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The impact of a liquid drop on a solid surface involves many intertwined physical effects,
and is influenced by drop velocity, surface tension, ambient pressure and liquid viscosity,
among others. Experiments by Kolinski et al. (Phys. Rev. Lett., vol. 112, no. 13, 2014b, p.
134501) show that the liquid–air interface begins to deviate away from the solid surface
even before contact. They found that the lift-off of the interface starts at a critical time that
scales with the square root of the kinematic viscosity of the liquid. To understand this, we
study the approach of a liquid drop towards a solid surface in the presence of an intervening
gas layer. We take a numerical approach to solve the Navier–Stokes equations for the
liquid, coupled to the compressible lubrication equations for the gas, in two dimensions.
With this approach, we recover the experimentally captured early time effect of liquid
viscosity on the drop impact, but our results show that lift-off time and liquid kinematic
viscosity have a more complex dependence than the square-root scaling relationship. We
also predict the effect of interfacial tension at the liquid–gas interface on the drop impact,
showing that it mediates the lift-off behaviour.
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1. Introduction

The dynamics of a falling liquid drop as it impacts on a substrate depend on the initial
conditions and physical properties of the liquid, the surrounding media and the substrate.
Depending on the relevant physical parameters, the liquid drop may splash, spread or
bounce upon impact with a solid substrate. The diversity of patterns produced by liquid
drops impacting on a solid substrate in the presence of ambient air were first captured by
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Worthington (1877), even before the invention of flash photography, through observations
of patterns under the light of a spark produced by a break in an electric circuit when
the drop hits the substrate. Worthington’s drawings of these patterns sparked many
investigations into the physical phenomena associated with drop impact, many of which
are summarized in review articles (Rein 1993; Yarin 2006; Josserand & Thoroddsen 2016).

Many physical parameters are known to affect the dynamics of a drop upon impact with
a substrate (Rioboo, Marengo & Tropea 2002). These include the initial size and velocity
of the drop (Pasandideh-Fard et al. 1996; Riboux & Gordillo 2014), viscosity of the liquid
(Pasandideh-Fard et al. 1996; Stevens, Latka & Nagel 2014), pressure and viscosity of
the surrounding medium (Xu, Zhang & Nagel 2005; Sprittles 2015), interfacial tension
between the liquid and its surrounding medium (Pasandideh-Fard et al. 1996; Rioboo
et al. 2003), and the physical properties of the substrate (Rein 1993; Range & Feuillebois
1998; Yarin 2006; Latka et al. 2012; Josserand & Thoroddsen 2016). Experiments by Xu
et al. (2005) show that in the impact of a liquid drop on a solid substrate, ambient air
pressure determines whether the drop eventually splashes, characterized by the ejection of
a number of small drops into the air, or forms a thin film and spreads smoothly onto the
surface (Driscoll, Stevens & Nagel 2010). This suggests a role of the surrounding gaseous
medium in determining the impact dynamics even before the drop makes contact with the
solid substrate, motivating investigation into the role of an intervening gaseous layer in
determining dynamics of a liquid drop as it approaches a solid substrate, prior to contact
of the drop with the substrate.

Theoretical work on the role of an intervening layer of gas in the approach of a liquid
drop towards a solid surface has been carried out in simplified two-dimensional (Mandre,
Mani & Brenner 2009; Mani, Mandre & Brenner 2010; Mandre & Brenner 2012; Moore,
Ockendon & Oliver 2013) and axisymmetric (Hicks & Purvis 2010) geometries. Some of
these theoretical investigations (Mandre et al. 2009; Hicks & Purvis 2010; Mani et al. 2010;
Mandre & Brenner 2012) consider an inviscid liquid drop falling towards a solid surface in
the presence of an ideal gas, and predict that the drop deforms due to a buildup of pressure
in the gas trapped underneath the drop, prior to its contact with the solid substrate. Since
these studies assume the fluid flow in the drop is inviscid, the velocity field is given by
a potential flow. This substantially simplifies the analysis, allowing the dynamics to be
modelled using values of relevant field variables exclusively at the liquid–gas interface
using a lubrication approximation, without explicitly computing the fluid flow in the bulk
of the drop. A schematic of the deformation of the drop is shown in figures 1(a) and 1(b).

The theoretical predictions of drops deforming on a layer of air between the liquid drop
and solid substrate, prior to contact between the drop and the substrate, are consistent
with previous experimental observations (Thoroddsen et al. 2005). Measurements of the
air layer thickness underneath the impacting drop have been performed (Driscoll & Nagel
2011; Kolinski et al. 2012; de Ruiter et al. 2012; van der Veen et al. 2012). Subsequent
experimental work by Kolinski, Mahadevan & Rubinstein (2014b) shows the effect of
liquid viscosity on the evolution of the liquid–air interface even before contact with the
substrate, which is not captured by the potential flow description of the evolution of liquid
dynamics in previous theoretical work (Mandre et al. 2009; Mani et al. 2010; Mandre &
Brenner 2012).

In this work we are concerned with the dynamics of a liquid drop as it approaches
a rigid, non-porous, solid surface, in the presence of an ambient gas. We modify the
physical model of Mandre, Mani and Brenner by incorporating the viscosity of the liquid.
Due to the additional viscous term in the governing equations for the liquid, the coupled
interaction of the liquid and gas becomes theoretically intractable, and it is necessary
to solve numerically for the fluid flow in the bulk of the drop. There are a variety
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Figure 1. Schematic of the physical and computational model. (a) Relative locations of the falling drop,
intervening gas layer and solid substrate. (b) A schematic zoomed into the region of interest, showing an
exaggerated view of a deformed liquid–gas interface (green), and a schematic of the region where viscous
effects are important (yellow). (c) Control volume and grid for discretization constructed in the fluid domain.

of previous computational studies of drop impact, such as looking at the dynamics of
spreading (Eggers et al. 2010), splashing (Josserand & Zaleski 2003; Boelens & de Pablo
2018) or rebound from superhydrophobic surfaces (Renardy et al. 2003). Duchemin &
Josserand (2011) generalized the potential flow model of Mandre et al. (2009) to work
in axisymmetric coordinates, where the liquid–gas interface is represented as an arbitrary
curve, allowing a full spherical drop to be represented. With this model, they were able to
predict the emergence of a thin jet skating above the gas layer, and they found that without
surface tension a finite-time singularity forms where the liquid–gas interface touches the
substrate. More recently, Duchemin & Josserand (2020) solved the lubrication equations
in the thin gas layer; this work describes the drainage of the gas during impact of a drop
onto a solid substrate or a liquid film.

