A PROPERTY OF ENTIRE FUNCTIONS OF
EXPONENTIAL TYPE
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We prove the following

THEOREM 1. Let fi(z), fz(z) be entire functions of

exponential type 1‘1, 1'2 respectively. Suppose that for certain

tants K , K_,
constants 1 2

K1 KZ
£,00)=0(x] 7),  f,(x)=0(]x] )
on the real line. Then for every r > Ti + 1'2 s
1
(1) Luwb. Je e ™ s ™t e ()] > (e, %+ el [5)7,
2 1 2 - i 2

- oK x< 00

are arbitrary constants., It is understood that

h ;
where ¢, c,

f1(z), fz(z) are not both identically zero.

Proof, If the function fZ(Z) is identically zero the re-
sult is obvious. So we assume that fz(z) # 0. Let us first

choose an integer K and then a real number § such that the
entire functions

Fi(z) = fi(z)(é z)-K(sin SZ)K, FZ(Z) = fz(z)(S z) K(s'in 62)K ,

which are clearly of exponential type ’I‘1 =T, + 6K, T2 =7, +6K
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respectively, belong to LZ on the real line, and ’I‘1 + TZ <T.

By the Paley- Wiener theorem [1,p.103] we have

T T

1 . .

1zt 1zt
Fi(z):f_T e 4,(0dt, F,(z)= f_T e ¢Z(t)dt,

1 2

where
2 2
¢, (e LY(-T,, T,), ¢,(t)e L°(-T,, T).

If the theorem is false, then

2
)1/2

-itx i
c e + c

e |12
1 2

Tx-fi(x)/fz(x)l<({c1 + lczl

for -w<x<ow . Since the left hand side of this inequality is the

same as lci e-i’rX e, eiTX - Fi(x)/FZ(X)l we get
ey e e, TR /E, | < (e 1%+ e, 12)1/2
for all real x. Thus
1
@ e, e re, N FL 0 - F Gl < (e, P+ e, 1D F, 1,

except for those values of x for which Fz(x) vanishes. However,

this exceptional set is countable.

It is clear that

T+T

-iTz 2

((:1 e + c2 eiTz) Fz(z) - Fi(z) = f eiZt $(t)dt,
-('T+T2)

where ¢(t) coincides with < ¢2(t + 7), -4)1(1:), <, ctz(t - 1) in

the intervals -(7 + TZ)S t< =(r - T_), - ’1‘1 <t< T

2 1’
(r - TZ) <t< (v + TZ) respectively, and is zero everywhere else
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in the range of integration. From (2) it follows that

T+T T

2 2 2
S +TZ 40 [% at< (fe, [° + |e, | )fTZ 14,(0] at,
-(r+T,) “h2
or

-(r-T,) T

T R TN e T TR L TR TR I
-(1'+T2) -T

T+T T

J 2 |¢2(t-~r)[2 at < (|<:1l‘2 + lczlz) / 2 |¢2(t)]2 dt .

T-TZ -TZ

But this is the same as

T

J 1 |¢1(t)l2 dt< 0.

-T
1

Hence our assumption that the theorem is false leads to a con-
tradiction. This proves the theorem.

Remark. If the function fz(z) of the theorem is such

that hf (r/2) = b where hf (8) is its indicator function [1,p.66],

2 2
then
TZ izt
F(z) = [ e 4, () dt,
2 2
-b-8K
and from the above proof it is clear that for every r> Ty +b,
(3) l.u.b. ]cewX - fi(x)/fz(x)[ > Icl .
-0 X< 00

It is easy to see that for 7> Ty + b this inequality is true

also if
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T

f (x) = f 1 eiXt ¢1(t) dt, ¢16L2(-oo, 1'1)

1 -0
and
® ixt 2
fz(x) = [b e d&z(t) dt, ¢2 e L7 (-b, «),

i.e. fi(x) is the Fourier transform of a function ¢1(t) be-
longing to LZ(—oo, ) and vanishing a.e. in (Ti,OO), whereas
fZ(X) is the Fourier transform of a function ¢2(t) which belongs

to LZ(-oo, ©) and vanishes a.e. in (-, -b). In analogy with this
we prove the following

THEOREM 2. If the function fi(z) is analytic every-

where in Iz] > 1 except at the point at infinity, where it has a
pole of order m, and fz(z) is analytic in [z[ <1, then, for

every n > m,

(4) max [czn - fi(z)/fz(z)l > [cl
[z|=1

Proof. We may assume that fi(z) and fZ(Z) do not have
any common zeros on |z| = 1. Now, if fz(z) has a zero on the
unit circle the result is obvious. So let us suppose that fz(z) $0

for |z| =1. If the resultis false, then

[cz” £(z) - £,(2)] < |e] |£,(2) |

for |z| =1. Let fz(z) have the power series expansion

© .
= bj 2z’ valid on and inside the unit circle. If fi(z—i) =

j=o
w .
Z a2z for 0< |z| <1, then
js-m !
. © .- 0 ‘s © s
I S A PY P I I Ly
j::o J j:-m J j:o
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for 0< 6< 27 . On squaring the two sides and integrating with
respect to 6 from 0 to 2m we get

® 2 2
+ Z fa.] < (c]
j=o j=-m J J

|° 2.

™ 8

b,
5

This gives a contradiction and the result is proved.

The following result is of the same general nature and, in
fact, generalizes Theorem 2.

THEOREM 3. If f1(z) is represented in Im z< 0 by

the absolutely convergent Dirichlet series

w .
-iza .
Z a_e N -w<g <a,<...<a <a <...,limag =,
n 1 2 n n+1 n
n=1 n-»oo

and if fz(z) is a function defined in Im z > 0 by the absolutely

convergent Dirichlet series

o0
izp .
b n < < < ... < < < ..., B =0,
=z n °© » 0 ﬁ)1 BZ Bn Bn-i—i Hm Bn *
n=1 n—>oo

- P

then, for > - «

1 1’

l.u.b. ]ceiTx - fi(x)/fz(x)l > ,cl .
- 00K %<0

There is equality only if f1(z) =0.
Proof. Let f1(z) £ 0. If the theorem is false then

iTx

[ce fz(x)-f1(x)l§ [c| lfz(x)l

a.e. on the real line. Hence

1 T itx 2 2 1 T 2

lim 3T f lce fz(x) - fi(x)l dx < Ic} lim ST lfz(x)l dx,
T—>0 -T T 0 -
i.e.

0 ) )

2
lel®z b 1+ = aP<lel® = |b_|?,
n n n

n=1 n=1 n=1

- a contradiction.
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A COROLLARY OF THEOREM 1. A function of the form

b xn+b Xn_i-%... +b
¢} 1

where the denominator does not vanish identically is called a
rational function of x of degree n. Noting that, if p(z) is a
polynomial of degree n then p(cos z) is an entire function of
exponential type n, we conclude the following result from
Theorem 1 with ¢, =¢, = 1/2 .

COROLLARY. If the degree m of the Tchebycheff

-1
polynomial cos (m cos = x) is at least 2n + 1, then, on the
interval [-1, 1], it cannot be uniformly approximated more

1
closely than —=, by rational functions of degree n.

/2
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