A PROPERTY OF ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

Q.I. Rahman

(received May 9, 1966)

We prove the following

THEOREM 1. Let $f_1(z)$, $f_2(z)$ be entire functions of exponential type τ_1 , τ_2 respectively. Suppose that for certain constants K_1 , K_2 ,

$$f_1(x) = O(|x|^{K_1}), \quad f_2(x) = O(|x|^{K_2})$$

on the real line. Then for every $\tau > \tau_1 + \tau_2$,

(1) l.u.b.
$$|c_1 e^{-i\tau x} + c_2 e^{i\tau x} - f_1(x)/f_2(x)| \ge (|c_1|^2 + |c_2|^2)^{\frac{1}{2}}$$
,

where c_1 , c_2 are arbitrary constants. It is understood that $c_1(z)$, $c_2(z)$ are not both identically zero.

<u>Proof.</u> If the function $f_2(z)$ is identically zero the result is obvious. So we assume that $f_2(z) \not\equiv 0$. Let us first choose an integer K and then a real number δ such that the entire functions

$$\mathbf{F_4(z)} = \mathbf{f_4(z)(\delta z)}^{-\mathrm{K}} \left(\sin\delta z\right)^{\mathrm{K}}, \; \mathbf{F_2(z)} = \mathbf{f_2(z)(\delta z)}^{-\mathrm{K}} \left(\sin\delta z\right)^{\mathrm{K}},$$

which are clearly of exponential type $T_1 = \tau_1 + \delta K$, $T_2 = \tau_2 + \delta K$

Canad. Math. Bull. vol. 9, no. 4, 1966

respectively, belong to L^2 on the real line, and $T_1 + T_2 < \tau$. By the Paley-Wiener theorem [1,p.103] we have

$$F_1(z) = \int_{-T_1}^{T_1} e^{izt} \phi_1(t)dt, \quad F_2(z) = \int_{-T_2}^{T_2} e^{izt} \phi_2(t)dt,$$

where

$$\phi_1(t) \in L^2(-T_1, T_1), \quad \phi_2(t) \in L^2(-T_2, T_2).$$

If the theorem is false, then

$$|c_1 e^{-i\tau x} + c_2 e^{i\tau x} - f_1(x)/f_2(x)| < (|c_1|^2 + |c_2|^2)^{1/2}$$

for $-\infty < x < \infty$. Since the left hand side of this inequality is the same as $|c_1|e^{-i\tau x} + c_2|e^{i\tau x} - F_1(x)/F_2(x)|$ we get

$$|c_1^{-i\tau x} + c_2^{-i\tau x} + c_2^{-i\tau x} - F_1(x)/F_2(x)| < (|c_1^{-1}|^2 + |c_2^{-1}|^2)^{1/2}$$

for all real x. Thus

(2)
$$|(c_1 e^{-i\tau x} + c_2 e^{i\tau x}) F_2(x) - F_1(x)| < (|c_1|^2 + |c_2|^2)^{\frac{1}{2}} |F_2(x)|,$$

except for those values of x for which $F_2(x)$ vanishes. However, this exceptional set is countable.

It is clear that

$$(c_1 e^{-i\tau z} + c_2 e^{i\tau z}) F_2(z) - F_1(z) = \int_{-(\tau + T_2)}^{\tau + T_2} e^{izt} \phi(t)dt,$$

where $\phi(t)$ coincides with $c_1 \phi_2(t+\tau)$, $-\phi_1(t)$, $c_2 \phi_2(t-\tau)$ in the intervals $-(\tau+T_2) \leq t < -(\tau-T_2)$, $-T_1 \leq t \leq T_1$, $(\tau-T_2) < t \leq (\tau+T_2)$ respectively, and is zero everywhere else

in the range of integration. From (2) it follows that

$$\int_{-(\tau+T_{2})}^{\tau+T_{2}} |\phi(t)|^{2} dt < (|c_{1}|^{2} + |c_{2}|^{2}) \int_{-T_{2}}^{T_{2}} |\phi_{2}(t)|^{2} dt,$$

or

$$\left|c_{1}^{2}\right|^{2}\int_{-(\tau+T_{2})}^{-(\tau-T_{2})}\left|\phi_{2}(t+\tau)\right|^{2}dt + \int_{-T_{1}}^{T_{1}}\left|\phi_{1}(t)^{2}dt + \left|c_{2}^{2}\right|^{2}$$

$$\int_{\tau-T_{2}}^{\tau+T_{2}} \left|\phi_{2}(t-\tau)\right|^{2} dt < (\left|c_{1}\right|^{2} + \left|c_{2}\right|^{2}) \int_{-T_{2}}^{T_{2}} \left|\phi_{2}(t)\right|^{2} dt.$$

But this is the same as

$$\int_{-T_{1}}^{T_{1}} |\phi_{1}(t)|^{2} dt < 0.$$

Hence our assumption that the theorem is false leads to a contradiction. This proves the theorem.

