
3 The power of mathematics

JOHN CONWAY

This is a lecture about the power of simple ideas in mathematics.
What I like doing is taking something that other people thought was compli-

cated and difficult to understand, and finding a simple idea, so that any fool –
and, in this case, you – can understand the complicated thing.

These simple ideas can be astonishingly powerful, and they are also astonish-
ingly difficult to find. Many times it has taken a century or more for someone
to have the simple idea; in fact it has often taken 2000 years, because often the
Greeks could have had that idea, and they didn’t.

People often have the misconception that what someone like Einstein did
is complicated. No, the truly earth-shattering ideas are simple ones. But these
ideas often have a subtlety of some sort, which stops people from thinking of
them. The simple idea involves a question nobody had thought of asking.

Consider, for example, the question of whether the Earth is a sphere or a
plane. Did the ancients sit down and think ‘now let’s see – which is it, a sphere
or a plane?’? No, I think the true situation was that no-one could conceive
the idea that the earth was spherical – until someone, noticing that the stars
seemed to go down in the West and then twelve hours later come up in the
East, had the idea that everything might be going round – which is difficult to
reconcile with the accepted idea of a flat earth.

Another funny idea is the idea of ‘up’. Is ‘up’ an absolute concept? It was,
in Aristotelian physics. Only in Newtonian physics was it realised that ‘up’ is
a local concept – that one person’s ‘up’ can be another person’s ‘down’ (if the
first is in Cambridge and the second is in Australia, say). Einstein’s discovery
of relativity depended on a similar realisation about the nature of time: that
one person’s time can be another person’s sideways.
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Well, let’s get back to basics. I’d like to take you through some simple ideas
relating to squares, to triangles, and to knots.

Squares

Let’s start with a new proof of an old theorem. The question is: ‘is the diagonal of
a square commensurable with the side?’ Or to put it in modern terminology: ‘Is
the square root of 2 a ratio of two whole numbers?’ This question led to a great
discovery, credited to the Pythagoreans, the discovery of irrational numbers.

Let’s put the question another way. Could there be two squares with sides
equal to a whole number, n, whose total area is identical to that of a single
square with sides equal to another whole number, m?

m

m

n

n

n

n

FIGURE 3.1 If m and n are whole numbers, can the two grey n × n squares have the
same area as the white m × m square?

This damn nearly happens for 12 by 12 squares: 12 times 12 is 144; and 144
plus 144 equals 288, which does not actually equal 289, which is 17 times 17. So
17/12 = 1.416 66 . . . is very close to

√
2 = 1.414 21 . . . – it’s only out by two

parts in a thousand.
But we’re not asking whether you can find whole numbers m and n that

roughly satisfy m2 = 2n2. We want to establish whether it can be done exactly.
Well, let’s assume that it can be done. Then there must be a smallest whole

number m for which it can be done. Let’s draw a picture using that smallest
possible m.

Let’s stick the two small grey squares in the top right
and bottom left corners of the big square.

Now, part of the big square is covered twice, and part of
the big square isn’t covered at all, by the smaller squares.
The part that’s covered twice is shown in dark grey, and
the bits that are not covered are shown in white. Since the
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area of the original big white square is exactly equal to the total area of the
light grey squares, the area of the bit that’s covered twice must be exactly equal
to the area of the bits that are not covered.

2n −    m

m −    n

m −    n

Now, what are the sizes of these three areas? The dark
grey bit is a square, and the size of that square is a whole
number, equal to 2n − m; and the two white areas are also
squares, with sides equal to m − n. So, starting from the
alleged smallest possible whole number m, such that m2

is twice the square of a whole number, we’ve found that
there is an even smaller whole number (2n − m) having this
property. So there can be no smallest solution. Remember, if there are any solu-
tions, one of them must be the smallest. So we conclude that there are no
solutions.

This result has tremendous intellectual consequences. Not all real numbers
are the ratio of whole numbers.

This new proof was created by a friend of mine called Stanley Tennenbaum,
who has since dropped out of mathematics.

Triangles

Take a triangle, any triangle you like, and trisect
each of its angles. That means, cut each angle
into three pieces, all the same size.

Extend the trisections until they meet at
three points.

Then a rather remarkable theorem by Frank
Morley says that the triangle formed by these
points is equilateral. And this is true for any
starting triangle.

Morley’s theorem is renowned as being a the-
orem that’s really hard to prove. Very simple
to state, but very hard to prove. Morley stated
the result in about 1900, and the first published
proof didn’t come till about 15 years later. How-
ever, I found a simple proof, aided by my friend
Peter Doyle. Let me show you.
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First, please tell me the three angles A, B, C, of your original triangle. Remem-
ber they have to add up to 180 degrees. Here’s the plan. I’m going to start from
an equilateral triangle of some size and build up six other triangles around it,
and glue them together to create a triangle that has angles A, B, and C, just like
yours; so for some choice of the size of the equilateral triangle, my construc-
tion will exactly reproduce your original triangle; furthermore the method of
construction will prove that if you trisect your triangle’s angles, you’ll find my
equilateral triangle in the middle. The diagram above shows the six triangular
pieces that we will build around the equilateral triangle. This picture looks like
a shattered version of the triangle we drew a moment ago, and indeed we’ll
in due course glue the pieces together to create that triangle; but to under-
stand the proof correctly, you must think of the six new triangles as pieces that
we are going to define, starting from my equilateral triangle, with the help of
the values of A, B and C that you supplied. The previous page’s figure is our
destination, not our starting point.

