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Point-vortex dynamics in three-dimensional
ageostrophic balanced flows
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Geophysical turbulent flows, characterized by rapid rotation, quantified by small Rossby
number, and stable stratification, often self-organize into a collection of coherent vortices,
referred to as a vortex gas. The lowest-order asymptotic expansion in Rossby number
is quasigeostrophy, which has purely horizontal velocities and cyclone–anticyclone
antisymmetry. Ageostrophic effects are important components of many geophysical
flows and, as such, these phenomena are not well modelled by quasigeostrophy. The
next-order correction in Rossby number, which includes ageostrophic effects, is the
so-called balanced dynamics. Balanced dynamics includes ageostrophic vertical velocity
and breaks the geostrophic cyclone–anticyclone antisymmetry. Point-vortex solutions
are well known in two-dimensional and quasigeostrophic dynamics and are useful for
studying the vortex-gas regime of geophysical turbulence. Here, we find point-vortex
solutions in fully three-dimensional continuously stratified QG+1 dynamics, a particular
formulation of balanced dynamics. Simulations of QG+1 point vortices show several
interesting features not captured by quasigeostrophic point vortices including significant
vertical transport on long time scales. The ageostrophic component of QG+1 point vortex
point-vortex dynamics renders them useful in modelling flows where quasigeostrophy
filters out important physical processes.

Key words: quasi-geostrophic flows, vortex dynamics, geostrophic turbulence

1. Introduction

Planetary fluids on large scales, often dominated by rapid rotation and stable stratification,
ubiquitously self-organize into coherent vortices. In appropriately scaled vertical
coordinates the vortices take the form of roughly spherical patches of potential vorticity
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(McWilliams 1984; McWilliams & Weiss 1994; McWilliams, Weiss & Yavneh 1994;
Dritschel, de la Torre Juárez & Ambaum 1999; Carton 2001; Viúdez 2016). A population
of physically well-separated coherent vortices, a ‘vortex gas’, can be approximated using a
hierarchy of idealized models (Kida 1981; Melander, Zabusky & Styczek 1986; Meacham
1992; Meacham, Morrison & Flierl 1998; Miyazaki, Furuichi & Takahashi 2001; Dritschel,
Reinaud & McKiver 2004). The simplest member of the hierarchy is the point-vortex
model (Helmholtz 1867; Kirchhoff 1876; Aref 2007) in which the vorticity is considered
to be concentrated at a collection of isolated points in space. Point-vortex models are
useful idealizations for geophysical and astrophysical turbulence and are used to model
atmospheres and oceans on the Earth, planets and exoplanets and astrophysical disks (Aref
& Stremler 2001; Carton 2001; Lucarini et al. 2014; Hirt et al. 2018; Abrahamyan 2020).

The rotation in planetary fluids is characterized by a non-dimensional Rossby number,
Ro = U/fL, the ratio of the planetary rotation time scale 1/f to the advective time
scale L/U, where U is the advective velocity scale, L is a characteristic length scale,
f = 2Ω sin(θlat) is the Coriolis parameter, Ω is the planetary rotation rate and θlat is
the latitude. A flow whose advective time scale is much longer than its rotation time
scale has Ro� 1. Large scale midlatitude flows in the Earth’s atmosphere typically have
Ro ∼ 0.1, flows in the Earth’s oceans typically have Ro ∼ 0.01, while flows on planets and
exoplanets often have similarly small Rossby numbers (Showman, Cho & Menou 2010).
The small Rossby number renders geostrophic balance the dominant physics: Coriolis
forces approximately balance horizontal pressure gradient forces. The leading-order
asymptotic theory for rapidly rotating stratified flows is quasigeostrophy (QG), which
results from an asymptotic expansion of the primitive equations for small Rossby number.
QG can be derived for flows with many different vertical density structures. Most well
known is QG with a stably stratified background density, either in layers, or with a
continuous stratification. Two notable features of stably stratified QG are that there is
no vertical geostrophic velocity and there is an antisymmetry between cyclones and
anticyclones.

Balance models go beyond QG and include ageostrophic (AG) dynamics as an O(Ro)
correction to QG, retaining the dominant QG balance as the lowest-order dynamics. There
is a large literature on balance models and many different balance models have been
developed, (e.g. McWilliams & Gent 1980; Allen 1993; Holm 1996; Muraki, Snyder &
Rotunno 1999, and references therein). These models have O(Ro2) differences and thus
are, formally, equivalently correct through O(Ro). Different approaches to balance models
choose different quantities as a distinguished variable. For example, Allen (1993) chooses
pressure. Here, we investigate the balance model of Muraki et al. (1999) (MSR1999),
QG+1 , which chooses potential vorticity q as its distinguished variable. This makes it a
natural choice for formulating balanced point vortices. Balance models differ qualitatively
from QG in that the AG dynamics includes a non-zero O(Ro) vertical velocity and breaks
the cyclone–anticyclone antisymmetry. Despite being small, both of these effects are
important for many aspects of planetary fluid dynamics. There have been a number of
studies of finite-sized coherent vortices in balance models as well as in primitive equation
models with varying Rossby number (e.g. Tsang & Dritschel 2015; McKiver & Dritschel
2016; Mahdinia et al. 2017; Reinaud & Dritschel 2018; McKiver 2020; Sokolovskiy, Carton
& Filyushkin 2020, and references therein).

Point-vortex models have a long history in two-dimensional (2-D) fluid dynamics (see
Aref (2007) for a review). They are also well developed in layered and continuously
stratified QG dynamics (Gryanik 1983, 1991; Gryanik et al. 2000; Gryanik, Sokolovskiy
& Verron 2006; Reznik & Kizner 2007). Due to the constraints of QG dynamics, QG
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Ageostrophic balanced point vortices

point-vortex models are limited to modelling physical situations where the vertical velocity
and cyclone–anticyclone antisymmetry are unimportant.

