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ON MODULUS OF NONCOMPACT CONVEXITY AND ITS 
PROPERTIES 

BY 

JÔZEF BANAS 

ABSTRACT. In this paper we prove some properties of the so-called 
modulus of noncompact convexity. This notion was recently introduced by 
K. Goebel and T. Sçkowski [6] and it appears to be an interesting and 
useful generalization of the classical Clarkson modulus of convexity. We 
extend the results obtained in [6] showing that the modulus of noncompact 
convexity is continuous and has some extra properties in reflexive Banach 
spaces. The properties applicable in the fixed point theory are also stated. 

Introduction. In the geometric theory of Banach spaces the notion of the modulus 
of convexity plays a very significant role. It allows us to classify Banach spaces from 
the point of view of their geometrical structure. In this regard the modulus of convexity 
is a useful tool in the fixed point theory. A lot of facts concerning this notion and its 
applications may be found in [3, 4, 5, 9], for example. 

Recently K. Goebel and T. Sçkowski [6] have proposed an interesting generalization 
of the notion of the modulus of convexity. Namely, with help of the concept of 
Kuratowski's measure of noncompactness they defined the so-called modulus of non-
compact convexity. By means of this modulus they proved a few interesting facts 
concerning the geometric theory of Banach spaces. 

The goal of this paper is to give some further facts concerning properties of the 
modulus of noncompact convexity. 

1. Notations, Definitions and known results. Let (£, || ||) be an infinitely dimen
sional Banach space and let B(x, r), S(x, r) denote the ball and the sphere centred at 
x and of radius r. For brevity we will write B, S instead of B (6 , 1 ) and S (9 , 1 ). If X 
is a subset of E, x G E, then X, ConvX, dist(x, X) will denote the closure, the closed 
convex hull of X and the distance from a point x to X, respectively. Similarly, dist(X, 
Y) will denote the distance between sets X and Y. By B(X, r) we denote the "ball" 
centered at a set X and with radius r , i .e .Z?(X,r)= U,xex B(x, r). For a bounded set 
X, a(X) will denote the Kuratowski's measure of noncompactness: 

a(X) = inf[d > 0: X can be covered with a finite number of 
sets of diameters smaller than d]. 
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The symbol \(X) will denote the Hausdorff s measure of noncompactness: 

\(X) = inf[e > 0: X can be covered with a finite number of 
balls of radii smaller than e]. 

In the sequel we will use first of all the following properties of the function x-

1° x(x) = 0 <̂> X is compact 

2° X C Y => X(X) < X(Y) 

3° X(X) = x(ConvX) = X(X) 

4° x(XX) - |X|X(X), \ E R 

5° X(X +Y)< X(X) + x(Y) 

6° XU + X) = X(X) 

7° X(5(jf, r)) = x(SU, r)) = r 

Let us notice that the function a has also the properties 1° — 6° and a(B(x, r)) = 
a(S(x, r)) = 2r. For further properties of these measures we refer to [1]. 

Recall that the classical Clarkson's modulus of convexity of the space E [2] is the 
function 8: (0, 2) -> <0, 1) defined by 

8£(e) = inf 
U + 3> 

1 - : x, y E 5 , ||x — j | | > e . 
2 

77ie coefficient of convexity of £ is understood as 

e0(£) = sup[e: 8£(e) - 0]. 

The space is called uniformly convex if e0 = 0. The notion of the modulus of non-
compact convexity was defined in [6] in the following way 

A£(e) = inffl - dist(0, X): X C B, X = ConvX, a(X) > e]. 

Actually Â: (0, 2) -» (0, 1) and is a nondecreasing function. Moreover, 8£(e) < A£(e) 
for any Banach space E. It was shown in [6] that this inequality may be sharp for some 
spaces. Analogously the number ë\(E) = sup[e: A£(e) = 0] was called the coefficient 
of noneompact convexity and spaces with ë| = 0, A-uniformly convex. Of course, 
ë|(£) < e0(£) and in the case of Day's space D, ê,(D) = 0 and e0(D) = 2 [6]. The 
main result proven in [6] may be summarized in the below given theorem. 

THEOREM 1. Ifë\(E) < 1 then E is reflexive and has normal structure. 

In what follows we shall use the notion of the modulus of noncompact convexity 
defined with help of the Hausdorff s measure of noncompactness: 

A: (0, 1) -* (0, 1), A£(e) = inf[l - dist(9, X): X C 5 J = ConvX, X(X) ^ e]. 