We construct the six new triangles by first defining their shapes, then defining
their sizes. To define the shapes of the six triangles, we fix their angles as shown
in the diagram above. We define α = A/3, β = B/3, and γ = C/3. We introduce
a piece of notation for angles: for any angle θ , we define θ+ to denote θ + 60
and θ++ to denote θ + 120. So, for example, the three interior angles in the
equilateral triangle (which are all 60 degrees) may be marked 0+. (You may
check that the angles in each triangle sum to 180.) Next, we fix the size of each
triangle that abutts onto the equilateral triangle by making the length of one
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side equal that of the equilateral. These equal sides are shown by bold lines on
the first diagram.

Next we fix the sizes of the three obtuse triangles; I’ll show you how we fix
the right-hand obtuse triangle, and you can use an analagous method to fix the
other two. We introduce two lines that meet the long side at an angle of β+

(a bit like dropping perpendiculars), and fix the size of the triangle so that both
those lines have the same length as the side of the equilateral triangle.

Now, having defined the sizes of all the triangles in this way, I claim that
the two shaded triangles are identical – one is the mirror image of the other.
We can see that this is so, because they have two identical angles (the αs and the
β+s); and they have one identical side (the highlighted sides, which are equal
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to the equilateral’s side). Therefore the adjacent edges of those two triangles
are identical in length.

Applying the same argument six times over, we have shown that all the
adjacent edges in the figure are identical to each other, and thus established
that these six triangles will fit snugly around my equilateral triangle, as long
as the angles around any one internal vertex sum to 360 degrees. The sum
around a typical internal vertex is α+ + β++ + γ + + 0+; that’s five +s, which
are worth 300 degrees, plus α+ � + �, which gives a total of 360.

Thus, glueing the seven pieces together, I’ve made a triangle with your angles,
for which Morley’s theorem is true. Therefore, Morley’s theorem is true for your
triangle, and for any triangle you could have chosen.

Knots

Finally, I would like to tell you a little bit about knot theory, and about a simple
idea I had when I was a high school kid in Liverpool many years ago.

First, what’s the big deal about knots? Knots don’t seem especially mathe-
matical. Well, the first thing that’s hard about knots is the question: ‘Are there
any?’

To put it another way, can this knot be undone? (It’s con-
ventional, by the way, to attach the two free ends of a knot
to each other, so that the rope forms a closed loop.) The fact
that no-one’s undone it doesn’t mean you necessarily can’t
do it. It might just mean that people are stupid. Remember, there are simple
ideas that no-one had for 2000 years, then Einstein came along and had them!
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Now, when we fiddle around with a piece of string, changing one configu-
ration into another, there are three basic things that can happen. These are
called the Reidemeister moves, after the German professor of geometry, Kurt
Reidemeister. We’ll call these moves R1, R2 and R3.

R1 involves twisting or untwist-
ing a single loop, leaving everything
else unchanged.

R2 takes a loop and pokes it
under an adjacent piece of rope.

R3 is the slide move, which passes
one piece of rope across the place
where two other segments cross
each other.

All knot deformations can be reduced to a sequence of these three moves.
Now, is there a sequence of these

moves that will enable you to start
with the knot on the left and end
with the ‘unknot’ on the right? You
can perhaps imagine applying a sequence of moves until it really looks rather
messy – imagine a picture like this, but with maybe a million crossings in it:

And maybe eventually, if I’m lucky, another million moves would bring me
to the unknot.
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Can you disprove this story?
It is quite hard to disprove it. I believe no one has ever tried going out to

all the mindbogglingly large number of million-crossing configurations and
checking what happens in each case. And the difficult challenge is, if we want
to prove that a knot exists, we must show that no such sequence of moves
exists.

What I’m going to do is introduce what I call a
knumbering of knots. To make a knumbering, you
assign a little number to any visible piece of string;
and in a place where one piece disappears under
another, the two numbers associated with the lower

aaaaaa

ccc c c

bbbbbb
bbbbbb

piece of string must be related to each other in a way that depends on the
number on the upper piece of string. Namely, if the number on the upper piece
is b, and the lower piece’s numbers on either side of the upper piece are a and
c, then ‘a, b, c’ must be an arithmetic progression. That means the amount by
which you go up from a to b has to be exactly the amount by which you go up
from b to c.