Here, we find point-vortex solutions to the nonlinear balance model of MSR1999,
QG+1 . The solutions have many similarities to 2-D and QG point vortices, but go
beyond them by inheriting from balance models O(Ro) vertical velocities and broken
cyclone–anticyclone antisymmetry. In § 2, we review the aspects of QG+1 theory relevant
for the development of QG+1 point vortex dynamics. In § 3 we explore vortex-gas
solutions of QG+1 . Section 4.1 finds the equations of motion for QG+1 point vortices
advected by the far field of the other vortices, § 4.2 shows that the self-advection is zero in
the point-vortex limit and § 4.3 summarizes the QG+1 point vortex point-vortex equations
of motion. Section 5 describes some of the properties of QG+1 point vortex point-vortex
dynamics obtained by analysing the equations of motion. Section 6 briefly describes a few
numerical simulations of the QG+1 point-vortex equations, highlighting some of the new
features of QG+1 point vortices.

2. QG+1 theory

Following MSR1999, we begin with an inviscid, adiabatic, 3-D Boussinesq hydrostatic
fluid on an f -plane (i.e. constant Coriolis parameter f ) described by the primitive
equations,

∇ · u = 0, (2.1)

Duh

Dt
+ f ẑ × uh = −∇hφ

T , (2.2)

DθT

Dt
= 0, (2.3)

∂zφ
T = gθT/θ0, (2.4)

D
Dt
= ∂t + u · ∇, (2.5)

where u = ux̂+ vŷ+ wẑ is the 3-D fluid velocity, uh = ux̂+ vŷ is the horizontal velocity,
∇ and ∇h are the 3-D and horizontal gradient operators, respectively, θT is the total
potential temperature and θ0 is a reference potential temperature. We follow MSR1999
and refer to φT and z as the total pressure and vertical height, although strictly speaking
they are more properly a modified pressure and the geopotential height (Hoskins &
Bretherton 1972). Equations (2.1)–(2.5) represent, in order, incompressibility, conservation
of horizontal momentum, conservation of energy, hydrostatic balance and the definition
of the 3-D material derivative.

We restrict ourselves to flows with a constant Brunt–Väisälä frequency N. The pressure
and potential temperature are separated into horizontally uniform reference fields φref and
θ ref , and departures from the reference fields

φref = 1
2 N2z2, (2.6)

gθ ref /θ0 = N2z, (2.7)

φT = φ + φref , (2.8)
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θT = θ + θ ref . (2.9)

The dynamics is non-dimensionalized as in MSR1999 in terms of a vertical distance H, a
horizontal distance L and a velocity U. Two non-dimensional parameters arise: the Burger
number which is taken to be unity, B = (NH/fL)2 = 1, and the Rossby number which is
assumed to be small, Ro = U/fL� 1. These scalings give the non-dimensional primitive
equations. Three scalar fields have explicit advective dynamics: the two components of
the horizontal velocity vector and the potential temperature. The remaining variables, the
pressure and vertical velocity, are determined diagnostically from incompressibility and
hydrostatic balance, respectively. MSR1999 write the dynamics in terms of a 3-D vector
potential A, with u = ∇ × A and θ = −∇ · A. The curl relation for the velocity guarantees
that the fluid is incompressible in three dimensions.

The relevant potential vorticity is the Ertel potential vorticity, Q = (ẑ + Ro∇ × uh) ·
∇θT . The dynamically active disturbance potential vorticity q is the departure from
a uniform potential vorticity which, in this scaling, is unity, Q = 1+ Ro q. Following
MSR1999, we refer to this disturbance Ertel potential vorticity q as just the potential
vorticity (PV).

Technically, QG appears at O(Ro) in the full asymptotic expansion. As seen, for
example, in the relation between Q and q above, the O(1) term is uninteresting and is
typically removed, following which the QG quantities are scaled by Ro and are rendered
O(Ro0). At next order, AG effects enter. QG and AG fields will be denoted, respectively,
by the subscripts ‘0’ and ‘1.’ The asymptotic expansions then take the form, using the
vector potential as an example, of

A = A0 + Ro A1 + O(Ro2). (2.10)

The familiar QG relations between horizontal velocity, PV and streamfunction

u =
⎛
⎝−∂yψ0
∂xψ0

0

⎞
⎠ , q0 = ∇2ψ0, (2.11a,b)

are rewritten in terms of the vector potential which is the solution to a Poisson equation
∇2A0 = S0 where S0 is the QG source,

A0 =
⎛
⎝ 0

0
−ψ0

⎞
⎠ , S0 =

⎛
⎝ 0

0
−q0

⎞
⎠ . (2.12a,b)

This structure carries over to higher order un = ∇ × An, ∇2An = Sn, where, unlike the
QG terms, the higher order An Sn are generally non-zero in all three vector components.

The QG+1 model is a specific instance of an iterated balance model (Allen 1993). The
iteration procedure is based on treating one distinguished physical variable as exact and
iteratively computing corrections to other variables at each instant of time. For example,
Allen (1993) chose pressure as the distinguished variable. QG+1 chooses PV which makes
it natural to seek balanced point-vortex solutions in QG+1 . Other balance models may also
have point-vortex solutions but we defer that question to future work.

From a vorticity perspective, QG flow is completely described by the QG PV, q0(x, t).
The QG streamfunction is obtained by solving a Poisson equation with q0 as the source,
which then determines the velocity and potential temperature. Conservation of QG PV
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under QG flow is given by

D0q0

Dt
= ∂tq0 + (u0 · ∇)q0 = 0, (2.13)

where D0/Dt indicates the material derivative of fluid parcels advected with the QG
velocity.