Remark. If the function $f_2(z)$ of the theorem is such that $h_{f_2}(\pi/2) = b$ where $h_{f_2}(\theta)$ is its indicator function [1, p. 66], then

$$F_2(z) = \int_{-b-\delta K}^{T_2} e^{izt} \phi_2(t) dt,$$

and from the above proof it is clear that for every $\tau > \tau_{_{_{\scriptstyle 1}}} + b$,

(3) l.u.b.
$$|ce^{i\tau x} - f_1(x)/f_2(x)| \ge |c|$$
.
 $-\infty < x < \infty$

It is easy to see that for $\tau > \tau_1$ + b this inequality is true also if

$$f_1(x) = \int_{-\infty}^{\tau_1} e^{ixt} \phi_1(t) dt, \qquad \phi_1 \in L^2(-\infty, \tau_1)$$

and

$$f_2(x) = \int_{-b}^{\infty} e^{ixt} \phi_2(t) dt, \quad \phi_2 \in L^2(-b, \infty),$$

i.e. $f_1(x)$ is the Fourier transform of a function $\phi_1(t)$ belonging to $L^2(-\infty,\infty)$ and vanishing a.e. in (τ_1,∞) , whereas $f_2(x)$ is the Fourier transform of a function $\phi_2(t)$ which belongs to $L^2(-\infty,\infty)$ and vanishes a.e. in $(-\infty,-b)$. In analogy with this we prove the following

THEOREM 2. If the function $f_1(z)$ is analytic everywhere in $|z| \ge 1$ except at the point at infinity, where it has a pole of order m, and $f_2(z)$ is analytic in $|z| \le 1$, then, for every n > m,

(4)
$$\max_{|z|=1} |cz^{n} - f_{1}(z)/f_{2}(z)| \ge |c|.$$

<u>Proof.</u> We may assume that $f_1(z)$ and $f_2(z)$ do not have any common zeros on |z| = 1. Now, if $f_2(z)$ has a zero on the unit circle the result is obvious. So let us suppose that $f_2(z) \neq 0$ for |z| = 1. If the result is false, then

$$|cz^{n} f_{2}(z) - f_{1}(z)| < |c| |f_{1}(z)|$$

for |z| = 1. Let $f_2(z)$ have the power series expansion $\sum_{j=0}^{\infty} b_j z^j$ valid on and inside the unit circle. If $f_1(z^{-1}) = 0$

$$\sum_{j=-m}^{\infty} a_j z^j$$
 for $0 < |z| \le 1$, then

$$\left| ce^{in\theta} \sum_{j=0}^{\infty} b_j e^{ij\theta} - \sum_{j=-m}^{\infty} a_j e^{-ij\theta} \right| < \left| c \right| \left| \sum_{j=0}^{\infty} b_j e^{ij\theta} \right|$$

for $0 \le \theta < 2\pi$. On squaring the two sides and integrating with respect to θ from 0 to 2π we get

$$|c|^2 \sum_{j=0}^{\infty} |b_j|^2 + \sum_{j=-m}^{\infty} |a_j|^2 < |c|^2 \sum_{j=0}^{\infty} |b_j|^2$$
.

This gives a contradiction and the result is proved.

The following result is of the same general nature and, in fact, generalizes Theorem 2.

THEOREM 3. If $f_1(z)$ is represented in Im $z \le 0$ by the absolutely convergent Dirichlet series

$$\sum_{n=1}^{\infty} a_n e^{-iz\alpha_n}, \quad -\infty < \alpha_1 < \alpha_2 < \dots < \alpha_n < \alpha_{n+1} < \dots, \lim_{n \to \infty} \alpha_n = \infty,$$

and if $f_2(z)$ is a function defined in Im $z \ge 0$ by the absolutely convergent Dirichlet series

$$\sum_{n=1}^{\infty} b_n e^{iz\beta_n}, \quad 0 < \beta_1 < \beta_2 < \dots < \beta_n < \beta_{n+1} < \dots, \lim_{n \to \infty} \beta_n = \infty,$$

then, for $\tau > -\alpha_1 - \beta_1$,

1.u.b.
$$|ce^{i\tau x} - f_1(x)/f_2(x)| \ge |c|$$
.
- $\infty x < \infty$

There is equality only if $f_1(z) \equiv 0$.

<u>Proof.</u> Let $f_1(z) \not\equiv 0$. If the theorem is false then $\left| ce^{i\tau x} f_2(x) - f_1(x) \right| \le \left| c \right| \left| f_2(x) \right|$

a.e. on the real line. Hence

$$\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} \left| ce^{i\tau x} f_2(x) - f_1(x) \right|^2 dx \le \left| c \right|^2 \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} \left| f_2(x) \right|^2 dx,$$

i.e.

$$|c|^2 \sum_{n=1}^{\infty} |b_n|^2 + \sum_{n=1}^{\infty} |a_n|^2 \le |c|^2 \sum_{n=1}^{\infty} |b_n|^2$$
,

- a contradiction.

A COROLLARY OF THEOREM 1. A function of the form

$$\frac{a_{0} x^{n} + a_{1} x^{n-1} + \dots + a_{n}}{b_{0} x^{n} + b_{1} x^{n-1} + \dots + b_{n}}$$

where the denominator does not vanish identically is called a rational function of x of degree n. Noting that, if p(z) is a polynomial of degree n then $p(\cos z)$ is an entire function of exponential type n, we conclude the following result from Theorem 1 with $c_1 = c_2 = 1/2$.

COROLLARY. If the degree m of the Tchebycheff polynomial cos (m cos $^{-1}$ x) is at least 2n + 1, then, on the interval [-1,1], it cannot be uniformly approximated more closely than $\frac{1}{\sqrt{2}}$, by rational functions of degree n.

REFERENCE

1. R.P. Boas, Jr., Entire Functions. Academic Press, New York, (1954).

Université de Montréal