Philippi, Lagrée & Antkowiak (2016) and Jian et al. (2018) examined the early stages
of drop impact, making use of the Gerris/Basilisk flow solvers (Popinet 2003, 2009;
Lagrée, Staron & Popinet 2011; Popinet 2015) for tracking the liquid–gas interface. This
simulation framework provides greater flexibility allowing the dynamics to be tracked
over a longer time. In comparison, our reduced description uses a simpler description
of the initial dynamics, and is well suited to handle the disparate length scales between
the gas layer and the drop. We solve the incompressible Navier–Stokes equations in the
drop, using a modern implementation of Chorin’s projection method (Chorin 1967, 1968)
that incorporates improvements from Almgren, Bell, Collela and coworkers (Bell, Colella
& Glaz 1989; Colella 1990; Almgren, Bell & Szymczak 1996). Our numerical model
allows us to resolve the flow field and pressure in the drop, and examine the effects of
many different physical parameters in ways (e.g. viscosity, surface tension) that would be
difficult to do in an experiment. We validate our model using theoretical results (Mandre
et al. 2009; Mani et al. 2010; Mandre & Brenner 2012). Using our model, we are able to
recapitulate the square-root scaling with liquid viscosity of the lift-off time observed by
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Symbol Quantity Order of magnitude Units

P0 Initial gas pressure O(105) Pa
R Initial drop radius O(10−3) m
V0 Initial drop velocity O(10−1–100) m s−1

γ Heat capacity ratio, gas O(1) —
ρg Density of gas O(100) kg m−3

ρl Density of liquid O(103) kg m−3

νg Kinematic viscosity of gas O(10−5) m2 s−1

νl Kinematic viscosity of liquid O(10−6–10−4) m2 s−1

Table 1. Relevant initial conditions and physical parameters, and their approximate values, which informs the
mathematical model. The subscripts l and g denote the liquid drop and the gas, respectively, and 0 denotes
initial conditions.

Kolinski et al. (2014b). However, our results show that the precise relationship between
lift-off time and liquid viscosity is more complicated. We explore the dependence of
lift-off time on surface tension, initial drop velocity and drop radius.

In the following sections we describe the physical model and parameter regime, followed
by approximations made in the simulation domain. We then describe the results from our
simulations, along with comparisons with previous theoretical and experimental studies.
Our numerical results are consistent with theoretical calculations (Mandre et al. 2009)
as well as experimental results (Kolinski et al. 2014b). Our results predict the effect of
viscosity and interfacial tension on the dynamics of drop impact.

2. Model

In this section we first explain the physical set-up and specify the parameter regime
considered in the rest of this work. Based on the physical set-up and parameter regime,
we then describe the mathematical model. The mathematical model largely derives from
the previous theoretical work of Mandre et al. (2009), Mani et al. (2010) and Mandre &
Brenner (2012). We specify the predictions made by this model, experimentally observed
deviations from these predictions, and then the mathematical model used in our work. We
then use this mathematical model to derive appropriate boundary conditions for the flow
in the drop.

2.1. Physical problem and parameter regime
The physical set-up is a drop of liquid falling towards a flat, solid surface in the presence
of a surrounding gas. As the liquid drop falls towards the solid surface, it interacts with
the surrounding gas. We are interested in modelling and simulating the coupled dynamics
of the liquid and the gas before the liquid makes contact with the solid surface.

Figure 1(a) shows a schematic of the physical problem, indicating the relative locations
of the liquid drop, the surrounding gas and the solid surface. The drop is initially spherical,
with radius R, falling towards a horizontal solid surface at uniform vertical velocity V0.
The gas is initially at uniform pressure P0. We specify the values of initial conditions and
physical properties considered for the liquid and air in table 1. We use the subscripts l and
g to denote the liquid drop and the gas, respectively, and 0 to denote the initial conditions.

In the parameter regime specified in table 1 potential flow theory argues that the relevant
Reynolds number, based on the initial velocity V0 and drop radius R, is O(102), allowing
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for an inviscid consideration of the liquid. We refer to the mathematical model as the
potential flow model, and the theoretical predictions arising from this mathematical model
as the potential flow theory.

The potential flow theory predicts that, as the drop falls towards the solid surface, a
buildup of air pressure underneath the drop causes the drop to deform in the middle,
developing a dimple. The drop then spreads over a thin layer of gas that separates it from
the substrate. The potential flow theory predicts scaling laws for the height of the gas layer.
Subsequent experimental observations of the gas underneath the drop (Kolinski et al. 2012;
de Ruiter et al. 2012; van der Veen et al. 2012) show the existence of this dimple and the
shape of the drop profile, similar to the predictions of the potential flow theory.

Experimental observations made by Kolinski et al. (2014b) in part of this parameter
regime show that the falling drop first develops a dimple in the middle of the drop, as
schematized by the liquid–gas interface shown in green in figure 1(b). This is consistent
with the potential flow theory (Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner
2012). Subsequently in time, and prior to contact of the liquid–gas interface with the solid
substrate, the shape of the interface depends on the kinematic viscosity of the liquid.
Specifically, there is a critical time τc at which the minimum height of the drop from
the substrate stops decreasing, and the leading edge of the drop begins to move away from
the surface. The time τc is measured relative to the time when the drop would have made
contact with the substrate if it were not deforming due to interactions with an intervening
gas. Kolinski et al. (2014b) observe that τc ∝ νl

1/2.
As a consequence of the discrepancy between the observations of Kolinski et al. (2014b),

who definitively show the effect of liquid viscosity on the shape of the liquid–gas interface
well before contact between the liquid and the substrate, and the potential flow theory,
we are specifically interested in capturing the role of liquid viscosity, on these coupled
dynamics. Based on the observations of Kolinski et al. (2014b), we modify the potential
flow model to consider a liquid described by the full Navier–Stokes equations, rather than
an inviscid approximation.

2.2. Mathematical model
The dynamics of an initially spherical drop are naturally described in terms of
three-dimensional spherical polar coordinates, and those of the gas layer in terms of
three-dimensional cylindrical polar coordinates. In this coordinate system, based on
experimental observations of air layer profiles under an impacting drop (Kolinski et al.
2012; de Ruiter et al. 2012; van der Veen et al. 2012; Kolinski, Mahadevan & Rubinstein
2014a; Kolinski et al. 2014b, 2019), we first use the simplifying approximation of
axisymmetric flow in the drop and the gas, with the axis of symmetry being perpendicular
to the substrate, through the centre of the undeformed drop.

As in the potential flow model (Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner
2012), we further simplify our consideration by approximating the drop as initially being
an infinite cylinder, with the long axis perpendicular to the substrate, rather than spherical.
With these assumptions and approximations, we can describe the dynamics of the liquid
and gas using two-dimensional Cartesian coordinates (x, y). The initial height h(x, t = T0)
of the liquid–gas interface is described by a parabolic profile as

h(x, t = T0) = H0 + x2

2R
, (2.1)

where H0 is the initial height of the centre of the interface, i.e. at x = 0.
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We model the flow in the liquid using the incompressible Navier–Stokes equations. The
continuity equation for the liquid is

∇ · ul = 0, (2.2)

and the momentum equation for the liquid is

ul,t + ul · ∇ul = −∇pl

ρl
+ νl∇2ul, (2.3)

where ul = (ux, uy), pl and ρl are the velocity, pressure and density of the liquid,
respectively.

Based on the potential flow theory (Mandre et al. 2009; Mani et al. 2010; Mandre &
Brenner 2012) and subsequent experimental observations (de Ruiter et al. 2012; van der
Veen et al. 2012; Kolinski et al. 2014b), the gas layer is slender, with the horizontal
length scale Lx being much greater than the vertical length scale Ly, allowing for an
approximation of one-dimensional flow in the gas. The height h = h(x, t) of the gas layer
is thus described by the compressible lubrication equation (Taylor & Saffman 1957),

12μg(ρgh)t = (ρgh3pg,x)x, (2.4)

and the equation of state is described by an adiabatic assumption,

pg

P0
=
(

ρg

ρ0

)γ

. (2.5)

The coupling of flows in the liquid and gas at their interface is done using the Laplace
condition for pressure,

pl = pg + σhxx, (2.6)

and equality of shear stress in the liquid and gas at the liquid–gas interface is

τl(x, h) = τg(x, h). (2.7)

Far enough away from the deforming effects of the intervening gas layer on the liquid drop,
the pressure in the gas is the ambient pressure, limx→±∞ pg(x, t) = P0.

