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A PARTIAL GENERALIZATION OF MANN'S THEOREM 
CONCERNING ORTHOGONAL LATIN SQUARES 

BY 

E. T. PARKER AND LAWRENCE SOMER 

ABSTRACT. Let n = At 4- 2, where the integer / ^ 2. A necessary 
condition is given for a particular Latin square L of order n to have a 
complete set of n — 2 mutually orthogonal Latin squares, each 
orthogonal to L. This condition extends constraints due to Mann 
concerning the existence of a Latin square orthogonal to a given 
Latin square. 

1. Introduction. The only positive integers n for which it is known that there 
is a class of n — 1 mutually orthogonal Latin squares of order n, or equivalently 
a projective plane of order n, are those which are powers of primes (see [3], 
pages 93-94 or [2] ). Thus, there is an infinite number of examples of projective 
planes of order n in each of the cases, n = 0, 1, or 3 modulo 4. There is no 
known example for which n = 2 modulo 4 except n = 2 where the complete set 
of Latin squares is rather degenerately a single square. We will seek constraints 
on the existence of a complete set of n — 1 mutually orthogonal Latin squares 
of order n when n = At + 2. 

This paper concerns only a restrictive class of Latin squares. However, very 
little is known about the existence of complete sets of orthogonal Latin squares 
when the order is neither a prime power nor ruled out by the Bruck-Ryser-
Chowla theorem. This theorem states that if n = 1 or 2 modulo 4 and the 
square-free part of n is divisible by a prime of the form Am + 3, then there does 
not exist a complete set of n — 1 mutually orthogonal Latin squares of order n. 
For another recent paper giving constraints on the existence of complete sets of 
Latin squares see Woodcock [4]. 

We will proceed by extending a theorem due to Mann giving conditions for 
a Latin square to have an orthogonal mate to a theorem giving conditions 
for a Latin square of order At + 2 to have a complete set of At orthogonal 
mates which are mutually orthogonal. These theorems are given below as Theo
rems 1 and 2. Theorem 1, which is Mann's theorem, is specialized to the case 
n = At + 2. For Theorems 1 and 2, we assume / = 2, since a Latin square 
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of order 6 has no orthogonal mates. A proof of Theorem 1 is given in [1] 
page 194. 

THEOREM 1 (Mann). Let t ^ 2 and let Lbe a Latin square of order 4/ + 2 with 
a square subarray consisting of It + 1 rows and 2 / 4 - 1 columns in which all 
entries are from a set of 2/ 4- 1 elements except for t or less of the cells. Then there 
is no Latin square orthogonal to L. 

THEOREM 2. Let t ^ 2 and let L be a Latin square of order At 4- 2 with a 
square subarray of side It + 1 in which all entries are from a set of 2t + 1 
elements except for less than t 4- u of the cells, where u = \ if t = 2 and 
u = ((t + l)/8) 4- 1/2 otherwise. Then there does not exist a complete set of At 
mutually orthogonal Latin squares, each orthogonal to L. 

2. Preliminaries. Let L be a Latin square of order n based on the elements 
1, 2, . . . , n. Then a transversal T of L is a set of n cells of L, one from each row, 
one from each column, and with distinct cells containing different elements. 
The existence of an orthogonal mate L to L is equivalent to the existence of n 
mutually disjoint transversals 7j, T2, . . . , Tn of L. To obtain L' we then map 
each cell in Tt into the same element /. By the orthogonality relationships, the 
existence of a complete set of n — 2 mutually orthogonal Latin squares, each 
orthogonal to L is equivalent to the existence of n — 2 sets of n mutually 
disjoint transversals of L for which a pair of transversals in distinct sets have 
exactly one cell in common. 

Two cells of a Latin square are connected if they agree in their row, column, or 
element they contain. Given a pair of disconnected cells in a Latin square L of 
order n with a complete set of n — 2 mutually orthogonal mates, this pair is 
contained in exactly one of the n(n — 2) transversals corresponding to these 
n — 2 orthogonal mates. 

Let S be a square subarray of side 2t 4- 1 of the Latin square L of order 
At 4- 2, all of whose elements are from the set of 2t 4- 1 elements ax, a2, . . . , 
a2t+1 except for k elements. Then S is said to have k special cells with respect to 
the elements ax, a2, . . . , a2t+\. Lemmas 1 and 2 give results concerning special 
cells. The proofs are straightforward and will be omitted. 

LEMMA 1. Let L be a Latin square of order At 4- 2 based on the elements 
1, 2, . . . , At 4- 2. Let ax, a2,. . . , ^ + 1 » ^i> 2̂> • • • » ^2*+i ^ a permutation on 
the integers 1, 2, . . . , 4/ + 2. Lef Sj Z?e f/ze square subarray of L consisting of 
rows 1 through 2/ 4- 1 and columns 1 through 2/4- 1, S2 be the square subarray 
consisting of rows 1 through 2 / 4 - 1 and columns 2 / 4 - 2 through At 4- 2, S3 be 
the square subarray consisting of rows 2/ + 2 through At 4- 2 a« J columns 1 
through 2/ 4- 1, a« J £4 fre //ze square subarray consisting of rows 2/ 4- 2 through 
At 4- 2 ««J columns 2/ 4- 2 through At 4- 2. Suppose Sx has k special cells 
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with respect to the elements ax, a2, . . ., a2t+x. Then S2 and S3 both have k special 
cells with respect to the elements bx, b2,. . . , b2t+x, and S4 has k special cells 
with respect to the elements ax, a2,. . . , a2t+x. 