QG+1 dynamics is governed by PV conservation, where the full PV q is advected by the
approximate velocity

Dq
Dt
= ∂q
∂t
+ ((u0 + Ro u1 + O(Ro2)) · ∇)q = 0. (2.14)

The PV can be partitioned into QG and AG contributions, q = q0 + Ro q1 + O(Ro2),
however, as discussed in MSR1999, this partition has some subtleties. For our purposes,
we will show that for point vortices, q1 = 0 is consistent with QG+1 and proceed assuming
q = q0.

MSR1999 showed that the AG source S1 is an operator acting on the QG streamfunction
ψ0 plus the vector (0, 0,−q1). With our assumption that q1 = 0, the AG source becomes

S1 =
⎛
⎝ −2J(∂zψ0, ∂yψ0)

2J(∂zψ0, ∂xψ0)

(∇2ψ0)∂zzψ0 − |∇(∂zψ0)|2

⎞
⎠ , (2.15)

where J is the usual horizontal Jacobian operator, J( f , g) = (∂xf )(∂yg)− (∂yf )(∂xg).
Depending on the context, it is convenient to consider S1 as either a function of position
S1(x) obtained from considering ψ0(x) as an explicit function of position, or as a
differential operator acting on a function ψ0. Since ψ0 appears quadratically in S1, we
can, in the operator view, consider S1 to an operator acting on two potentially independent
scalar functions f and g,

S1 =
⎛
⎝ −2J(∂zf , ∂yg)

2J(∂zf , ∂xg)
(∇2f )∂zzg− (∇∂zf ) · (∇∂zg)

⎞
⎠ . (2.16)

In this perspective, S1 is a bilinear non-symmetric vector differential operator with the
properties

S1(c1f1 + c2f2, g) = c1S1( f1, g)+ c2S1( f2, g), (2.17)

S1( f , c1g1 + c2g2) = c1S1( f , g1)+ c2S1( f , g2), (2.18)

S1( f , g) /=S1(g, f ), (2.19)

where f and g are scalar functions of x and c1 and c2 are constants. The bilinearity of S1

plays a large role in the subsequent development of QG+1 vortex gas vortex-gas dynamics
where ψ0 is decomposed into a sum of contributions from individual vortices. Note that
since the AG vector potential, through the AG source, depends quadratically on the QG
streamfunction, it manifestly breaks the cyclone–anticyclone (anti)symmetry of QG,

A0 −−−−−→
q0→−q0

−A0, (2.20)

A1 −−−−−→
q0→−q0

+A1, (2.21)

and so A = A0 + Ro A1 is non-symmetric under sign changes of the PV.
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MSR1999 consider a fluid with doubly periodic horizontal boundaries and solid vertical
boundaries. It is usual to consider point-vortex dynamics in an infinite domain with
boundary conditions requiring physical fields to decay to zero as one goes to infinity. Then,
point-vortex dynamics in closed and periodic domains are obtained through the method of
images. Here, we follow the point vortex viewpoint and consider QG+1 in a 3-D infinite
domain and require that the velocity and potential temperature go to zero at infinity.

The QG+1 equations are completed by solvability constraints, which, in the infinite
domain considered here, are

∫∫∫
q0 d3x = lim

z→∞

∫∫
θ0|+z
−z dx dy, (2.22)

∫∫∫
q1

3x = lim
z→∞

∫∫
[θ1 + ∂zψ0(∂xxψ0 + ∂yyψ0)]|+z

−z dx dy, (2.23)

where (2.22) guarantees the invertibility of the QG PV–streamfunction relation, and (2.23)
guarantees the invertibility of the z-component of (2.15).

3. The vortex-gas approximation

We begin by assuming the fluid takes the form of a so-called ‘vortex gas’, where the
PV consists of a collection of N physically separated coherent vortices. Each vortex has
a location, xi(t), and a circulation Γi. We assume each coherent vortex has the same
finite-sized axisymmetric shape in PV, q̂. The only time dependence in the flow is in the
location of the vortices. The number of vortices, their shape and their circulations are
assumed to be constant. The PV field is then

q(x) =
N∑

i=1

Γiq̂(x− xi(t)), (3.1)

where q̂ is normalized to have unit circulation,
∫

q̂ d3x = 1. Potential vorticity
conservation, (2.14), then requires the vortex locations move with the local velocity,

dxi(t)
dt
= u(xi) = u0(xi)+ Ro u1(xi)+ O(Ro2), (3.2)

where we have used

∂ q̂(x− xi(t))
∂t

= −∇q̂(x)|x=x−xi · dxi(t)
dt

. (3.3)

Thus, while conservation of the full q in QG+1 gives AG corrections to the motion of the
vortices, the vortex itself is advected coherently.

The logic of QG+1 , reflecting the iterated nature of balance models generally, is that
one begins with the QG PV q0, uses the QG relations to obtain the QG streamfunction
ψ0, and then uses ψ0 to obtain the AG fields. Following this logic for a vortex gas, the
fields decompose into sums over shape fields, denoted by hats, which are identical for all
vortices. Denoting the asymptotic order by the subscript n = 0 for QG and n = 1 for AG,
and letting F represent any of the fields S, A, u and θ , vortex-gas fields take the form

F0(x, t) =
N∑

i=1

ΓiF̂0(x− xi), (3.4)
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F1(x, t) =
N∑

i,j=1

ΓiΓjF̂1(x− xi, x− xj). (3.5)

The QG shape fields F̂0 are single-vortex fields and depend on the location of a single
vortex, while the AG shape fields F̂1 are pair-vortex fields and depend on the locations
of a pair of vortices. The pair-vortex form of the AG fields is a consequence of both
the vortex-gas approximation and the bilinear nature of the AG source operator. This
vortex-pair interaction is fundamentally different from the vortex-pair dynamics of 2-D
and QG point vortices. In 2-D and QG dynamics, all fields are single-vortex fields and the
interaction is solely through the sum of the advection induced by each vortex separately. In
QG+1 , vortex pairs interact in creating the AG source, S1, for the AG vector potential, A1
and the advecting velocity is the sum of velocities induced by vortex pairs. At next order
in Ro, three-vortex and four-vortex contributions would enter.