Given that the initial and boundary conditions are symmetric about x = 0, we modify
our mathematical model to incorporate symmetry boundary conditions about x = 0. We do
so by applying the boundary conditions (u, vx) = (0, 0) in the liquid domain and pg,x = 0
and hx = 0 in the gas layer.

2.3. Liquid domain and boundary conditions
Having specified the physical problem in § 2.1 and the mathematical model, with initial
and boundary conditions, in § 2.2, we now turn to a description of the domain and
boundary conditions that specify the flow in the liquid in a computationally tractable
manner. The assumptions that lead to numerical approximations in this section are
specified in §§ 2.1 and 2.2. We detail them here as appropriate.

2.3.1. Rectangular domain with mass flux
Following from the previous section, the liquid drop is described by a two-dimensional
flow field. As the drop interacts with the gas layer, its shape changes. The drop begins to
deform close to the middle of the interface, at x = 0. With this observation, we choose a
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region of interest, as shown in figure 1(b), that stretches outwards from x = 0 and upwards
from y = h(x, t).

We make an additional approximation that the flow in the liquid at y = h(x, t) can
be approximated by the flow at y = 0. We can remove the spatial dependence because
the liquid–gas interface is slender. We simulate the control volume with and without
a temporal dependence y = h(t), and do not observe a significant change in results.
With these approximations, we are able to choose a rectangular, inertial control volume,
stretching outwards from x = 0 and upwards from y = 0, whose size is chosen based on
the relevant physical scales (§ 2.4). With the use of symmetry in the domain, as described
in § 2.2, we need to model only half of the control volume. We choose to model the right
half, leading to the computational domain shown in figure 1(c). In subsequent sections, we
describe the boundary conditions at each of the boundaries in the computational domain.

2.3.2. Treatment of the viscous term and bottom boundary condition
Initially, the drop is moving at uniform vertical velocity, meaning that all spatial velocity
gradients are zero, and ∇2ul = 0. Deformation of the drop begins at x = 0. Our model
consequently assumes that the shear stresses are small away from this region where the
drop has deformed. In a two-dimensional flow vorticity is introduced only through shear
stresses at the boundary. The vorticity therefore spreads into the interior of the drop from
the deformed interface. We thus model the drop as having a region close to (x, y) = (0, 0),
where viscosity is important, while far away from this region, νl∇2ul makes a negligible
contribution to (2.3). A schematic of the region where viscosity is important in the
deformed drop is shown by yellow in figures 1(b) and 1(c). Consequently, we model the
domain as having one boundary where viscous effects are important, which is the bottom
boundary.

At the bottom boundary, we apply the boundary conditions specified in (2.6) and (2.7).
Equation (2.7) is enforced through a condition on the gradient of the horizontal velocity,

ul,y(x, 0) = μg

μl
ug,y(x, 0). (2.8)

2.3.3. Boundaries in the interior of the drop: top and right boundary conditions
According to our approximation of a rectangular domain, the bottom boundary of the
liquid interacts with the gas layer. The other boundaries are chosen to be in the interior of
the drop, away from the effect of vorticity from the bottom boundary, and can be treated
as inviscid. With this approximation, at these boundaries, denoted as interior boundaries,
we simplify the momentum equation for the liquid, (2.3), by noting that the viscous term,
νl∇2ul, is relatively small.

Additionally, the velocity gradients in the liquid are initially zero. Away from the effects
of the gas layer, the nonlinear advective term in the momentum equation, ul · ∇ul in (2.3),
will also be small. With these approximations, we obtain a simplified momentum equation
for the liquid at these boundaries,

ul,t = −∇pl

ρl
. (2.9)

We use this simplified momentum equation to obtain velocity boundary conditions at the
interior boundaries. Taking the divergence of (2.9) and noting that the flow in the liquid is
incompressible, we obtain ∇2pl = 0. Knowing the pressure at the bottom boundary, and
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approximating the liquid as a semi-infinite domain, we get an analytical expression for the
pressure at the interior boundaries,

pl(x, y) = 1
π

∫ ∞

−∞
pl(s, 0)

y
(x − s)2 + y2 ds. (2.10)

Assuming that the domain is larger than the region where the pressure from the gas is
non-zero, we numerically integrate over a finite length of the domain boundary to get the
pressure at a particular (x, y) location along the interior boundaries. Given the pressure
at the boundary, we integrate (2.9) in time to obtain velocity boundary conditions at the
interior boundaries. The size of the region where vorticity is significant determines the
size of the domain, and the locations of the interior boundaries, which are calibrated in
simulation.

2.4. Choice of domain
We simulate the coupled dynamics of the liquid and gas over the time interval 0 ≤ t ≤ tend,
for a simulation domain of 0 ≤ x ≤ L and 0 ≤ y ≤ βL, where β is the aspect ratio, for the
liquid, and a domain of 0 ≤ x ≤ L for the gas. To set the size of the domain and duration
of the simulation, we consider the initial dynamics as the drop falls toward the surface, and
compare to the theoretical results of the potential flow theory (Mandre et al. 2009). We use
the scaling results of the potential flow theory for the centre of the gas layer, h(x = 0, t).
The scaling analyses predict the height H∗ at which the pressure buildup in the gas layer
causes the drop to undergo significant deformation and develop a stagnation point at x = 0,
forming a dimple.

According to potential flow theory, the compressibility of the flow in the gas is
determined by the parameter

ε ≡ P0R St4/3

μgV
, (2.11)

which is the ratio of the initial gas pressure to the pressure that would have built up if the
gas were treated as incompressible, where St ≡ μg/ρlVR (Mandre et al. 2009; Mani et al.
2010; Mandre & Brenner 2012; Langley, Li & Thoroddsen 2017).

The results of Kolinski et al. (2014b), showing the relationship between νl and the drop
profile, correspond to ε−1 < 1, meaning that the flow in the gas can be considered to be
incompressible. While our simulations model the full incompressible flow in the gas, we
use this approximation to set the initial conditions. In this regime we have the estimate

H∗ = R St2/3. (2.12)

This scaling result is strictly valid for inviscid flow, νl = 0, Re → ∞, and no surface
tension at the liquid–air interface, σ = 0, We → ∞. While our simulations incorporate
liquid viscosity and surface tension, (2.12) still provides a good estimate for the height at
which the stagnation point forms, and is a useful measure of the physical scales of interest.
We therefore set the initial height to be a multiple of H∗, so that

H0 = H̃0H∗ = H̃0R St2/3 (2.13)

for a dimensionless constant H̃0. Similarly, we set t̃end = t̃endR St2/3/V , and based on
the parabolic shape of the initial profile we choose L = L̃R St1/3, where L̃ and t̃end are
dimensionless constants.
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3. Numerical implementation

In this section we describe the numerical implementation of the mathematical model
described in § 2.2. Throughout the liquid domain, we compute and record the liquid
velocity ul and pressure pl. In the gas layer we compute and track the height h and pressure
pg. A reader may skip the remainder of this section without loss of continuity.

The flow-field variables φ are computed at discretized timesteps, with simulation time
t = nΔt, where Δt is the timestep discretization used in the simulation and n is an integer
counter. Given values of field variables φ(n) = φ(t = nΔt), the goal of the simulation is to
compute the field variables φ(n+1). This section describes the numerical method for doing
so, for the liquid flow-field variables, ul and pl, and gas flow-field variables, h and pg.