LEMMA 2. Let L, Sx, S2, S3, and S4 be defined as in Lemma 1. Let 
ax, a2, . . . , a2t+\, bx, b2,. . . , b2t+\ be a permutation of the elements 1 , 2 , . . . , 
At + 2. Suppose Sx and S4 both have k special cells with respect to the elements 
ax, a29 . . . 9a2t+\, and S2 and S3 both have k special cells with respect to the 
elements bx, b2, . . ., b2t+x. Let T be a transversal of L. Then T contains an odd 
number of special cells. 

3. Proof of the Main Theorem. We are now ready to prove Theorem 2: 

PROOF OF THEOREM 2. Let L be a Latin square of order At + 2 based on the 
elements 1, 2, 3 , . . . , At + 2, where t ^ 2. If / = 2, then the theorem follows by 
Theorem 1. Thus, we now assume t ^ 3. Suppose L has a complete set of 
At mutually orthogonal mates Lx, L2, . . . , L4v each orthogonal to L. Let al9 

a2,. . . , a2 /+i, *i> *2> • • • > ^2r+i b e a permutation of the elements 1, 2, . . . , 
4/ + 2. Suppose L has a square subarray Sx of side 2/ + 1 with k special 
cells with respect to the elements ax, a2,. . . , a2t+x. Assume k < t + 
( ( / + 1)/8)1/2 + 1/2. 

By Theorem 1, k ^ / + 1. By permuting the rows and columns of L and its At 
orthogonal mates, we can assume that Sx consists of the rows 1, 2 , . . . , It + 1 
and the columns 1, 2 , . . . , It + 1. Let the square subarrays Sl9 S2, S3, and S4 be 
defined as in Lemma 1. Then by Lemma 1, S4 contains k special cells with 
respect to the elements ax, a2,.. . ,a2t+ x, while S2 and S3 both contain k special 
cells with respect to the elements bx, b2,..., b2t+x. 

Let Ty be the z'th of the At + 2 transversals of L corresponding to the y"th 
orthogonal mate L, where 1 ^ i: ë At + 2, 1 ^ j ^ At. By Lemma 2, each 
transversal contains an odd number of the Ak special cells of L. By the 
discussion preceding Lemma 1, any pair of disconnected special cells appears 
on exactly one of the transversals Tt-. We will proceed by counting the maximum 
number of pairs of disconnected special cells available on transversals. We will 
obtain a contradiction by showing that the maximum number of pairs of 
disconnected special cells available is less than the minimum number of pairs 
of disconnected special cells required. 

Let 1 ^ j ^ At be fixed and let Ttj-, 1 ^ / ' ^ 4/ + 2 be the transversals 
corresponding to Lj. The arrangement that maximizes the number of pairs of 
special cells appearing on these At + 2 transversals is the one in which At 4- 1 
of the transversals contain 1 special cell each and one transversal contains 
Ak — At — 1 special cells. Thus, the maximum number of pairs of disconnected 
special cells appearing on all (At)(At + 2) transversals is 
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(1) (At)(Ak - At - X)(Ak - At - 2)/2 = 2t{A{k - t) - \)(A(k - t) - 2). 

We now find a lower bound for the number of pairs of disconnected special 
cells required. To do this, we first obtain an upper bound for the number of 
pairs of connected special cells. This upper bound will be attained if for each 
square subarray Si9 1 = / = 4, we maximize the number of pairs of connected 
special cells containing at least one special cell from St. 

Let ch 1 â i ^ k denote the special cells appearing in Sx. Let xi9 yi9 and zt be 
the number of special cells in Sx connected to ct by appearing in the same row, 
appearing in the same column, or containing the same element, respectively. 
Then 

x,. + yt + z t ^ k - 1. 

Furthermore, counting by rows, ct is connected to xt + 1 special cells in S2. 
Counting by columns, ci is connected to yt + 1 special cells in S3. Finally, the 
total number of pairs of connected special cells with one cell contained in Sx is 
maximized if for each c-, c- is connected to zt + 1 special cells in S4 containing 
the same element as ct. Thus, an upper bound for the number of special cells 
connected to each cell ct for 1 ^ / ^ k is 

2xt + 2yt + 2zt + 3 ^ 2k + 1. 

By considering all Ak special cells in Sl9 S2, S3, and S4 and proceeding as 
before, we see that an upper bound for the total number of pairs of connected 
special cells is 

(\/2)(Ak)(2k + 1) = 2£(2£ + 1). 

Thus, a lower bound for the total number of pairs of disconnected special cells 
is 

(2) (Ak)(Ak - l ) /2 - 2£(2£ 4- 1) = 2£(2£ - 2). 

By (1) and (2), we see that 

(3) (k)(k - 1) ^ t(A(k - t) - 1)(2(* - 0 - 1). 

Let k = t -h r, where r ^ 1. Suppose r = 1. Then, by (3) t ^ 2, a case we have 
already considered. Thus, assume r ^ 2. Solving for / in (3) by means of the 
quadratic formula and noting that t is a positive integer, we obtain 

t ^ 2(2r - l)2 - 1. 

Solving for r, we get 

r ^ ( ( / + 1)/8)1/2 + 1/2. 

Thus, k ^ / + ((t + 1)/8)1/2 + 1/2, a contradiction, and the theorem is 
proved. 
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