In the similar way by €\(E) we denote the coefficient of noncompact convexity of E 
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(with respect to the modulus A). We say that E is k-uniformly convex if e\ = 0. Let 
us notice that the well-known dependence x(X) — ot(X) < 2\(X) (cf. [1]) yields 

A£(e) < A£(€) < A£(2e), e E (0, 1) 

for any Banach space £. Hence e\(E) < ë|(£) < 2e1(£). This inequality permits to 
formulate the following 

THEOREM 2. Ife\(E) ^ 1/2 f/zeft f/*e space E is reflexive and has normal structure. 

2. Continuity of modulus of noncompact convexity. This section is devoted to 
showing that the modulus of noncompact convexity AE(e) is continuous on the interval 
(0, 1). We will need the following result due to Radstrom [10]: 

LEMMA 1. Let X,Y,Zbe nonempty subsets of a Banach space E such that Y = 
ConvF and Z is bounded. Then X + Z C Y + Z implies that X C Y. 

We will also use the following result. 

LEMMA 2. x(#(*> r)) = X(*) + r-

PROOF. The properties of the function x and the equality B(X, r) = X + r -B imply 
X(B(X, r)) < x(X) + r. In order to prove the converse inequality let us remark at first 
that 

(1) X(X + rB) > x(x + rB) = r, 

where x is an arbitrary point from X. Further notice that in view of the definition of x 
there exist a finite set H and a number r, > x(^ + rB) such that X + r / ? C H + r,Z?. 
Hence 

X + r 5 C Conv/Z 4- (r, - r)B + rB. 

Because the set ConvH + (r\ — r)B is closed and convex, by virtue of Lemma 1 we 
get X C Conv// + (r] — r)B, what implies 

X(X) < x(Conv//) + r, — r = r, — r 

and finally 

X(X) + r < r , . 

The above inequality together with (1) completes the proof. 
Now we can prove our main result. 

THEOREM 3. The function A is continuous on the interval (0, 1). 

PROOF. First note that the function A is nondecreasing on the interval (0, 1). Further, 
let us fix e, E (0, 1) and take an arbitrary e2 E (e,, 1). For r| > 0 arbitrarily small we 
may choose a set X\ contained in B such that ConvX, = X{, x(X\) — €i and 

(2) 1 - d i s t (9 ,X, )< A(e,) + TI. 
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Next, putting k = (1 - e2)/(l - €,) we see that k E (0, 1). Consider the set Y = kX}. 
Obviously X(Y) = *x(*i) and dist(0, Y) = Jfcdist(0, X,), dist(F, 5) > 1 - k, so that 
if we take the set X2 = #(X], 1 - fc) we may easily verify that X2 C 5 , ConvX2 = X2 

and 

(3) dist (0 , X2) = ifcdist(0, X,) - 1 + it. 

Moreover, in view of Lemma 2 we obtain 

X(X2) - kx(Xx) + 1 - A: > *e, + 1 - k = e2. 

Now by (2) and (3) we infer 

1 - dist(0, X2) = 1 - Jfcdist(0, X,) + 1 - k = 

= k(\ - dist(0, X,)) + 2(1 - k) < ifc(A(€,) + TI) + 2(1 - *). 

Hence 

A(e2) < fc(A(€.) + T]) + 2(1 - *). 

Finally, keeping in mind that r\ was chosen arbitrarily we have 

A(e2) < *A(€,) 4- 2(1 - k) 

which implies 

A(e2) - A(€,) < *A(€l) - A(€,) + 2(1 - k) = (1 - *)(2 - A(e,)) < 2(1 - k) 
= 2(e2 - e,)/(l - €,). 

Thus the proof is completed. 
It is worth while to mention that our method of proving allows us to show continuity 

of the function Â on the interval (0, 1) but not on the whole interval (0, 2). This 
is caused by the fact that for Kuratowski's measure a the equality a(B(X, t)) = 
a(X) + It is no longer true; we have only a(X) + t < a(5(X, t)) < a(X) + It. 

3. The case of reflexive space. Throughout this section we will assume that E is 
a reflexive Banach space. This assumption permits us to deduce that for a nonempty, 
closed and convex subset X of E, for any y E E, there is at least one x E X with the 
property dist(j, X) = \y — JC|| [8]. We show below that this fact has some significance 
in order to obtain additional properties of a modulus of noncompact convexity. 

Let us assume that a number € E (0, 1) is fixed. Let us take an arbitrary r\ > 0 and 
a set X C B, X = ConvX, x(X) > e, such that 

(4) 1 - dist(0, X) < A(e) + T]. 