3.1. Projection method
The core of the algorithm is based on Chorin’s projection method (Chorin 1967, 1968),
with further developments in the computational techniques behind the fluid simulation
method (Bell et al. 1989; Almgren et al. 1998). In particular, the work of Almgren et al.
(1996) introduces the approximate projection method discretized using the finite-element
method (FEM). The numerical methods are described in detail by Sussman et al. (1999),
Yu, Sakai & Sethian (2003, 2007) and Rycroft et al. (2020). Here, we sketch the main
features of these methods.

We solve for ul and pressure pl in the liquid domain by solving the momentum equation
for the liquid, (2.3), subject to incompressibility of the liquid, as specified in (2.2). In
describing the method for the solution of the field variables in the liquid domain, for the
remainder of this section, we drop the subscript l.

The field variables are defined on a two-dimensional grid, discretized into rectangular
cells of size Δx by Δy, as shown in figure 2. The velocities un are located in the cell
centres, and the pressures pn are located at the cell corners. To advance from step n to
n + 1, we first compute an intermediate velocity u∗ according to

u∗ − un

Δt
= −[u · ∇u]n+1/2 + ν

2
(∇2un + ∇2u∗). (3.1)

Here, the viscous stress terms ν∇2u and ν∇2u∗ are evaluated using a standard five-point
finite-difference stencil. Due to the presence of the u∗ on the right-hand side of (3.1), it
must be solved implicitly. We use a multigrid method to solve the resulting linear system.

The advective term [u · ∇u]n+1/2 is evaluated at the half-timestep n + 1/2 using
the second-order Godunov upwinding scheme of Colella (1990). This is performed by
extrapolating the velocity in each cell to midpoints of the four edges using a first-order
Taylor expansion. Doing this requires that the gradient of the velocity is first evaluated
at each cell centre, which is done using the fourth-order monotonicity-limited scheme of
Colella (1985). This scheme uses a five-point stencil in each coordinate, therefore requiring
information from two grid points in each orthogonal direction.

After this procedure, each edge has two velocities from the two adjacent cells. A
Godunov upwinding procedure is then used to select one based on the direction of the
velocity. An intermediate marker-and-cell (MAC) projection is then used to adjust the
velocities to satisfy a discrete zero divergence criterion, so that the net mass flow out
of each cell is zero (Bell, Howell & Colella 1991; Sussman et al. 1999). After this, the
advective term can be accurately evaluated using centred finite differences of the upwinded
edge-based velocities (Sussman et al. 1999; Yu et al. 2003, 2007; Rycroft et al. 2020).
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Discretization of flow in the liquid

 Discretization of flow in the gas 
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i, j

un
i, j

�x

�
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�

x

pn
i+1, j
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i+1, j

un
i+1, j+1un

i, j+1

pn
i–1, j

hi+1
hi

pi–1 pi

(b)

(a)

Figure 2. Discretization of the field variables. (a) The two-dimensional computational grid for the liquid. (b)
The one-dimensional computational grid for the gas.

The velocity at step n + 1 can be calculated from the intermediate velocity by evaluating
the pressure gradient term,

un+1 − u∗

Δt
= − 1

ρ
∇pn+1, (3.2)

but this requires knowledge of the pressure field pn+1, and there is no explicit update
equation for this field in the incompressible limit. To proceed, we take divergence of (3.2)
and enforce that ∇ · un+1 = 0, according to (2.2). Hence,

∇ ·
[
Δt
{

1
ρ

∇pn+1
}]

= ∇ · u∗, (3.3)

which is a Poisson equation for the pressure that can be solved. Once pn+1 is known, (3.2)
can be used to evaluate un+1 and complete the timestep from n to n + 1. We solve (3.3)
using the FEM discretization of Almgren et al. (1996). Here, each pressure value at a cell
corner has a corresponding bilinear hat function over the four neighbouring grid cells (Yu
et al. 2003, 2007; Rycroft et al. 2020). Once the pressure is computed, the gradient in (3.2)
is evaluated using centred finite differences of the pressure field values.

3.2. Implementation of boundary conditions: ghost layers
The boundary conditions are implemented by means of ghost layers. Around the
boundaries of the two-dimensional liquid domain, there are two layers of additional grid
points. Two layers are required in order to evaluate the fourth-order monotonicity-limited
derivatives arising from the advective term. The boundary conditions are specified in these
layers of grid points. These conditions are then used to compute the necessary gradients
in (3.1).
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The velocity boundary conditions at the top and right boundaries of the liquid domain,
corresponding to the interior of the drop, and described in § 2.3.3, are obtained through
substituting the expression for pressure given by (2.10) in the expression for velocity
at these boundaries, (2.9), and then using Simpson’s rule to numerically integrate the
pressure along these boundaries.

3.3. Solution of the gas layer equations
The field variables h and pg for the gas layer are discretized in accordance with the
discretization for the field variables for the liquid. Specifically, the pressure field pg is
stored at grid points in the same locations along the horizontal axis as the pressure field in
the liquid, as shown in figure 2. The height h is stored at grid points in the same locations
along the horizontal axis as the velocity field u in the liquid.

As shown in Appendix A.1, substituting the equation of state (2.5) into the lubrication
equation (2.4) yields

12
μ

γ
hpt + 12μhtp = 1

γ
h3pxpx + 3h2hxppx + h3ppxx, (3.4)

where the g subscript on the pressure has been dropped. We solve for this equation as
follows:

(i) p is known at the timestep t(n) = nΔt;
(ii) h, ht and, therefore, hx are known at timestep t(n) = nΔt;

(iii) solve for p at timestep t(n+1) = (n + 1)Δt;
(iv) use p as a boundary condition for the flow in the liquid, to obtain v = ht at timestep

t(n+1).

To numerically solve (3.4), we discretize the spatial derivatives using second-order centred
finite differences. To avoid a timestep restriction, we make use of the backward Euler
method for discretizing the temporal derivative. Hence, we obtain the discretized form

12
μ

γ
h̄

(
pn+1

i − pn
i

Δt

)
+ 12μh̄tpn+1

i = 1
γ

h̄3

(
pn+1

i+1 − pn+1
i−1

2Δx

)2

+ 3h̄2h̄xpn+1
i

(
pn+1

i+1 − pn+1
i−1

2Δx

)
+ h̄3pn+1

i

(
pn+1

i+1 − 2pn+1
i + pn+1

i−1

Δx2

)
, (3.5)

that can be solved for the gas pressure pn+1
i . In (3.5) the terms h̄, h̄t and h̄x must be

evaluated at the location of pn+1
i . Since the height field is staggered with respect to the

pressure field, this is done via linear interpolation and centred differencing, so that

h̄ = hi + hi+1

2
, h̄t = ht,i + ht,i+1

2
, h̄x = hi+1 − hi

Δx
. (3.6a–c)

Due to the products of pressure terms on the right-hand side of (3.5), it is a nonlinear
system of equations. We solve this using the Newton–Raphson method as described in
Appendix A.2.
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3.4. Code implementation and parameter choices
The simulations are performed using a custom code written in C++, using the OpenMP
library for multithreading. The code makes use of the templated geometric multigrid
(TGMG) library for solving the linear systems that arise when solving for the fluid. Each
timestep requires four linear system solves: (1) to apply the MAC projection, (2) to apply
the approximate FEM projection, and (3,4) to solve for the x and y velocity components
when treating the viscous stress term implicitly. The code accepts a text configuration
file as input, which sets all of the physical parameters, and describes the computational
domain. The code and sample text configuration files are available on GitHub – see the
data availability statement. The simulations are performed on a M × N grid for the liquid
domain, and grid of length M for the gas layer. We choose the grid spacings to be equal,
so that Δx = Δy. This implies that the aspect ratio β is equal to N/M.