The AG fields can be rewritten in terms of single-vortex nonlinear contributions F̂s
1, and

symmetrized pair-vortex nonlinear contributions F̂p
1

F̂s
1(x− xi) = F̂1(x− xi, x− xi), (3.6)

F̂p
1(x− xi, x− xj) = F̂1(x− xi, x− xj)+ F̂1(x− xj, x− xi), (3.7)

resulting in

F1(x, t) =
N∑

i=1

Γ 2
i F̂s

1(x− xi)+
N∑

i=1
j=i+1

ΓiΓjF̂
p
1(x− xi, x− xj). (3.8)

In all sums we use the convention that terms in a sum that contradict the bounds, such as
the term in the second sum above with i = N and j = i+ 1 = N + 1, are zero.

Following the logic of a QG+1 vortex gas, all the shape fields are determined by
the potential vorticity shape field q̂ through solving Poisson equations and applying
differential operators

Ŝ0(x) =
⎛
⎝ 0

0
−∇2ψ̂0(x)

⎞
⎠ =

⎛
⎝ 0

0
−q̂(x)

⎞
⎠ , (3.9)

Ŝs
1(x− xi) = S1(ψ̂0(x− xi), ψ̂0(x− xi)), (3.10)

Ŝp
1(x− xi, x− xj) = S1(ψ̂0(x− xi), ψ̂0(x− xj))+ i←→ j, (3.11)

∇2Â{s,p}n = Ŝ{s,p}n , (3.12)

û{s,p}n = ∇ × Â{s,p}n , (3.13)

where the operator S1 is given by (2.15).
Vortex-gas advection, (3.2), becomes

dxi(t)
dt
=

N∑
j=1

Γjû0(xi − xj)
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+ Ro

⎛
⎜⎜⎝

N∑
j=1

Γ 2
j ûs

1(xi − xj)+
N∑

j=1
k=j+1

ΓjΓkûp
1(xi − xj, xi − xk)

⎞
⎟⎟⎠ . (3.14)

The advecting velocities fall into two categories: far-field advection, where the single
vortex j and the pair of vortices j, k are different than the advected vortex i, and
self-advection, where either i = j or i = k. It is well known that 2-D and QG vortices
do not self-advect on the f -plane considered here, û0(0) = 0 (vortices on the β-plane do,
however, self-advect). Below, we will show that in addition there is no AG self-advection,
ûs

1(0) = ûp
1(0, x) = ûp

1(x, 0) = 0.

4. QG+1 point vortex point-vortex dynamics

4.1. Far-field advection
The far-field vector potentials can be determined by taking the vortex size to zero before
performing the calculations, q̂ = δ(x). We assume for now that q1 = 0, i.e. the QG point
vortex carries all the PV. We will show below that this choice is consistent with the
solvability constraint equation (2.23). To solve for single-vortex fields we can assume the
vortex is at the origin.

As the QG vortex shape is a δ-function, the streamfunction shape, solving∇2ψ̂0 = δ(x),
is the Green’s function, ψ̂0 = G(x) = −1/4π|x|, and the QG vector potential shape is
Â0 = (0, 0,−ψ̂0). The single-vortex AG Poisson source Ŝs

1 from a vortex at the origin can
be directly calculated, leading to

Ŝs
1 =

1
8π2|x|8

⎛
⎝ 3xz

3yz
−(x2 + y2 + 4z2)/2

⎞
⎠ . (4.1)

We solve the Poisson problem by first seeking a solution that matches the denominator of
the source. We note that ∇2|x|−m ∼ |x|−m−2. Since the denominator of Ŝs

1 is proportional
to |x|8, we expect the denominator of Âs

1 to be proportional to |x|6. Dimensionally, Ŝs
1 ∼

1/L6, so Âs
1 ∼ 1/L4. This means the numerator of Âs

1 must be quadratic in (x, y, z). We
thus set the numerator of each component of Âs

1 to a general quadratic ax2 + by2 + cz2 +
dxy+ exz+ fyz, and take the Laplacian of this general Â2

s . Requiring that Âs
1 solves the

Poisson equation determines the values of the constants in the quadratic. The result is

Âs
1(x) =

z
16π2|x|6

⎛
⎝ x

y
−z/2

⎞
⎠ . (4.2)

The next step is to solve the Poisson equation for the far-field pair-vortex potential. We
notice that the components of the far-field single-vortex potential (4.2) can each be written
as the product of two functions

Âs
1 =

⎛
⎝hx(x)hz(x)

hy(x)hz(x)
−hz(x)2/2

⎞
⎠ , (4.3)
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where h = x/4π|x|3 = ∇G(x) and its subscript represents the corresponding vector
component. We guess that Âp

1 takes a similar symmetrized form

Âp
1(x− xi, x− xj) =

⎛
⎝hx(x− xi)hz(x− xj)+ hx(x− xj)hz(x− xi)

hy(x− xi)hz(x− xj)+ hy(x− xj)hz(x− xi)
−hz(x− xi)hz(x− xj)

⎞
⎠ . (4.4)

Direct calculation of ∇2Âp
1 verifies that this is indeed the solution. These solutions

manifestly satisfy the boundary conditions, going to zero at infinity.
The right-hand side of the integral constraints involve integrals evaluated on the vertical

boundaries, which we take here to be at z = ±∞. We assume all vortices are at finite
heights, and then the integral constraints only depend on the far fields. The QG integral
constraint equation (2.22) can be integrated analytically and verified. We have not found
an analytic form for the integral on the right-hand side of (2.23). However, the scaling
behaviour of the fields lets us deduce that the integral is zero. Since Â1 decays as |x|−4,
θ̂1 decays as |x|−5. The value of ψ̂0 decays as |x|−1, so the second term inside the integral
also decays as |x|−5. The right-hand side thus goes to zero as z→±∞, indicating that
the integral of q1 is zero, consistent with q1 = 0.