Next, let k be an arbitrary number in the interval (0, 1). Choose JC E X with the property 
dist(0, X) = ||;t|| and consider the set X, = kX + ((1 - /:)/||JC||)JC. Then x(X,) > Are 
and dist(OXi) = ifcdist(0, X) + 1 - k. Moreover X, C B. Further we have 

dist(0, X) - (l/ik)(dist(0, X,) + k - l), 
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and (4) gives 

1 - A(e) < dist(6, X) + ^ = (lA)(dist(6, X,) + k - 1) + in-

This inequality implies 

1 - A(e) < (1A)(1 - A(fce) + k - 1) + i\ 

and finally 

A(Jfce) < fcA(e). 

Thus we can formulate our next result. 

THEOREM A. If E is a reflexive Banach space then A£(e) is a subhomogeneous 

function, i.e. 

A(fce) < A:A(e) 

/or ajry e, k E (0, 1). 

From the above theorem we may deduce some simple corollaries. 

COROLLARY 1. A(e) < efor any e (0, 1). 

COROLLARY 2. The function A is strictly increasing on the interval (e\(E), 1). 

Indeed, for f, < t2 ^ 1, e, (£), if we put in Theorem 4 e = £2, k = t\ /t2, we have 
A(ri) < (r,//L2)A(/L2) what implies 

Mt2)/Mtl)^t2/tl > l. 

Thus A(f,) < A(f2). 

COROLLARY 3. A(r2) ~ A(r,) > (t2 ~ t\)/k(t\) for any ti912 E (e,(£), 1), tx<t2. 

COROLLARY 4. The function e —> A(e)/e /s nondecreasing on the interval (0, 1) arcd 
A(e, + e2) ^ A(e,) + A(e2) provided e, + e2 < 1. 

We omit the simple proofs of the last two corollaries. 

4. Stability. As we have established in Theorem 2 every Banach space for which 
e, < 1/2 has normal structure. Thus, according to the well-known Kirk's fixed point 
theorem such a space has the fixed point property with respect to nonexpansive self-
mappings of a nonempty, bounded, closed and convex set [7, 5]. We show now that 
this property is stable with regard to the slight change of the norm. 

Assume that (E, || ||,) is a Banach space for which e, < 1/2. Let || ||2 be the 
equivalent norm on the space E i.e. there exist positive constants m and M such that 

ATI || JC ||i < ||jc||2 ^ M | | * | | l 

for every x 6 £ . Let Xi and X2 denote the Hausdorffs measures of noncompactness in 
the spaces (£, || ||,), (£, || ||2), respectively. Then we can easily show that 

mX.(X)<X2(X)<MX , (X) 
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for any bounded subset X of the space E. 
Further let A,, A2 be moduli of noncompact convexity with respect to the suitable 
norms. Let us fix e > 0 and r\ E (0, 1). Next, let us take X Ç Z?2, X = ConvX, 
X2(X) ^ e and such that 

dist2(9, X) > 1 - A2(e) - TI 

(here the indices denote that we consider the ball or the distance with respect to the 
suitable norm). Then we have XiOO — e /M and 

dist,(9, X) > (1/M) dist2(9, X). 

Moreover, X C #i(0, 1/m). Hence we get 

(1/M) dist2(9, X) < dist,(9, X) < (1 - A,(me/M))(l/m) 

what implies 

1 - A2(e) - TI < (M/m)(l - A,(me/M)). 

Finally the last inequality yields 

(5) A2(e)> 1 -k{\ - A,(eA)) 

where k = M/m > 1. 
Let B > 1 be a unique solution of the equation 

(6) 1 - (\/B) = A,(1/2Z?), 

which exists in view of continuity of the function A] (Theorem 3). Now, if 
1 < k < B then k(\ - A,(1/2*)) < 1 so that (5) allows us to infer that A2(l/2) > 0. 
This assertion means that the coefficient of noncompact convexity for the norm || ||2 is 
smaller than 1/2 and in view of Theorem 2 the space (E, || ||2) has normal structure. 
Thus we have 

THEOREM 5. Let E be a Banach space with e\ < 1/2 and let B > 1 satisfy (6). If F 
is another Banach space having the Banach-Mazur distance from E smaller than B then 
its coefficient of noncompact convexity is also smaller than 1 /2. 

Let us remark that similar result for the coefficient of convexity was obtained in [5]. 
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