Since the second derivative terms in both the liquid domain and the gas layer are
handled implicitly, and the surface tension term in (2.6) is small, there is no timestep
restriction in the simulation that scales like Δx2 (Heath 2002). We therefore choose a
candidate timestep to satisfy Δt = ζΔx for a dimensionless constant ζ , based on satisfying
Courant–Friedrichs–Lewy conditions (Courant, Friedrichs & Lewy 1967) for the advective
terms in the liquid domain and gas layer.

The simulation outputs Nf frames over the duration of the simulation. Thus, the time
between frames is tf = tend/Nf . In general, an integer multiple of candidate timesteps will
not exactly match tf , so that cΔt < tf < (c + 1)Δt. Because of this, the actual timestep
is slightly adjusted to Δt′ = tf /(c + 1) and c + 1 timesteps are taken between frames.
Several examples demonstrating the performance of the code are provided in Appendix B.

4. Results and discussion

4.1. Initial dynamics and comparison with potential flow theory
To validate our approach, we first simulate the initial dynamics and we compare with the
scaling results of potential flow theory that were introduced in § 2.4 for the height of the
stagnation point H∗ (Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner 2012).
We use the baseline physical parameters given in table 2. Since we only want to resolve
the initial deceleration of the drop, and not the formation of the thin gas layer, we use
the computational parameters in the third column of table 3, which feature a relatively
coarse numerical grid of size 2048 × 256. To compute H∗, we examine the sequence of
height profiles from the simulation and find the time t∗ when ht(0, t∗) = 0, from which
H∗ = h(0, t∗).

As described in § 2.4, at low initial velocities the flow in the gas layer can be treated
as incompressible, and the scaling result H∗ = R St2/3 can be derived. Mani et al. (2010)
extend this analysis to look at higher initial velocities, where compressibility of the gas
becomes important. This happens at a height of

H∗ = R(μgV/RP0)
1/2, (4.1)

where the subscript ‘∗’ is used to distinguish from the stagnation height. By modelling the
subsequent drop deceleration below H∗ assuming gas compressibility, Mani et al. (2010)
derive the result

H∗
comp = R St2/3ε(2−γ )/(2γ−1) (4.2)

for the stagnation height.
We first performed sequences of simulations using low initial velocities over the range

from V = 0.15 m s−1 to V = 1.35 m s−1, using four different liquid viscosities from
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Quantity Value Units

P0 Initial gas pressure 105 Pa
R Initial drop radius 1.5 × 10−3 m
V Initial drop velocity 0.45 m s−1

γ Heat capacity ratio, gas 1.4 —
σ Interfacial surface tension 0.072 N m−1

ρg Density, gas 1.2754 kg m−3

ρl Density, liquid 997.96 kg m−3

νg Kinematic viscosity, gas 1.506 × 10−5 m2 s−1

Table 2. Baseline choices for the physical parameters used in the simulations. These parameters are used
throughout the paper, with modifications to them noted in the text.

Initial dynamics, Lift-off, Lift-off,
Quantity all values of νl νl ≤ 20 mm2 s−1 νl > 20 mm2 s−1

(M, N) Grid dimensions (2048, 256) (5120, 960) (5120, 960)

β Aspect ratio 1
8

16
3

16
3

ζ Timestep multiplier 8 × 10−3 8 × 10−3 8 × 10−3

L̃ Domain width 30 30 45
H̃0 Initial drop height 15 15 15
t̃end Duration 50 50 100
Nf Number of frames 250 250 250

Table 3. Baseline choices for the simulation parameters, which are all non-dimensional. The first set of
parameters are for computing the initial dynamics and value of H∗ in § 4.1. The second two sets are for the
lift-off calculations in all other sections. The procedure for connecting the non-dimensional variables L̃, H̃0
and t̃end to physical values is described in § 2.4.

νl = 10 mm2 s−1 to νl = 300 mm2 s−1. We also ran two sets of simulations with the
surface tension set to half and zero its baseline value. Figure 3(a) shows a plot of
H∗/(R St2/3) as a function of ε−1, with these six sets of data points in the left half
of the domain where ε−1 < 1 and gas compressibility is not important. We see that
H∗/(R St2/3) is approximately constant and is in agreement with (2.12). To examine the
trends more clearly, figure 3(b) shows a zoomed-in plot of the same data. As expected,
the best agreement is achieved for the smallest value of νl and for zero surface tension.
For ε−1 < 1, the values of H∗/(R St2/3) are slightly lower for the cases of larger νl and
σ . The decrease in height of the stagnation point as νl increases is qualitatively consistent
with the experimental observations of Langley et al. (2017), and hints at the limits of the
potential flow theory (Mandre et al. 2009; Mani et al. 2010). By performing experiments
with viscosities of up to 2 × 106 mm2 s−1, Langley et al. (2017) are able to demonstrate
that the centreline air thickness (closely related in definition to H∗) scales like μ

−1/9
l .

However, since we use inviscid boundary conditions on the top and sides of the fluid
domain, we are unable to simulate large viscosities to compare to this result. Modifying
our boundary conditions to work with large viscosities remains a subject for future work.

We also performed two sequences of simulations with higher initial velocities from
V = 1 m s−1 to V = 18 m s−1 using νl = 10 mm2 s−1, to examine the compressible
regime. However, we note from (2.13) that our usual choice for initial height scales
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Figure 3. (a) Plot of rescaled initial stagnation height H∗/(R St2/3) as a function of the inverse of the
dimensionless compressibility parameter ε = P0R St4/3/μgV , for a range of different liquid viscosities νl,
surface tensions σ and gas parameters γ . Unless otherwise stated, baseline parameters from tables 2 and 3
are used. By default, the drop starts from a height H0 scaled according to (2.13). For νl = 10 mm2 s−1, to
account for compressibility effects, data from two simulation sequences that use a fixed initial height (FIH)
based on substituting V = 2 m s−1 into (2.13) are shown. (b) Zoomed-in plot of the same data, showing the
region bounded by the dotted grey rectangle in panel (a).

according to V−2/3, whereas from (4.1), the height where compressibility is important
scales according to V1/2. To fully capture the compressible effects, the drop must start
higher than H∗, and, thus, the usual initialization procedure is problematic for large V .
For these simulations, we therefore set H0 at a fixed value based on using V = 2 m s−1

in (2.13). We ran two sequences of simulations using the usual choice of γ = 1.4, and
another with γ = 1; as shown in figure 3, these results are in very good agreement with
the scalings of ε1/3 and ε, respectively, that are expected from (4.2).

4.2. Evolution of dynamics and effect of liquid viscosity
With the initial dynamics validated, we now turn attention to simulating the continued
spreading of the liquid drop on a layer of gas, and the effect of viscosity on the evolution
of the liquid–gas interface. We use the same baseline physical parameters given in table 2,
but since we must now accurately resolve the gas layer as it becomes very thin, we increase
the simulation resolution as shown in the fourth and fifth columns of table 3. Furthermore,
since the deviation of the interface from the solid surface happens later for high viscosities
(Kolinski et al. 2014b), we use a larger domain and longer duration when νl > 20 mm2 s−1,
as indicated in the fifth column of table 3. We begin by using the baseline initial drop
velocity of V = 0.45 m s−1 to match the experiments of Kolinski et al. (2014b).

