A PARTIAL GENERALIZATION OF MANN'S THEOREM CONCERNING ORTHOGONAL LATIN SQUARES

BY
E. T. PARKER AND LAWRENCE SOMER

Abstract

Let $n=4 t+2$, where the integer $t \geqq 2$. A necessary condition is given for a particular Latin square L of order n to have a complete set of $n-2$ mutually orthogonal Latin squares, each orthogonal to L. This condition extends constraints due to Mann concerning the existence of a Latin square orthogonal to a given Latin square.

1. Introduction. The only positive integers n for which it is known that there is a class of $n-1$ mutually orthogonal Latin squares of order n, or equivalently a projective plane of order n, are those which are powers of primes (see [3], pages $93-94$ or [2]). Thus, there is an infinite number of examples of projective planes of order n in each of the cases, $n \equiv 0,1$, or 3 modulo 4 . There is no known example for which $n \equiv 2$ modulo 4 except $n=2$ where the complete set of Latin squares is rather degenerately a single square. We will seek constraints on the existence of a complete set of $n-1$ mutually orthogonal Latin squares of order n when $n=4 t+2$.

This paper concerns only a restrictive class of Latin squares. However, very little is known about the existence of complete sets of orthogonal Latin squares when the order is neither a prime power nor ruled out by the Bruck-RyserChowla theorem. This theorem states that if $n \equiv 1$ or 2 modulo 4 and the square-free part of n is divisible by a prime of the form $4 m+3$, then there does not exist a complete set of $n-1$ mutually orthogonal Latin squares of order n. For another recent paper giving constraints on the existence of complete sets of Latin squares see Woodcock [4].
We will proceed by extending a theorem due to Mann giving conditions for a Latin square to have an orthogonal mate to a theorem giving conditions for a Latin square of order $4 t+2$ to have a complete set of $4 t$ orthogonal mates which are mutually orthogonal. These theorems are given below as Theorems 1 and 2. Theorem 1, which is Mann's theorem, is specialized to the case $n=4 t+2$. For Theorems 1 and 2 , we assume $t \geqq 2$, since a Latin square
of order 6 has no orthogonal mates. A proof of Theorem 1 is given in [1] page 194.

Theorem 1 (Mann). Let $t \geqq 2$ and let L be a Latin square of order $4 t+2$ with a square subarray consisting of $2 t+1$ rows and $2 t+1$ columns in which all entries are from a set of $2 t+1$ elements except for t or less of the cells. Then there is no Latin square orthogonal to L.

Theorem 2. Let $t \geqq 2$ and let L be a Latin square of order $4 t+2$ with a square subarray of side $2 t+1$ in which all entries are from a set of $2 t+1$ elements except for less than $t+u$ of the cells, where $u=1$ if $t=2$ and $u=((t+1) / 8)^{1 / 2}+1 / 2$ otherwise. Then there does not exist a complete set of $4 t$ mutually orthogonal Latin squares, each orthogonal to L.
2. Preliminaries. Let L be a Latin square of order n based on the elements $1,2, \ldots, n$. Then a transversal T of L is a set of n cells of L, one from each row, one from each column, and with distinct cells containing different elements. The existence of an orthogonal mate L^{\prime} to L is equivalent to the existence of n mutually disjoint transversals $T_{1}, T_{2}, \ldots, T_{n}$ of L. To obtain L^{\prime} we then map each cell in T_{i} into the same element i. By the orthogonality relationships, the existence of a complete set of $n-2$ mutually orthogonal Latin squares, each orthogonal to L is equivalent to the existence of $n-2$ sets of n mutually disjoint transversals of L for which a pair of transversals in distinct sets have exactly one cell in common.

Two cells of a Latin square are connected if they agree in their row, column, or element they contain. Given a pair of disconnected cells in a Latin square L of order n with a complete set of $n-2$ mutually orthogonal mates, this pair is contained in exactly one of the $n(n-2)$ transversals corresponding to these $n-2$ orthogonal mates.

Let S be a square subarray of side $2 t+1$ of the Latin square L of order $4 t+2$, all of whose elements are from the set of $2 t+1$ elements a_{1}, a_{2}, \ldots, $a_{2 t+1}$ except for k elements. Then S is said to have k special cells with respect to the elements $a_{1}, a_{2}, \ldots, a_{2 t+1}$. Lemmas 1 and 2 give results concerning special cells. The proofs are straightforward and will be omitted.