4.2. Self-advection
Point-vortex self-advection is the limit of the finite-sized coherent vortex self-advection as
the vortex size goes to zero. This requires some consideration of a finite vortex. Here, we
consider all vortices to have the same time-independent, spherically symmetric shape with
size r0.

In 2-D and QG point-vortex dynamics, the self-advection velocity of vortex i is
the velocity at x induced by a single finite-sized coherent vortex in the ordered
limit, limr0→0 limx→xi . In QG+1 point vortex point-vortex dynamics, there are three
self-advection velocities: û0(0) the QG velocity at a vortex centre induced by its own
vorticity distribution; ûs

1(0), the AG velocity at a vortex centre induced by the nonlinear
interaction between the vortex and itself; and ûp

1(0,
x), the AG velocity at a vortex centre
induced by the nonlinear interaction between the advected vortex and a different vortex
separated by 
x.

The consequences of the assumed vortex shape symmetry are leveraged using the 3-D
infinite-domain Green’s function, written as

G(x, x′) = −1
4π|x− x′| , (4.5)

and the Green’s function solution of the Poisson equation,

∇2An(x) = Sn(x) ⇐⇒ An(x) =
∫

G(x, x′)Sn(x′) dV ′. (4.6)

The velocity is then

un(x) = ∇ × An(x) =
∫

∇xG(x, x′)× Sn(x′) d3x′, (4.7)

where the subscript on the gradient operator indicates derivatives are with respect to x.
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We first recall the QG point-vortex self-advection, û0(0), which can be calculated by
considering a single unit-circulation vortex at the origin. Then

û0(0) = lim
r0→0

∫
[∇xG(x, x′)]x=0 × Ŝ0(x′) d3x′. (4.8)

The symmetries in the vortex shape and the Green’s function render the argument of the
integral in (4.8) odd in one direction and thus û0(0) = 0, there is no QG point vortex
self-advection.

The AG single-vortex self-advection ûs
1(0) is also zero by symmetry but the argument is

a bit more complicated. The relevant source is Ŝs
1(x
′). The derivatives in (2.15), allow one

to determine the symmetry of the components of Ŝs
1(x
′) in the different directions. One

can show that each component has at least one direction where the integrand is odd and
integrates to zero. Thus, ûs

1(0) = 0 and there is no AG single-vortex self-advection.
Physically, we know that single coherent vortices on the f -plane do not self-advect and

so it is satisfying that symmetry-based arguments show no single-vortex self-advection.
The pair self-advection is different. Since a pair of QG vortices do advect each other,
there is no physical reason why the AG pair self-advection must be zero. A finite AG pair
self-advection would just provide a small correction to the QG mutual advection and is not
a priori ruled out on physical grounds.

Because the pair self-advection relies on a second vortex at location x2 /= 0, one cannot
use symmetry arguments to determine its value. Instead we explicitly consider a specific
finite vortex shape. One common finite vortex shape is a Gaussian monopole

q̂r0 = e−r2/2r2
0

(2πr2
0)

3/2
, (4.9)

ψ̂
r0
0 = G(r)Erf(r/(

√
2r0)), (4.10)

where r = |x|, Erf(s) = (2/√π)
∫ s

0 e−t2 dt is the error function, and the superscript r0
denotes a finite vortex.

To calculate the AG pair self-advection of a vortex, we can place that vortex at the
origin, x1 = 0. We are interested in the velocity near the vortex centre, the origin. In the
vortex-gas approximation, the second vortex is far away |x2| � r0, and we can use its
far-field streamfunction ψ̂0 = G(x− x2) in calculating Ŝp

1

Ŝp
1 = S1(ψ̂

r0
0 (x), ψ̂0(x− x2))+ S1(ψ̂0(x− x2), ψ̂

r0
0 (x)). (4.11)

Expanding Ŝp
1 in a Taylor series near the origin, r � r0, gives Ŝp

1 ∼ O(r0). This then
implies that Âp

1 ∼ O(r2) and ûp
1 ∼ O(r) near the origin. Thus ûp

1 → 0 as r→ 0 for finite
Gaussian vortices and remains zero in the point vortex limit r0 → 0. Thus, at least for the
point-vortex limit of Gaussian vortices, the AG pair self-advection is zero.

4.3. Summary equations
As shown above, QG+1 point vortices, like 2-D and QG point vortices, have no
self-advection. Thus, their dynamics is completely determined by their far-field advection.
Putting together the pieces described above gives the equations of motion for a set of N
QG+1 point vortices

dxi

dt
= u(xi),
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u(xi) =
N∑

j=1

′
(Γjû0(xi − xj)+ RoΓ 2

j ûs
1(xi − xj)) (4.12)

+Ro
N∑

j=1
k=j+1

′
ΓjΓkûp

1(xi − xj, xi − xk), (4.13)

where
∑ ′

denotes skipping terms with j = i and k = i. The single-vortex and pair-vortex
velocities are

û0(x) = 1
4π|x|3

⎛
⎝−y

x
0

⎞
⎠ , (4.14)

ûs
1(x) =

x2 + y2 − 8z2

16π2|x|8

⎛
⎝−y

x
0

⎞
⎠ , (4.15)

ûp
1(x1, x2) = ũ

16π2|x1|5|x2|5 , (4.16)

where

ũ =
⎛
⎝3|x1|2( y1z2

2 + 2y2z1z2)+ 3|x2|2( y2z2
1 + 2y1z1z2)− |x1|2|x2|2( y1 + y2)

|x1|2|x2|2(x1 + x2)− 3|x1|2(x1z2
2 + 2x2z1z2)− 3|x2|2(x2z2

1 + 2x1z1z2)

3(x2y1 − x1y2)(|x2|2z1 − |x1|2z2).

⎞
⎠ .

(4.17)

We note that, as is the case for 2-D and QG point vortices, it is straightforward to study
passive scalar transport by considering passive tracers as vortices with zero circulation.