Figure 4 shows the height profiles for three different simulations using liquid viscosities
of νl = 10 mm2 s−1, νl = 32 mm2 s−1, and νl = 100 mm2 s−1. Panels (a)–(c) show a
large-scale view, where the initial parabolic profile approaches the surface, begins to
decelerate and deforms to create the dimple. After the drop continues to fall, a thin layer of
gas from x � 200 μm is created and spreads outward. In all three simulations, the height
profiles have a front that sweeps outward as more liquid approaches the surface.

Figure 5 shows snapshots of the pressure and vorticity in the liquid domain for the
simulation with νl = 10 mm2 s−1. At t = 24.02 μs, the drop is still approaching the
surface. The pressure builds up close to x = 0. Since the liquid near x = 0 is decelerated
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Figure 4. Profiles of the height h(x, t) of the gas layer at intervals spaced 6.004 μs apart, corresponding to an
integer multiple of the frame output interval tf described in § 3.4, for liquid viscosities of (a) νl = 10 mm2 s−1,
(b) νl = 32 mm2 s−1 and (c) νl = 100 mm2 s−1. All other simulation parameters follow the baseline values
in tables 2 and 3. Panels (d)–( f ) show the same data as (a)–(c), respectively, but with a smaller range of h to
highlight the lift-off behaviour. For each profile, the global minimum, which follows the leading tip, is also
plotted on the curves; once the global minimum is no longer at the leading tip, it is no longer plotted. The
dashed box in panel (d) marks a further zoomed-in region shown in figure 6.

faster, this creates a region of negative vorticity over 0 � x � 250 μm. By t = 72.05 μs,
the thin layer of gas has formed, and the position of the front from figure 4(a) is marked
with a small triangle. There is a region of large positive pressure behind the front, a small
region of negative pressure ahead of it. The contour of zero vorticity follows the front
as it moves outward to t = 96.07 μs. The pressure fields are similar to those reported by
Philippi et al. (2016), who also compute the pressure in the interior of the drop, using a
different simulation framework (Popinet 2003, 2009; Lagrée et al. 2011).

Figure 4(d–f ) shows zoomed-in plots of the height profiles in the thin layer for the three
simulations. Behind the front, the height profiles align on top of each other, and trace out
relatively stable envelopes, appearing as thick blue lines in figure 4(d–f ). In all three cases
the envelopes initially slope downward before curving upward, indicating the deviation of
the liquid–gas interface away from the solid surface, prior to contact between the solid and
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Figure 5. Snapshots of pressure, p, (left) and vorticity, ω = [∇ × u]3, for a portion of the liquid domain for
a simulation with liquid viscosity νl = 10 mm2 s−1, where all other parameters follow the baseline values in
tables 2 and 3. The field values exhibit large variations in scale and also switch sign, so a nonlinear mapping
f (α) = (1/log 10) sinh−1(α/2) is used to create the colour maps. The thick black lines indicate the zero contour.
The thin black lines show contours for ±10n/2 Pa for pressure and ±10n s−1 for vorticity, where n ∈ N0.
For t = 72.05 μs and t = 96.07 μs, the position of the front (given by the local minimum of the profiles in
figure 4a,d) is marked with a triangle.

the liquid. This is the lift-off phenomenon (Kolinski et al. 2014b). Lift-off occurs more
quickly for lower viscosities, and the envelope slopes upward faster. These results are in
close agreement with the experimental results of Kolinski et al. (2014b).

We now quantify the lift-off time and position. While the envelopes in figure 4(d–f ) are
relatively well defined, the height profiles shift slightly in over time, making it difficult to
precisely define the moment of lift-off. However, close inspection of figure 4(d–f ) shows
that in all cases the height profiles have a leading tip that dips slightly below the envelope
that forms. We found this to be a well-defined feature that occurs universally across all of
our simulations. The tip position can be determined as the global minimum of the height
profile at each time, and provides a way to precisely define when lift-off occurs, at the
moment when the leading tip starts to rise.

Figure 6(a) shows a further zoomed-in plot of the height profiles during lift-off for
the case of νl = 10 mm2 s−1. Once the leading tip has risen sufficiently, then it is no
longer the global minimum. However, since lift-off has always occurred by the time the
leading tip is rising, this does not cause any difficulty in identifying the lift-off time. It
is natural to consider whether the leading tip is a real feature or a numerical artifact that
emerges from discretization error and limited resolution. To address this, figure 6(b) shows
a further zoomed-in region, depicting the leading tip in detail. Here, the blue circles show
individual simulation grid points. The grid spacing is substantially smaller than the width
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Figure 6. Zoomed-in plots of the height of the gas layer at intervals spaced 1.2009 μs apart for liquid viscosity
νl = 10 mm2 s−1, where all other parameters follow the baseline values in tables 2 and 3. Panel (a) shows the
region marked by the dashed box in figure 4(d). For each profile, the global minimum, which follows the leading
tip, is also plotted on the curves; once the global minimum is no longer at the leading tip, it is no longer plotted.
Panel (b) shows the region marked by the dashed box in panel (a). In panel (b) the small blue circles indicate
the computational grid. The grey dashed lines show the profiles with Gaussian smoothing applied, and the grey
circles show the global minima of the smoothed lines.

of the leading tip, indicating that it is a real feature. Further numerical tests of accuracy
are provided in Appendix C.

The width of the tip is governed by surface tension. While many of our simulations use
the baseline value of σ = 0.072 N m−1 from table 2, we also consider reduced surface
tension where the tip becomes sharper. In this case, there can be numerical difficulties in
identifying the minimum due to per grid point variations in the height profile. To create
a scheme for identifying the minimum across all simulations, we therefore smooth the
height profile using a Gaussian kernel with length scale 1.2 μm. This results in a minimal
alteration in the leading tip position (figure 6b), but improves robustness when analysing
the simulations. Numerically, the global minimum is found by identifying the local minima
of the cubic interpolant of the smoothed profile, and selecting the smallest one.

Figures 7 and 8 show trajectories of the leading tip for a range of viscosities, from
νl = 2.5 mm2 s−1 to νl = 160 mm2 s−1, for drop impact velocities of V = 0.45 m s−1

and V = 0.9 m s−1, respectively. The distance x that characterises the horizontal extent of
the dimple, as shown in figures 7(a) and 8(a), closely matches the experimental results of
Kolinski et al. (2014b) and Langley et al. (2017), respectively. The height of the gas layer,
h ∼ O(100) nm, is also in a similar regime as the experimental observations of Kolinski
et al. (2014b) and Langley et al. (2017), though larger in value than the h observed by
Kolinski et al. (2014b).

