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Abstract

A subset R of the vertex set of a graph Γ is said to be (κ, τ)-regular if R induces a κ-regular subgraph and
every vertex outside R is adjacent to exactly τ vertices in R. In particular, if R is a (κ, τ)-regular set of some
Cayley graph on a finite group G, then R is called a (κ, τ)-regular set of G. Let H be a nontrivial normal
subgroup of G, and κ and τ a pair of integers satisfying 0 ≤ κ ≤ |H| − 1, 1 ≤ τ ≤ |H| and gcd(2, |H| − 1) | κ.
It is proved that (i) if τ is even, then H is a (κ, τ)-regular set of G; (ii) if τ is odd, then H is a (κ, τ)-regular
set of G if and only if it is a (0, 1)-regular set of G.
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1. Introduction

In the paper, all groups considered are finite groups with identity element denoted
as 1, and all graphs considered are finite, undirected and simple. Let R be a subset
of the vertex set of a graph Γ, and κ and τ a pair of nonnegative integers. We call
R a (κ, τ)-regular set (or regular set for short if there is no need to emphasise the
parameters κ and τ in the context) of Γ if every vertex in R is adjacent to exactly
κ vertices in R and every vertex outside R is adjacent to exactly τ vertices in R. In
particular, we call R a perfect code of Γ if (κ, τ) = (0, 1) and a total perfect code of
Γ if (κ, τ) = (1, 1). The concept of (κ, τ)-regular set was introduced in [3] and further
studied in [1, 2, 4, 5]. Very recently, regular sets in Cayley graphs were studied in
[8, 9].

Let G be a group and X an inverse closed subset of G \ {1}. The Cayley graph
Cay(G, X) on G with connection set X is the graph with vertex set G and edge set
{{g, gx} | g ∈ G, x ∈ X}. A subset R of G is called a (κ, τ)-regular set of G if there is
a Cayley graph Γ on G such that R is a (κ, τ)-regular set of Γ. Regular sets of Cayley
graphs are closely related to codes of groups. Let C and Y be two subsets of G and λ a
positive integer. If for every g ∈ G there exist precisely λ pairs (c, y) ∈ C × Y such that
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g = cy, then C is called a code of G with respect to Y [6]. In particular, if λ = 1 and
Y is an inverse closed subset of G containing 1, then C is called a perfect code of G
[7]. Let H be a subgroup of G. It is straightforward to check that H is a (0, τ)-regular
set of G if and only if H is a code of G with respect to some inverse closed subset of
G. In fact, if H is a (0, τ)-regular set of the Cayley graph Cay(G, X), then H is a code
of G with respect to Y := X ∪ Z for any inverse closed subset Z of H with cardinality
τ. However, if H is a code of G with respect to Y, then H is a (0, τ)-regular set of the
Cayley graph Cay(G, X), where X = Y \ H and τ = |H||Y |/|G|.

It is natural to ask when a normal subgroup of a group is a regular set. This question
was studied by Wang et al. in [9]. They proved that, for any finite group G, if a
nontrivial normal subgroup H of G is a perfect code of G, then for any pair of integers κ
and τwith 0 ≤ κ ≤ |H| − 1, 1 ≤ τ ≤ |H| and gcd(2, |H| − 1) | κ, H is also a (κ, τ)-regular
set of G. It was also shown in [9] that there exist normal subgroups of some groups
which are (κ, τ)-regular sets for some pair of integers κ and τ but not perfect codes of
the group. In this paper, we extend the main results in [9] by proving the following
theorem.

THEOREM 1.1. Let G be a group and H a nontrivial normal subgroup of G. Let κ and
τ be a pair of integers satisfying 0 ≤ κ ≤ |H| − 1, 1 ≤ τ ≤ |H| and gcd(2, |H| − 1) | κ.
The following two statements hold:

(i) if τ is even, then H is a (κ, τ)-regular set of G;
(ii) if τ is odd, then H is a (κ, τ)-regular set of G if and only if it is a perfect code

of G.