Asymptotic expansions break down if the higher-order terms become larger
than lower-order terms. Here, asymptotic consistency requires |ûs

1|/|û0| ∼ O(1) and
|ûp

1|/|û0| ∼ O(1), which requires Γ/4π|x|3 ∼ O(1). For single-vortex advection, x is the
distance from the advected particle, either a vortex or passive, to the advecting vortex and
Γ is the circulation of the advecting vortex. For pair-vortex advection, x is the distance
to the nearest member of the advecting pair and Γ is its circulation. For a collection of
point vortices with similar circulations, Γi ∼ O(Γ ), there is thus a minimum distance
between QG+1 vortices and between passives and vortices, an ‘asymptotic horizon’, if
you will, ra ∼ (Γ/4π)1/3. The asymptotic horizon is a boundary in phase space and
inside the boundary the asymptotic expansion becomes misordered. Systems where all
vortices remain further apart than ra along their entire trajectories are outside the horizon
and are asymptotically valid QG+1 solutions. Similarly, a passive particle which remains
further than ra from all vortices is an asymptotically valid passive trajectory. There is
no restriction on how close passives can approach each other as they do not induce any
advective velocity. For systems with a wide range of Γ values, the asymptotic horizon
becomes more complex.
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5. Properties of QG+1 point vortex point-vortex dynamics

5.1. Vortex pairs
The qualitative behaviour of a system composed of only two vortices, N = 2 can be
understood from the dynamical equation, (4.12)–(4.17). We begin by noting that for two
vortices, it is not possible to have i, j, k which satisfy i /= j, i /= k and k > j. As a result,
the second sum in (4.13) has no terms and the pair-vortex velocity is zero.

Both 2-D and QG vortex pairs co-rotate in horizontal planes. Since û0 and ûs
1 have

zero vertical velocity and ûp
1 = 0, QG+1 vortex pairs also move in horizontal planes with

no vertical velocity. In addition ûs
1 shares with û0 the property that it is proportional

to (−y, x, 0) and is thus directed perpendicular to the line connecting the vortices. The
AG velocities induced at vortices 1 and 2 are, as in two dimensions and QG, in opposite
directions. Thus, QG+1 vortex pairs also co-rotate.

The AG correction can either speed up or slow down the QG rotation. The magnitude of
the AG velocity scales as Γ 2 and so is positive for both same-sign and opposite-sign vortex
pairs. Furthermore, the numerator of ûs

1 changes sign on the surfaces z = ±
√
(x2 + y2)/8.

As QG+1 vortex pairs rotate with constant vertical and horizontal separations, the sign
of the numerator is constant. Thus, whether QG+1 vortex pairs rotate faster or slower than
QG vortex pairs depends on both the signs of the circulations and the specific vector vortex
separation. The difference in rotation speeds with the sign of the vortex circulation is one
example of QG+1 breaking the cyclone–anticyclone anti-symmetry.

The relative magnitudes of the AG and QG vortex speeds, |us
1|/|u0| scales as

RoΓ/|x1 − x2|3. Thus, as the vortex separation grows, the AG velocity decays much faster
than the QG velocity.

Opposite-sign 2-D and QG vortices with Γ1 = −Γ2, called hetons in the oceanographic
context, propagate along straight lines. Due to the dependence of the AG velocity on
Γ 2, the two vortices no longer have the same horizontal velocity and they travel in
circles, similar to opposite-sign unequal magnitude vortices in two dimensions and QG,
with a radius of curvature that scales as 1/Ro (figure 1). The heton curvature breaks
the cyclone–anticyclone anti-symmetry. If the symmetry held, switching the signs of the
circulations of the heton component vortices would cause the heton to rotate in the opposite
direction. However, as the curvature is caused only by the AG contribution, the direction
of curvature is the same regardless of which component vortex is positive and which is
negative,

5.2. Solid horizontal boundary
In the oceanographic context, idealized vortex dynamics is typically studied by placing
a solid boundary, representing the ocean surface, at z = 0, where the vertical velocity is
zero. This boundary condition can be satisfied for QG+1 point vortices with arbitrary N
using the method of images. Each physical vortex below the surface is supplemented by
an image vortex at the same horizontal location and equally spaced above the surface, i.e.
vortex i at xi = (x, y, z) has an image vortex at xiimage = (x, y,−z). Then it can be seen from
the equations of motion that the pair-vortex vertical velocity induced on the surface by a
vortex and its image is zero. Furthermore, the pair-vortex vertical velocity at the surface
induced by vortex i and the image of vortex j is non-zero but is cancelled by the vertical
velocity induced by the image of vortex i and vortex j. To keep the images vertically
aligned with their physical vortices as the vortices evolve, their horizontal velocities must
be equal, requiring Γiimage = Γi. Due to the 1/|x|3 scaling of the ratio of the AG and
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Figure 1. QG (dashed) and QG+1 (solid) heton trajectories viewed from above for initial vortex positions
±(1, 0, 1) with Γ = ∓4π and Ro = 0.2. The height and separations of the vortices comprising QG and
QG+1 hetons are constant. The main figure shows the horizontal projection of the trajectories for 0 ≤ t ≤ 500
and the inset shows the projection for the QG+1 heton for 0 ≤ t ≤ 2000.

QG velocities, the AG contribution from image vortices decays rapidly as vortex depth
increases. The asymptotic horizon provides a minimum depth for QG+1 point vortices
with a solid surface.

While image vortices keep the vertical velocity at the boundary zero, they do, in general,
impact the vertical velocity below the boundary. Two physical vortices corresponds to a
system with N = 4, which will, in general, have vertical vortex advection. However, due
to the symmetry of the images, the vertical advection of two physical vortices with a solid
horizontal boundary is zero. Each vortex, vortex 1, say, has a vertical velocity from three
pair-vortex interactions, 2 and 2image, 2 and 1image and 1image and 2image. Inspection of the
dynamical equations shows that the advecting vertical velocity for each of these pairs is
zero. Thus a solid horizontal boundary does not induce vertical vortex motion in a system
of two physical vortices.