Two regimes are visible in figure 7. For νl � 20 mm2 s−1, increasing viscosity results
in the trajectory reaching a lower value of h, and the lift-off position moving slightly
outward. For νl � 20 mm2 s−1, increasing viscosity results in the trajectory reaching a
higher value of h, and the lift-off position moves outward substantially. Small undulations
in the trajectories are visible for νl � 20 mm2 s−1, which arise due to capillary waves
in the height profile. This can have a substantial effect on the measured lift-off time,
depending on which undulation achieves the global minimum. For example, there is a large
difference between νl = 20 mm2 s−1 and νl = 25 mm2 s−1. In figure 8, for V = 0.9 m s−1,
the scale of h is smaller. The observed reduction in film thickness with increasing V is
consistent with the experimental observations of Kolinski et al. (2014b). Considering the
case of liquid–substrate contact being mediated by a reduced thickness of the air layer,
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Figure 7. Trajectories of the global minimum of the drop profile in (a) the (x, h) plane and (b) the (t, h)

plane for the baseline parameters with initial drop velocity V = 0.45 m s−1, for a range of different liquid
viscosities. All other parameters follow the baseline values in tables 2 and 3. For each trajectory, the filled
circle indicates where the global minimum reaches its lowest point, which we define as when lift-off occurs.
Each cross indicates when the global minimum no longer marks the leading tip. Trajectories for selected νl are
labelled.

0.05

0.06

0.07

0.08

0.09

0.10

0.05

0.06

0.07

0.08

0.09

0.10

150 200 250 300 350 400 450 500 550

160 m
m

2 s –1

100 m
m

2 s –1

20 30 40 50 60 70 80

160 m
m

2 s –1

100 m
m

2 s –1

x (µm)

h 
(µ

m
)

t (µs)

νl = 160 mm2 s–1
νl = 100 mm2 s–1

νl = 40 mm2 s–1
νl = 32 mm2 s–1

νl = 65 mm2 s–1
νl = 50 mm2 s–1

νl = 16 mm2 s–1
νl = 13 mm2 s–1

νl = 25 mm2 s–1
νl = 20 mm2 s–1

νl = 4 mm2 s–1
νl = 2.5 mm2 s–1

νl = 10 mm2 s–1
νl = 6.5 mm2 s–1

(b)(a)

Figure 8. Trajectories of the global minimum of the drop profile in (a) the (x, h) plane and (b) the (t, h)

plane for the baseline parameters with initial drop velocity V = 0.9 m s−1, for a range of different liquid
viscosities. All other parameters follow the baseline values in tables 2 and 3. For each trajectory, the filled
circle indicates where the global minimum reaches its lowest point, which we define as when lift-off occurs.
Each cross indicates when the global minimum no longer marks the leading tip. Trajectories for selected νl are
labelled.
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Figure 9. Lift-off time τ as a function of liquid viscosity νl, for a range of initial drop velocities V . All other
parameters follow the baseline values in tables 2 and 3. The experimental data are taken from figure 4(a) of the
paper by Kolinski et al. (2014b), which used V = 0.45 m s−1. Three data points are omitted from the plot for
low V and low νl due to physical difficulties with running the simulation; see § 4.3.

our observations are also consistent with the transition from gliding over an air layer to
contact with increasing V , as reported by Langley et al. (2017). Figure 8 also shows a larger
relative amplitude of the capillary waves as compared with the smaller impact velocity
of figure 7. As a result, the capillary waves have a noticeable effect on lift-off times at
lower viscosities, with a large difference in lift-off time between νl = 10 mm2 s−1 and
νl = 13 mm2 s−1.

We now compare to the experimental finding of Kolinski et al. (2014b) that the lift-off
time is proportional to ν

1/2
l . The lift-off time τ in this previous work is defined relative

to a time origin of when the drop would reach h = 0 in the absence of the surface. Here,
since the initial height h0 and velocity V are known, we compute the time origin as t0 =
h0/V . By contrast, Kolinski et al. (2014b) were not able to directly view h0, since the drop
can only be observed once it enters an evanescent field of height hev = 1 μm. Instead,
they measured the first position and time (h′, r′, t′) when the drop enters the evanescent
field, and assume that the drop is undeformed at this position, so that h′ = h0 − Vt′ +
r′2/(2R2). Hence, h0 can be calculated and, therefore, the time origin is texp

0 = h0/V −
t′ + r′2/(2R2V).

Figure 9 shows the lift-off times τ as a function of viscosity for seven different
values of initial velocity V . The data points from Kolinski et al. (2014b) are also
plotted. Even though the experiments of Kolinski et al. (2014b) are performed in a
three-dimensional axisymmetric configuration, there is good quantitative agreement with
the two-dimensional simulation results.

Overall, the results are consistent with the ν
1/2
l scaling result, but the additional

precision provided by the simulations reveals a more complicated relationship between
νl and τ . For each value of V , the data points exhibit some fluctuations, which are due
to the undulations visible in figure 7 where the global minimum defining the lift-off
time may abruptly change. While a ν

1/2
l scaling appears consistent with the high impact

velocities where V � 0.75 m s−1, the data for low impact velocities looks a better fit to ν
η
l ,
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where there are two different values of η with a change at νl ≈ 20 mm2 s−1. This is also
consistent with the two different types of behaviour observed in figure 7.

The slope of data points for small values of νl in figure 9 is strongly affected by the
choice of time origin, and may affect the conclusions about the relevant exponents. To
investigate this further, we replotted the data using texp

0 as the time origin; this resulted in
a small shift upwards of the data (since texp

0 < t0 in all cases), but did not affect the overall
patterns. As a third approach, we defined a time origin tdat

0 directly from the data, by
finding the best fit to the model τdat = t − tdat

0 = γ (νl/νsc)
α for the three free parameters

(tdat
0 , γ, α). Here νsc = 20 mm2 s−1 is chosen as an arbitrary viscosity scale. Specifically,

for the data points (νl,k, tk), we minimized the residual

S(tdat
0 , γ, α) = 1

2

∑
k

(
log γ + α log

νl,k

νsc
− log(tk − tdat

0 )

)2

. (4.3)

We used the L-BFGS-B algorithm for bound-constrained nonlinear optimization (Byrd
et al. 1995), and enforced tdat

0 < 0.999tmin and α > 0, where tmin = mink{tk}. We started
the minimization using multiple initial guesses with tdat

0 ∈ [0.7tmin, 0.9tmin] and α ∈
[0.4, 1.2]. For each pair (tdat

0 , α), the value of γ is set so that the bracketed expression
in (4.3) is zero for the νl = 20 mm2 s−1 data point, so that the initial guess should be close
to the minimum of S.

Figure 10 shows a replotting of the data relative to this time origin. The data for
V = 0.15 m s−1 is omitted from this plot since the lift-off times are non-monotonic for
the smallest values of νl. For each other value of V , the minimization procedure converges
to a single unique solution for all initial guesses. With this definition of time origin, all of
the data are more consistent with a linear scaling relationship as opposed to the square-root
relationship in figure 9. Panels (b)–(d) show the values of the fitted parameters, and
demonstrate that α ∈ [1.02, 1.28] in all cases. The average residual over the six different
values of V is S̄ = 0.2536. If the exponent is constrained to α = 1

2 to match the exponent
of Kolinski et al. (2014b) then the average residual increases to S̄ = 0.3855 and the data
points exhibit an upward curve in a log–log plot that systematically deviates from a power
law. Constraining the exponent to α = 1 results in S̄ = 0.2805 and a better fit to the
model that is similar to the three-parameter fit shown in figure 10. See the supplementary
information for additional discussion and parameter fits. These results highlight that any
theoretical analysis of the relationship between τ and νl would need to take into account
the sensitivity of defining the time origin.

Figure 11(a) shows lift-off times (relative to t0) for three different drop radii: the original
value of R = 1.5 mm, and as well as half and double this value. Increasing the radius
increases the lift-off time, similar to the effect of lowering velocity in figure 9.