Lemma 1. Let L be a Latin square of order $4 t+2$ based on the elements $1,2, \ldots, 4 t+2$ Let $a_{1}, a_{2}, \ldots, a_{2 t+1}, b_{1}, b_{2}, \ldots, b_{2 t+1}$ be a permutation on the integers $1,2, \ldots, 4 t+2$. Let S_{1} be the square subarray of L consisting of rows 1 through $2 t+1$ and columns 1 through $2 t+1, S_{2}$ be the square subarray consisting of rows 1 through $2 t+1$ and columns $2 t+2$ through $4 t+2, S_{3}$ be the square subarray consisting of rows $2 t+2$ through $4 t+2$ and columns 1 through $2 t+1$, and S_{4} be the square subarray consisting of rows $2 t+2$ through $4 t+2$ and columns $2 t+2$ through $4 t+2$. Suppose S_{1} has k special cells
with respect to the elements $a_{1}, a_{2}, \ldots, a_{2 t+1}$. Then S_{2} and S_{3} both have k special cells with respect to the elements $b_{1}, b_{2}, \ldots, b_{2 t+1}$, and S_{4} has k special cells with respect to the elements $a_{1}, a_{2}, \ldots, a_{2 t+1}$.

Lemma 2. Let L, S_{1}, S_{2}, S_{3}, and S_{4} be defined as in Lemma 1. Let $a_{1}, a_{2}, \ldots, a_{2 t+1}, b_{1}, b_{2}, \ldots, b_{2 t+1}$ be a permutation of the elements $1,2, \ldots$, $4 t+2$. Suppose S_{1} and S_{4} both have k special cells with respect to the elements $a_{1}, a_{2}, \ldots, a_{2 t+1}$, and S_{2} and S_{3} both have k special cells with respect to the elements $b_{1}, b_{2}, \ldots, b_{2 t+1}$. Let T be a transversal of L. Then T contains an odd number of special cells.
3. Proof of the Main Theorem. We are now ready to prove Theorem 2:

Proof of Theorem 2. Let L be a Latin square of order $4 t+2$ based on the elements $1,2,3, \ldots, 4 t+2$, where $t \geqq 2$. If $t=2$, then the theorem follows by Theorem 1. Thus, we now assume $t \geqq 3$. Suppose L has a complete set of $4 t$ mutually orthogonal mates $L_{1}, L_{2}, \ldots, L_{4 t}$, each orthogonal to L. Let a_{1}, $a_{2}, \ldots, a_{2 t+1}, b_{1}, b_{2}, \ldots, b_{2 t+1}$ be a permutation of the elements $1,2, \ldots$, $4 t+2$. Suppose L has a square subarray S_{1} of side $2 t+1$ with k special cells with respect to the elements $a_{1}, a_{2}, \ldots, a_{2 t+1}$. Assume $k<t+$ $((t+1) / 8)^{1 / 2}+1 / 2$.

By Theorem $1, k \geqq t+1$. By permuting the rows and columns of L and its $4 t$ orthogonal mates, we can assume that S_{1} consists of the rows $1,2, \ldots, 2 t+1$ and the columns $1,2, \ldots, 2 t+1$. Let the square subarrays S_{1}, S_{2}, S_{3}, and S_{4} be defined as in Lemma 1. Then by Lemma $1, S_{4}$ contains k special cells with respect to the elements $a_{1}, a_{2}, \ldots, a_{2 t+1}$, while S_{2} and S_{3} both contain k special cells with respect to the elements $b_{1}, b_{2}, \ldots, b_{2 t+1}$.

Let $T_{i j}$ be the i th of the $4 t+2$ transversals of L corresponding to the j th orthogonal mate L, where $1 \leqq i \leqq 4 t+2,1 \leqq j \leqq 4 t$. By Lemma 2 , each transversal contains an odd number of the $4 k$ special cells of L. By the discussion preceding Lemma 1 , any pair of disconnected special cells appears on exactly one of the transversals $T_{i j}$. We will proceed by counting the maximum number of pairs of disconnected special cells available on transversals. We will obtain a contradiction by showing that the maximum number of pairs of disconnected special cells available is less than the minimum number of pairs of disconnected special cells required.