6. Interesting QG+1 point vortex point-vortex numerical solutions

In both two dimensions and QG, there is a large literature of point-vortex and passive tracer
solutions. A detailed study of QG+1 trajectories is beyond the scope of this work. Here, we
choose a small number of configurations and present numerical simulations that highlight
some of the new features of QG+1 point-vortex dynamics. All trajectories presented here
are outside the asymptotic horizon. All QG+1 simulations are performed with Ro = 0.2.

6.1. Passive particle motion induced by a same-sign vortex pair
As discussed above, QG+1 same-sign vortex pairs have no vertical vortex advection and
co-rotate in horizontal planes. Passive tracer trajectories in the field of a QG+1 same-sign
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Figure 2. Vortex and passive particle trajectories for a pair of same-sign vortices starting at±(1.5, 0, 1.5)with
Γ1 = Γ2 = 4π, a passive particle starting at (−3.0, 1.0,−1.8), Ro = 0.2 and 0 ≤ t ≤ 1000. (a) Horizontal
projection of vortex trajectories (black line), passive trajectory (blue line), initial vortex locations (black circles)
and initial passive location (blue circle). (b) Projection of the trajectories and initial positions onto horizontal
coordinates co-rotating with the vortices. (c) Time series of the vortex and passive heights, z(t).

pair can experience vertical advection if the vortices are tilted, while if the vortices
are vertically aligned, the vertical advection is zero. Point vortices, being non-diffusive,
technically stir the fluid; mixing requires diffusion. Point-vortex stirring does, however,
give a good indication of the mixing that would ensue in a vortex gas with small diffusion.
A detailed study of stirring would require investigating the complex 3-D nature of passive
particle trajectories. Here, we focus on the simpler vertical excursion of passive particles,
the difference between the maximum and minimum height of a particle along its trajectory.
This simpler measure already shows interesting behaviour.

We consider a tilted same-sign vortex pair with equal circulations Γ1 = Γ2 = 4π
at locations x = ±(1.5, 0, 1.5) and with Ro = 0.2. The period τ of QG co-rotation is
τQG ≈ 240. For this configuration, the AG correction slows the vortices down and the
QG+1 co-rotation period is τQG+1 ≈ 242.

Figures 2–4 show trajectories from three different passive particle initial conditions
chosen to display a variety of behaviours. The horizontal motion (panel a) looks
quasiperiodic rather than chaotic. In a frame co-rotating with the vortices the motion
becomes simpler and appears periodic (panel b). The initial condition of the passive
particle in figure 4 is particularly interesting as it displays large slow vertical excursions.
For this third initial condition, the upward (downward) moving branches of the trajectory
occur with yCo-Rotating < 0 (yCo-Rotating > 0), and the height extrema occur as the trajectory
crosses the yCo-Rotating = 0-axis.

We explore these large vertical excursions by looking at the maximum vertical excursion
of passive particles starting on the midplane of the vortices z = 0 (figure 5). The symmetry
of the figure reflects the symmetry of initial vortex positions and the symmetry of
QG+1 dynamics. One sees that there is an O(1)-sized region of midplane passive initial
conditions with O(1) vertical excursions larger than the vertical vortex separation.

We next look at the vertical excursion of passives with initial conditions along a vertical
line, x(0) = (0, 3.82, z0) going through q point near the maximum of figure 5 and denoted
by a black diamond in that figure. The heights (figure 6) show that the region of large
vertical excursions extends vertically across the entire vortex separation. This suggests
that there are 3-D O(1)-sized lobes that are stirred in the vertical. Trajectories starting on
this line appear to fall into two categories: those with O(1) vertical excursions on long
time scales, and those with very small vertical excursions and no long time scales.
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Figure 3. Same as figure 2 for a passive particle starting at (4.0, 0.1, 1.0).
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Figure 4. Same as figure 2 for a passive particle starting at (0.2, 2.7, 0.2) but with the time span in panel (a)
being 0 ≤ t ≤ 10 000 and the time span in panels (b) and (c) being 0 ≤ t ≤ 100 000.
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Figure 5. Vertical excursion, Max(z(t))−Min(z(t)) of passive particles as a function of their initial position
(x, y, 0). The black circles indicate the initial horizontal position of the vortices at ±(1.5, 0, 1.5), with Γ1 =
Γ2 = 4π and Ro = 0.2. The black diamond is the location of the line of passive initial conditions shown in
figure 6.
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Figure 6. Height vs time of passive particles in the field of a same-sign vortex pair. The vortices are initially
at ±(1.5, 0, 1.5), have Γ1 = Γ2 = 4π, and Ro = 0.2. The initial conditions of the passive particles are equally
spaced in z along a vertical line with (x, y) = (0, 3.82), indicated by the black diamond in figure 5.
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Figure 7. Trajectories of a system of three QG point vortices, Ro = 0.0, initially at±(1.5, 0, 1.5) and (0, y0, 0)
with y0 = 0.1. The circulations are equal, Γi = 4π. (a) Horizontal projection of the trajectory of the upper
vortex for 0 ≤ t ≤ 1500. The black circle indicates the initial position. (b) Same as panel (a) for the middle
vortex. (c) Same as panel (a) for the lower vortex.

6.2. Three same-sign vortices
Here we investigate the motion of a system composed of three same-sign vortices. We
make no attempt to fully explore the large parameter space and instead focus on a
few configurations which have interesting behaviour. The three vortices have identical
circulations, Γi = 4π and are equally distributed in the vertical coordinate. The upper
and lower vortices’ initial positions lie along a line in the x− z plane, at positions
±(1.5, 0, 1.5). The middle vortex initially lies on the midplane, offset in the y-direction,
at (0, y0, 0).