It was proved in [7, Theorem 2.2] that a normal subgroup H of G is a perfect code
of G if and only if

# for any g ∈ G with g2 ∈ H, there exists h ∈ H such that (gh)2 = 1.

Note that condition # always holds if H is of odd order or odd index [7, Corollary 2.3].
Therefore, Theorem 1.1 has the following direct corollary, which is also an immediate
consequence of [7, Corollary 2.3] and [9, Theorem 1.2].

COROLLARY 1.2. Let G be a group and H a nontrivial normal subgroup of G. If either
|H| or |G/H| is odd, then H is a (κ, τ)-regular set of G for every pair of integers κ and
τ satisfying 0 ≤ κ ≤ |H| − 1, 1 ≤ τ ≤ |H| and gcd(2, |H| − 1) | κ.

REMARK 1.3. It is a challenging question whether Theorem 1.1 and Corollary 1.2 can
be generalised to nonnormal subgroups H of G.

REMARK 1.4. Let H be a nontrivial normal subgroup of G of even order not satisfying
condition #. Let κ and τ be a pair of integers satisfying 0 ≤ κ ≤ |H| − 1, 2 ≤ τ ≤ |H|
and 2 | τ. Then Theorem 1.1(i) and [7, Theorem 2.2] imply that H is a (κ, τ)-regular set
but not a perfect code of G.
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2. Proof of Theorem 1.1

Throughout this section, we use
⋃̇n

i=1Si to denote the union of the pair-wise disjoint
sets S1, S2, . . . , Sn. Let G be a group and H a nontrivial normal subgroup of G. Let κ and
τ be a pair of integers satisfying 0 ≤ κ ≤ |H| − 1, 1 ≤ τ ≤ |H| and gcd(2, |H| − 1) | κ. We
first prove three lemmas and then complete the proof of Theorem 1.1.

LEMMA 2.1. If τ is even, then H is a (0, τ)-regular set of G.

PROOF. Let A := {1, a1, . . . , as} be a left transversal of H in G. Assume that the number
of involutions contained in aiH is ni for 1 ≤ i ≤ s. Let σ be a permutation on {1, . . . , s}
such that a−1

i H = aσ(i)H. Since H is normal in G,

aσ2(i)H = a−1
σ(i)H = Ha−1

σ(i) = (aσ(i)H)−1 = (a−1
i H)−1 = Hai = aiH.

It follows that σ is the identity permutation or an involution. Assume that σ fixes t
integers in {1, . . . , s}. Then 0 ≤ t ≤ s and s − t is even. Set � := (s − t)/2. Without loss
of generality, we assume that

σ(i) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i if i ≤ t,
i + � if t < i ≤ t + �,
i − � if t + � < i ≤ s.

Then aiH is inverse closed if i ≤ t and (at+jH)−1 = at+j+�H for every positive integer j
not greater than �. In particular, ni = 0 if i > t. For every i ∈ {1, . . . , s}, take a subset Xi
of aiH of cardinality τ by the following rules:

• if i ≤ t and ni ≥ τ, then Xi consists of exactly τ involutions;
• if i ≤ t, ni < τ and τ − ni is even, then Xi consists of ni involutions and (τ − ni)/2

pairs of mutually inverse elements of order greater than 2;
• if i ≤ t, ni < τ and τ − ni is odd, then Xi consists of ni − 1 involutions and

(τ + 1 − ni)/2 pairs of mutually inverse elements of order greater than 2;
• if t < i ≤ t + �, then Xi consists of exactly τ elements of order greater than 2;
• if i > t + �, then set Xi = X−1

i−�.

Note that X1, . . . , Xs are pair-wise disjoint. Set X =
⋃̇s

i=1Xi. Then X is an inverse closed
subset of G satisfying X ∩ H = ∅ and |X ∩ gH| = τ for every g ∈ G \ H. It follows that
H is a (0, τ)-regular set of the Cayley graph Cay(G, X) and therefore a (0, τ)-regular set
of G. �

LEMMA 2.2. If τ is odd, then H is a (0, τ)-regular set of G if and only if it is a perfect
code of G.

