1 = xn , then d(xn+1, T (xn+1))= 0, so that infx∈D d(x, T (x))= 0. If xn+1 6=

xn , we derive from (3.2), using the facts that b(·) is nonincreasing and κ(·) < b(·), that

d(xn+1, T (xn+1)) ≤
κ(d(xn, xn+1))

b(dxn )
b(dxn ) d(xn, xn+1) (3.3)

≤ c(d(xn, xn+1)) d(xn, T (xn)), (3.4)

where c(t)= b(t)−1κ(t). In particular, d(xn+1, T (xn+1))≤ d(xn, T (xn)). Moreover,
by (3.1) and using again the fact that κ(·) < b(·), we have

dxn = d(xn, T (xn))≤ b(d(xn−1, xn)) d(xn−1, xn)≤ d(xn−1, xn),

yielding b(d(xn−1, xn))≤ b(dxn ), thus, using the fact that dxn 6= 0,

dxn ≤ b(dxn ) d(xn−1, xn)≤
dxn

d(xn, xn+1)
d(xn−1, xn),

and then
d(xn, xn+1)≤ d(xn−1, xn).

By induction, either the process ends if d(xk, T (xk))= 0 for some k ∈ N∗ or we
obtain a sequence (xn)n∈N ⊂ D such that the sequences (d(xn, T (xn)))n∈N ⊂ R and
(d(xn, xn+1))n∈N ⊂ R are decreasing. Denoting respectively by d ≥ 0 and s ≥ d
the limits of the decreasing sequences (d(xn, T (xn)))n∈N and (d(xn, xn+1))n∈N, and
assuming that d > 0, we get, using (3.3), the contradiction

d ≤ lim sup
t↓s

c(t) d < d.

It follows that limn→∞ d(xn, T (xn))= 0 and thus infx∈D d(x, T (x))= 0. 2

Here is our main result.

THEOREM 3.3. Let (X, d) be a complete metric space and let T ⊂ D × X be a
closed valued multifunction defined on a closed subset D ⊂ X. Assume that the
function x 7→ d(x, T (x)) is lower semicontinuous, and that there exist a function
κ : (0,+∞)→ [0, 1) and a nonincreasing function b : (0,+∞)→ [b, 1], where b ∈
(0, 1], such that κ(·) < b(·) and:

(1) T satisfies assumption (H);
(2) lim supt↓s b(t)−1κ(t) < 1 for all s ≥ 0.

Then, FT 6= ∅ and, if β > 0 and δ > 0 satisfy supt∈(0,δ) κ(t) b(t)−1
≤ 1− β, then

bβ d(x, FT )≤ d(x, T (x)) ∀x ∈ D such that d(x, T (x)) < bδ.

https://doi.org/10.1017/S000497270900046X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270900046X


20 S. Benahmed and D. Azé [5]

PROOF. Let us define f : D −→ R by f (x)= d(x, T (x)). From Lemma 3.2, we
derive that infx∈D f (x)= 0 thus the set [ f<bδ] is nonempty. Given x ∈ [0< f<bδ],
we can find z ∈ D \ {x} such that

b(d(x, z))d(x, z)≤ b(dx ) d(x, z)≤ d(x, T (x)),

along with
d(z, T (z))≤ κ(d(x, z)) d(x, z),

so that
f (z)+ (b(d(x, z))− κ(d(x, z))) d(x, z)≤ f (x),

yielding

f (z)+ (1− κ(d(x, z)) b(d(x, z))−1)b(d(x, z)) d(x, z)≤ f (x).