Let $1 \leqq j \leqq 4 t$ be fixed and let $T_{i j}, 1 \leqq i \leqq 4 t+2$ be the transversals corresponding to L_{j}. The arrangement that maximizes the number of pairs of special cells appearing on these $4 t+2$ transversals is the one in which $4 t+1$ of the transversals contain 1 special cell each and one transversal contains $4 k-4 t-1$ special cells. Thus, the maximum number of pairs of disconnected special cells appearing on all $(4 t)(4 t+2)$ transversals is
(1) $\quad(4 t)(4 k-4 t-1)(4 k-4 t-2) / 2=2 t(4(k-t)-1)(4(k-t)-2)$.

We now find a lower bound for the number of pairs of disconnected special cells required. To do this, we first obtain an upper bound for the number of pairs of connected special cells. This upper bound will be attained if for each square subarray $S_{i}, 1 \leqq i \leqq 4$, we maximize the number of pairs of connected special cells containing at least one special cell from S_{i}.
Let $c_{i}, 1 \leqq i \leqq k$ denote the special cells appearing in S_{1}. Let x_{i}, y_{i}, and z_{i} be the number of special cells in S_{1} connected to c_{i} by appearing in the same row, appearing in the same column, or containing the same element, respectively. Then

$$
x_{i}+y_{i}+z_{i} \leqq k-1
$$

Furthermore, counting by rows, c_{i} is connected to $x_{i}+1$ special cells in S_{2}. Counting by columns, c_{i} is connected to $y_{i}+1$ special cells in S_{3}. Finally, the total number of pairs of connected special cells with one cell contained in S_{1} is maximized if for each c_{i}, c_{i} is connected to $z_{i}+1$ special cells in S_{4} containing the same element as c_{i}. Thus, an upper bound for the number of special cells connected to each cell c_{i} for $1 \leqq i \leqq k$ is

$$
2 x_{i}+2 y_{i}+2 z_{i}+3 \leqq 2 k+1
$$

By considering all $4 k$ special cells in S_{1}, S_{2}, S_{3}, and S_{4} and proceeding as before, we see that an upper bound for the total number of pairs of connected special cells is

$$
(1 / 2)(4 k)(2 k+1)=2 k(2 k+1)
$$

Thus, a lower bound for the total number of pairs of disconnected special cells is

$$
\begin{equation*}
(4 k)(4 k-1) / 2-2 k(2 k+1)=2 k(2 k-2) \tag{2}
\end{equation*}
$$

By (1) and (2), we see that

$$
\begin{equation*}
(k)(k-1) \leqq t(4(k-t)-1)(2(k-t)-1) \tag{3}
\end{equation*}
$$

Let $k=t+r$, where $r \geqq 1$. Suppose $r=1$. Then, by (3) $t \leqq 2$, a case we have already considered. Thus, assume $r \geqq 2$. Solving for t in (3) by means of the quadratic formula and noting that t is a positive integer, we obtain

$$
t \leqq 2(2 r-1)^{2}-1
$$

Solving for r, we get

$$
r \geqq((t+1) / 8)^{1 / 2}+1 / 2
$$

Thus, $k \geqq t+((t+1) / 8)^{1 / 2}+1 / 2$, a contradiction, and the theorem is proved.

Acknowledgment. We wish to thank the referee for her helpful comments concerning our paper and for her citation of the reference by Woodcock which is related to our work.

References

1. M. Hall, Combinatorial Theory, Blaisdell Publishing Company, Waltham, Massachusetts, 1967.
2. Henry B. Mann, On orthogonal latin squares, Bull. Amer. Math. Soc., Vol. 50, 1944, pp. 249-257.
3. H. J. Ryser, Combinatorial Mathematics, Mathematical Association of America, Washington, D.C., 1963.
4. C. F. Woodcock, On orthogonal latin squares, J. Combin. Theory Ser. A., Vol. 43, 1986, pp. 146-148.

Mathematics Department
University of Illinois
1409 W. Green Street
Urbana, Illinois 61801

Mathematics Department
Catholic University of America
Washington, D.C. 20064