PROOF. The sufficiency follows from [9, Theorem 1.2]. Now we prove the necessity.
Let H be a (0, τ)-regular set of the Cayley graph Cay(G, X). Then X = X−1, X ∩ H = ∅
and |X ∩ gH| = τ for every g ∈ G \ H. Let A := {1, a1, . . . , as} be a left transversal
of H in G and set Xi = X ∩ aiH for every i ∈ {1, 2, . . . , s}. Then X =

⋃̇s
i=1Xi. If Xi
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contains an involution for each i ∈ {1, . . . , s}, then H is a perfect code of G with respect
to {1, y1, . . . , ys}, where yi is an involution in Xi, i = 1, . . . , s. Now we assume that
there exists at least one integer k ∈ {1, . . . , s} such that Xk contains no involution. Then
x−1 � x for every element x ∈ Xk. It follows that |Xk ∪ X−1

k | is even. Since |Xk | = τ and τ
is odd, we get Xk � X−1

k . Since H is normal in G, we obtain (akH)−1 = (Hak)−1 = a−1
k H.

Assume that a−1
k H = ajH for some j ∈ {1, . . . , s}. Then X−1

k ⊆ ajH. Since X =
⋃̇s

i=1Xi
and X−1 = X, we conclude that X−1

k = Xj. Therefore, without loss of generality, we can
assume that X−1

i = Xi+� if 1 ≤ i ≤ � and X−1
i = Xi if 2� < i ≤ s, where � is a positive

integer not greater than s/2. Note that Xi contains at least one involution if X−1
i = Xi

(as it is of odd cardinality). For every i ∈ {1, . . . , s}, take an element yi ∈ Xi by the
following rules:

• yi is an arbitrary element in Xi if i ≤ �;
• yi = y−1

i−� if � < i ≤ 2�;
• yi is an involution if i > 2�.

Then H is a perfect code of G with respect to {1, y1, . . . , ys}. �

LEMMA 2.3. H is a (κ, τ)-regular set of G if and only if H is a (0, τ)-regular set of G.

PROOF. (⇒) Let H be a (κ, τ)-regular set of the Cayley graph Cay(G, X). Then
|H ∩ X| = κ and |gH ∩ X| = τ for every g ∈ G \ H. Set Y = X \ H. Then |H ∩ Y | = 0
and |gH ∩ Y | = τ for every g ∈ G \ H. Since X−1 = X and H−1 = H, we get Y−1 = Y .
It follows that H is a (0, τ)-regular set of the Cayley graph Cay(G, Y) and therefore a
(0, τ)-regular set of G.

(⇐) Let H be a (0, τ)-regular set of the Cayley graph Cay(G, Y). Then |H ∩ Y | = 0
and |gH ∩ Y | = τ for every g ∈ G \ H. Let m be the number of elements contained in H
of order greater than 2. Then m is even and the number of involutions contained in H
is |H| − 1 − m. Recall that 0 ≤ κ ≤ |H| − 1 and gcd(2, |H| − 1) | κ. If κ is odd, then |H|
is even and therefore contains at least one involution. Take an inverse closed subset Z
of H of cardinality κ by the following rules:

• if m ≥ κ and κ is even, then Z consists of exactly κ/2 pairs of mutually inverse
elements of order greater than 2;

• if m ≥ κ and κ is odd, then Z consists of (κ − 1)/2 pairs of mutually inverse elements
of order greater than 2 and one involution;

• if m < κ, then Z consists of m/2 pairs of mutually inverse elements of order greater
than 2 and κ − m involutions.

Set X = Y ∪ Z. Then |H ∩ X| = κ and |gH ∩ X| = τ for every g ∈ G \ H. Therefore, H
is a (κ, τ)-regular set of the Cayley graph Cay(G, X) and therefore a (κ, τ)-regular set
of G. �

PROOF OF THEOREM 1.1. Lemmas 2.1 and 2.3 imply that H is a (κ, τ)-regular set of
G if τ is even. Now assume τ is odd. By Lemmas 2.2 and 2.3, H is a (κ, τ)-regular set
of G if and only if it is a perfect code of G. �

https://doi.org/10.1017/S0004972723000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000084


[5] Regular sets in Cayley graphs 5

References
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