For example, if a is 13 and b is 16, then c had better
be 19.
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Now, what is the relevance of these numbers? Well,
let’s first see if we can make a knumbering. Let’s take our
old friend, the trefoil knot, and work our way round the
knot, assigning numbers to its different segments, and see if we can satisfy the
arithmetic progression condition at every crossing. How should we start? One
thing worth noticing about the arithmetic progression condition is that it is
invariant: I can shove all the numbers a, b and c up or down by any amount I
like, and they will still satisfy the arithmetic progression condition. So we may
as well start by assigning the labels 0 and 1 to a couple of edges here, then we
can propagate the consequences of those choices around the rest of the knot.
We’ll mark each crossing as we apply its rule.

1 1 1

1
1

1

0
0
0

1 1 1

1
1

1

2 2 2

22 2

0
0
0
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So far, so good. . .
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Oh dear, there is a problem on the top edge, namely that 4 isn’t equal to 1, and
they should be equal, because there’s a 4 and a 1 both on the same piece of
rope. However, one of the great powers of the mathematical method is that I
can define things however I like; so I’m now going to define 4 to be equal to 1.
(Mathematicians call this kind of equality ‘congruence modulo 3’.) So, phew!
I cured that problem.

There is a similar contradiction on the bottom
segment: this edge is labelled both ‘3’ and ‘0’. But if
4 is equal to 1, then 3 is equal to 0. So everything is all
right.
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We have got a knumbering.
Now, what’s the point of these knumberings? It is

very beautiful. Look at what happens when we take a knumbered knot and
apply the three Reidemeister moves to it. Can we take the left-hand knumbering
and obtain a right-hand knumbering?

The answer is yes, any valid knumbering for the left-hand figure can be
copied into a valid knumbering for the right-hand figure, and vice versa. This
is quite easy to confirm for the first two moves.
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For the third move, we have to confirm that 2(2c − b) − (2c − a) = 4c − 2b −
(2c − a) = 2c − (2b − a).

We find that we can do any of the three moves without messing up the rest
of the knumbering.

The fact that any valid knumbering remains a valid knumbering when a move
is made or unmade implies that the number of possible knumberings of the left-
hand picture is exactly equal to the number of knumberings of the right-hand
picture.

Now, let’s return to the question of whether the trefoil knot can be
transformed into the unknot. Well, there are just three knumberings of the
unknot.

0 1 2

Whereas the trefoil knot has at least four knumberings:
the all-0, all-1, and all-2 knumberings, and this one.

So now, we can prove that the trefoil knot cannot be
undone, because it has a different number of knumber-
ings from the unknot. If the trefoil knot and the unknot
were related by a sequence of Reidemeister moves, they would have the same
number of knumberings.

This proves that knots do exist.

Tangles

I often do a little conjuring trick which consists of tying knots. Tangles are
bits of knottiness with four ends coming out, and they have an unexpected
connection to arithmetic.

Tangles are best displayed by four square-dancers. Two dancers hold the
ends of one rope, and two dancers hold the ends of the other rope. We can
manipulate the tangle by using two moves, called twist ’em up and turn ’em
roun’.

When we twist ’em up, the two dancers on the right-hand side exchange
places, the lower dancer going under the rope of the upper dancer. Now,
we’re going to assert that each tangle has a value, and that ‘twist ’em up’
changes the value of the tangle from t to t + 1. (These values aren’t related to
knumberings; you can forget about knumberings now.)
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When we turn ’em roun’, all four dancers move one place clockwise. ‘Turn
’em roun’ changes the value of a tangle from t to −1/t .

To get us started, the tangle shown below is given the value t = 0.

t = 0

Is everything clear? Then let’s go!
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Now, it is your job, dear reader, to get the dancers back to zero. But you are
only allowed to do the two moves I’ve spoken of. Do you want to twist or do
you want to turn?

What you’ll find is that if you use your knowledge of arithmetic to get
the value back to zero, the tangle will indeed become undone. It’s magic!
[The sequence chosen by the audience in Cambridge was: 13/10

r−→
−10/13

u−→ 3/13
r−→ −13/3

u−→ −10/3
u−→ −7/3

u−→ −4/3
u−→

−1/3
r−→ 3

u−→ 4
r−→ −1/4

u−→ 3/4
r−→ −4/3

u−→ −1/3
u−→ 2/3

r−→
−3/2

u−→ −1/2
u−→1/2

r−→ −2
u−→ −1

u−→ t = 0, with twist ’em up and
turn ’em roun’ abbreviated to

u−→ and
r−→, respectively.]

This is an example of a very simple idea. We already knew some arithmetic –
but only in the context of numbers; and we didn’t realise it applies to knots. So
in fact this little branch of knot theory is really just arithmetic.

Having found this unexpected connection, let’s finish with something fun.
Start from t = 0, and turn ’em roun’. What do we get?

Hmm! Now we’ve got −1/0, isn’t that some sort of infinity, or minus infinity?
Let’s see what you get when you add one to infinity. Does adding one to

infinity make any difference? Twist ’em up!

Isn’t that nice? We add one to infinity, and we get infinity again.
So, this is a powerful idea that we mathematicians use: you take something

you’ve learnt in one place, and apply it to something else, somewhere where
it’s not obvious that there is any mathematics, and there is.
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