Now let β > 0 and δ > 0 be such that b(t)−1κ(t)≤ 1− β, for all s ∈ (0, δ). Then we
get

bd(x, z)≤ b(d(x, z))d(x, z)≤ b(dx )d(x, z)≤ d(x, T (x)) < bδ,

so that d(x, z) < δ and then f (z)+ bβ d(x, z)≤ f (x) leading to the conclusion of
the theorem by using Lemma 2.4 applied with µ= bδ. 2

REMARK 3.4. In Theorem 3.3, the function x 7→ d(x, T (x)) is required to be lower
semicontinuous. This is the case if T is Hausdorff upper semicontinuous, that is,

lim
z→x

e(T (z), T (x))= 0

for all x ∈ X . Indeed, we have e(T (z), T (x))≥ d(z, T (x))− d(z, T (z)), so that

lim inf
z→x

d(z, T (z))≥ d(x, T (x)).

As a consequence of Theorem 3.3, we get an extension of the main result of [8]
along three directions: the following corollary holds for nonself mappings, we use a
nonconstant function b(·), and an estimate for the distance to the fixed-points set is
available.

COROLLARY 3.5. Let (X, d) be a complete metric space and let T ⊂ D × X be a
closed valued multifunction defined on a closed subset D ⊂ X. Assume that the
function x 7→ d(x, T (x)) is lower semicontinuous, and that there exist a function
κ : (0,+∞)→ [0, 1) and a nonincreasing function b : (0,+∞)→ [b, 1] where
b ∈ (0, 1], such that κ(·) < b(·) and:

(1)

{
for all x ∈ D such that d(x, T (x)) > 0, there exists z ∈ I x

b ∩ D

such that d(z, T (z))≤ κ(d(x, z))d(x, z);

(2) lim supt↓s b(t)−1κ(t) < 1 for all s ≥ 0.
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Then, FT 6= ∅ and, if β > 0 and δ > 0 satisfy supt∈(0,δ) κ(t) b(t)−1
≤ 1− β, then

bβ d(x, FT )≤ d(x, T (x)) ∀x ∈ D such that d(x, T (x)) < bδ.

In the case where the functions κ(·) and b(·) are constant, it is possible to weaken
assumption (H) in order to get a generalization of the main result of [6].

THEOREM 3.6. Let (X, d) be a complete metric space and let T ⊂ D × X be a closed
valued multifunction defined on a closed subset D ⊂ X. Assume that the function
x 7→ d(x, T (x)) is lower semicontinuous, and that there exists 0≤ κ < b, such that{

∀x ∈ D such that d(x, T (x)) > 0, ∃z ∈ D \ {x}

such that b d(x, z)≤ d(x, T (x)) and d(z, T (z))≤ κ d(x, z).

Then, FT 6= ∅ and

(b − κ) d(x, FT )≤ d(x, T (x)) ∀x ∈ D.

PROOF. Let us define f : D −→ R by f (x)= d(x, T (x)) and let x ∈ [ f>0], so that
we can find z ∈ D \ {x} such that b d(x, z)≤ d(x, T (x)) and d(z, T (z))≤ κ d(x, z),
yielding f (z)+ (b − κ)d(x, z)≤ f (x), and then the conclusion of the theorem
follows from Lemma 2.4 applied with µ=+∞. 2

REMARK 3.7. Observe that we do not require that κ < 1 in Theorem 3.6. When
applied to mappings, the previous theorem leads to a very light version of the classical
Banach–Picard theorem: any continuous mapping T : X→ X defined on a complete
metric space for which we can find 0≤ κ < b such that for all x ∈ X with T (x) 6= x ,
there exists z ∈ X satisfying b d(x, z)≤ d(x, T (x)) and d(z, T (z))≤ κ d(x, z) has
a fixed point and (b − κ) d(x, FT )≤ d(x, T (x)) for all x ∈ X . A contraction T :
X→ X of modulus κ ∈ [0, 1) satisfies the above assumption with b = 1 and z = T (x).
The mapping T : R2

→ R2 defined by T =
(
λ 0
0 1

)
with |λ|< 1 also satisfies the above

assumption, but it is not a contraction. The fact that it is enough to require only
d(T (x), T (T (x)))≤ κd(x, T (x)) for all x ∈ X instead of d(T (x), T (z))≤ κd(x, z)
for all x , z ∈ X was implicit in [3].
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