We first consider an initial condition where all three vortices lie along a line, i.e.
y0 = 0. For this configuration, both QG and QG+1 point vortex point-vortex dynamics are
relatively simple due to the symmetry of the initial condition. The induced velocities of
the upper and lower vortices are horizontal and these vortices co-rotate. The middle vortex
is stationary. The QG period of rotation for the upper and lower vortices is τQG = 48.0 and
for QG+1 vortices with Ro = 0.2, τQG+1 = 52.3.

Next consider an initial condition with the middle vortex slightly offset from the origin
y0 = 0.1. The QG trajectories appear quasiperiodic (figure 7). The horizontal projection
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Figure 8. Trajectories of a system of three QG+1 point vortices with Ro = 0.2, initially at ±(1.5, 0.1, 1.5)
and (0, y0, 0) with y0 = 0.1. The circulations are equal, Γi = 4π. (a) Horizontal projection of the trajectory of
the upper vortex for 0 ≤ t ≤ 1500. The black circle indicates the initial position. (b) Same as panel (a) for the
middle vortex. The horizontal projection of the lower vortex trajectory is qualitatively similar to panel (a). (c)
Height vs time of the three vortices.
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Figure 9. Same as figure 7 (three QG point vortices) but with y0 = 3.

of the QG+1 trajectories also appear quasiperiodic but vortices now also display small
vertical oscillations with periods similar to the horizontal rotation time scale (figure 8).

Now consider a system where the middle vortex initially has a significantly larger
horizontal offset, y0 = 3 (figure 9). The QG dynamics still looks quasiperiodic.
The QG+1 trajectories (figure 10) for this initial condition display similar horizontal
trajectories as in the QG case for the time shown, a few horizontal rotation times. The
notable new feature is the large O(1) vertical oscillation which causes the vortices to
exchange their vertical positions. The vertical motion appears periodic with a period
O(100) times longer than the horizontal rotation time scale. As the vortex heights slowly
change, the shorter time scale horizontal motions change their character slowly but remain
qualitatively similar.

The vertical oscillations have an interesting structure as a function of the initial condition
offset y0 (figure 11). There is a region of y0 with large vertical oscillations similar to those
seen above for y0 = 3. Note that this region is similar in location to the region found in
the previous section where passive particles in the field of two vortices have large vertical
excursions, but here the boundary of the region appears sharper. The amplitude of the
vertical oscillation of the three vortices are qualitatively similar but with small quantitative
differences. The periods of the oscillation of the three vortices are identical at each y0.
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Figure 10. Same as figure 8 (three QG+1 point vortices) but with y0 = 3.
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Figure 11. Amplitude (a) and period (b) of the vertical oscillation of the vortex initially at z = 0 in a system
of three QG+1 point vortices initially at ±(1.5, 0, 1.5) and (0, y0, 0) as a function of the offset y0. The vortices
have Γi = 4π and Ro = 0.2. In panel (a), the solid line is the amplitude of the initially upper and lower vortices
and the dashed line is the amplitude of the initially middle vortex. The periods of the three vortices are identical.

6.3. chaotic motion
The above trajectories look quasiperiodic. Their Lyapunov exponents appear to converge
to zero as the integration time grows. They are most likely not chaotic. However, like
2-D and QG point vortices, QG+1 point vortices do have chaotic motion. Four-vortex
configurations can be found with chaotic trajectories with non-zero Lyapunov exponents
(figure 12). The horizontal trajectories of the chaotic QG+1 vortices are qualitatively
similar to that of their corresponding chaotic QG vortices. For this chaotic trajectory, the
QG+1 vortices have O(1) irregular vertical motion on long time scales.

7. Discussion

We have developed a new class of point-vortex dynamics, 3-D AG balanced
point vortices. The solutions are found as point-vortex idealizations of vortex-gas
solutions of a specific set of asymptotic balance equations, the QG+1 equations. The
inclusion of AG dynamics in rapidly rotating, stably stratified flows brings both
qualitative and quantitative differences. Horizontal velocities are perturbed by small,
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Figure 12. Trajectories of a system of four vortices with Γi = 4π with positions chosen at random.
(a) Horizontal motion of one vortex under QG dynamics, Ro = 0, for 0 ≤ t ≤ 1500. (b) Horizontal motion
of the same vortex under QG+1 dynamics starting from the same initial condition with Ro = 0.2. (c) Vertical
motion of this QG+1 vortex.

order-Rossby-number, corrections to QG horizontal flow. Vertical velocities are also small
but as they are perturbations from zero, they produce qualitatively new phenomena.

We have seen that some configurations of QG+1 point vortices, and of passive particles
in the field of QG+1 point vortices, have large O(1) vertical transport. As the vertical
velocity is small, large vertical transport requires correspondingly long times. We have
seen that the regions of initial conditions with large vertical transport can be O(1) in size
and these regions can have relatively sharp boundaries. Vertical transport and mixing are
important processes in rotating stratified turbulent flow and we expect that QG+1 point
vortex point-vortex dynamics will prove useful in understanding AG vertical transport and
mixing across many geophysical and astrophysical settings.

It is well known that 2-D and QG point-vortex dynamics have Hamiltonian structures
which provide insight into the dynamical behaviour of the vortices. This fact, together with
the behaviour of the trajectories seen here, leads us to think it likely that QG+1 point vortex
point-vortex dynamics is Hamiltonian. There is a large literature on Hamiltonian fluid
dynamics, e.g. Morrison (1998). Based on the theoretical understanding of Hamiltonian
fluid dynamics, we expect that the imposition of balance and the asymptotic expansion in
QG+1 will preserve the Hamiltonian structure present in the primitive equations. We also
note that the balance formulation of (Holm 1996) has an explicit Hamiltonian structure.
We leave the development of any potential Hamiltonian structure in QG+1 point vortices
for future work.
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