4.3. The role of surface tension
The simulations allow us to change the surface tension in ways that would be difficult to do
experimentally, to investigate the importance of this physical effect. Changing the surface
tension allows us to suppress or accentuate the capillary waves in the liquid–gas interface,
as shown in figure 7, to investigate the effect of surface tension on the phenomenon of
lift-off. Following the same procedure as in § 4.2, we calculated the lift-off times for σ =
0.0072 N m−1, σ = 0.036 N m−1 and the σ = 0.144 N m−1, corresponding to a tenth,
half and double the usual surface tension values, respectively. Figure 11(b) shows that
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Figure 10. (a) Lift-off time τdat as a function of liquid viscosity νl, for a range of initial drop velocities V , using
the alternative time origin definition based on by minimizing the three-parameter residual function in (4.3). All
other parameters follow the baseline values in tables 2 and 3. (b–d) Best fits of the parameters tdat

0 − t0, γ , and
α for different initial drop velocities.
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Figure 11. Lift-off time as a function of liquid viscosity, for a range of (a) different drop radii and (b) different
surface tension values. All other parameters follow the baseline values in tables 2 and 3. The data point for
(νl, R) = (2.5 mm2 s−1, 0.75 mm) is omitted due to physical difficulties with running the simulation (§ 4.3).
The data points for σ = 0.0072 N m−1 and νl ≥ 100 mm2 s−1 are omitted because lift-off does not occur over
the simulation duration.

as surface tension is reduced, the lift-off times increase markedly. For the case of σ =
0.0072 N m−1, lift-off is eliminated for large values of νl, with the leading tip continuing
to decrease over the course of the simulation.

Figure 11(b) strongly suggests that surface tension is important in creating lift-off.
Reducing from σ = 0.036 N m−1 to σ = 0.0072 N m−1 almost doubles the lift-off times
in most cases, and one can ask whether lift-off will be completely eliminated in the
limit as surface tension vanishes. To examine this, we ran a sequence of simulations with
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Figure 12. Profiles of the height of the gas layer at intervals spaced 6.004 μs apart for liquid viscosities
of (a) νl = 10 mm2 s−1, (b) νl = 32 mm2 s−1 and (c) νl = 100 mm2 s−1 using zero surface tension. All
other parameters follow the baseline values in tables 2 and 3. Panels (d)–( f ) show the same data as (a)–(c),
respectively, but with a smaller range of h to highlight that no lift-off occurs in this case. For each profile, the
global minimum, which follows the leading tip, is also plotted on the curves. The dashed box in panel (d) marks
a further zoomed-in region shown in figure 13.

σ = 0, with several representative examples for νl = 10 mm2 s−1, νl = 32 mm2 s−1 and
νl = 100 mm2 s−1 shown in figure 12. This is a difficult limit to probe in our simulations,
since as discussed for figure 6, surface tension regularizes the leading tip. Figure 13 shows
close-ups of the profiles for νl = 10 mm2 s−1, indicating that the leading tip becomes as
sharp as a single grid point, and the minima of the profiles can fluctuate non-monotonically
depending on exactly how the tip aligns with the computational grid. However, in this case
the profile smoothing procedure introduced in § 4.2 is sufficient to extract smooth leading
tip trajectories.

The very sharp leading tip causes another difficulty in the simulations: as the tip is
advected across the computational grid, there will be an effective numerical diffusion,
which will act as though a small surface tension has been imposed. This is an important
issue since figure 11(b) already confirms that small surface tensions can considerably alter
the behaviour. To test this, we compared simulations with the baseline parameters to those
on finer grids (Appendix C). Unlike the case for finite surface tension, the simulations on
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Figure 13. Zoomed-in plots of the height of the gas layer at intervals spaced 1.2009 μs apart for liquid
viscosities of νl = 10 mm2 s−1 using zero surface tension. All other parameters follow the baseline values
in tables 2 and 3. Panel (a) shows the region marked by the dashed box in figure 12(d). For each profile, the
global minimum, which follows the leading tip, is also plotted on the curves. Panel (b) shows the region marked
by the dashed box in panel (a). In panel (b) the small blue circles indicate the computational grid. The grey
dashed lines show the profiles with Gaussian smoothing applied, and the grey circles show the global minima
of the smoothed lines.

finer grids are noticeably different, with the profiles reaching lower heights and the leading
tip not curving up as rapidly. Since liquid viscosity also regularizes the evolution of the
height profile, these discrepancies are more significant when νl is small.

We calculated the trajectories of the leading tip for a range of values for liquid viscosity,
νl. For 13 mm2 s−1 < νl ≤ 40 mm2 s−1, we switched to a larger computational grid of
size 8192 × 1536 and, for νl ≤ 13 mm2 s−1, we switched to a very large grid of size
12 288 × 2304. For νl ≤ 44 mm2 s−1, we were not able to simulate on a large enough grid
to adequately resolve the numerical diffusion and, hence, results in this range are omitted.
Figure 14 shows the trajectories in both the (x, h) and (t, h) planes. In all cases, the leading
tips continue to decrease. While our results only examine one particular set of physical
parameters (from table 2) our results strongly suggest that surface tension is required for
lift-off to occur. Moreover, we observe that the thickness of the gas layer increases with
νl. This is consistent with the experimental findings of Langley et al. (2017), who observe
a transition from drop–substrate contact to gliding of the drop over a thin air film as νl
increases.

We also found a regime where the effect of surface tension can qualitatively affect
the lift-off behaviour. Figure 15(a) shows the height profiles for a simulation with the
baseline value of surface tension of σ = 0.072 N m−1 in the regime of low initial velocity,
V = 0.3 m s−1 and low viscosity, νl = 6.5 mm2 s−1. In this regime, prominent capillary
waves are generated outside the thin gas layer, which grow larger as time progresses.
Figure 15(b) shows a zoomed-in plot of the profiles in the thin gas layer. Lift-off appears
to occur at x ≈ 280 μm and the leading tip starts to rise. However, the influence of the
capillary wave causes the tip to move downward again, ultimately dipping below the
previous minimum height. It is possible that the tip may move upward again at a later
point, but we were unable to track the behaviour further. The sharp features visible in
figure 15(a) (e.g. at (x, h) ≈ (700 μm, 100 μm)) cause the simulation to terminate early,
since the Newton–Raphson iterations can no longer be solved to an acceptable level of
accuracy.
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Figure 14. Trajectories of the global minimum of the drop profile in (a) the (x, h) plane and (b) the (t, h)

plane for a range of different liquid viscosities, using the baseline parameters in tables 2 and 3 and zero surface
tension. Simulations with 13 mm2 s−1 < νl ≤ 40 mm2 s−1 use a grid of size 8192 × 1536, and simulations
with νl ≤ 13 mm2 s−1 use a grid of size 12 288 × 2304. Trajectories for selected νl are labelled.
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Figure 15. (a) Profiles of the height of the gas layer at intervals spaced 11.80 μs apart for a liquid viscosity
of νl = 6.5 mm2 s−1 and initial drop velocity of V = 0.3 m s−1, showing the development of capillary waves.
All other parameters use the baseline values in tables 2 and 3. (b) Zoomed-in plot of the same data. The global
minima of the curves are plotted when they indicate the leading tip.

4.4. Effect of compressibility in the gas
We performed simulations to examine the lift-off behaviour in the regime of high initial
drop velocity when compressibility in the gas becomes important. We chose V = 2 m s−1,
which is substantially into the compressible regime of figure 3. We focused on νl =
32 mm2 s−1, and due to the faster dynamics in the regime, we halved the timestep
multiplier from its baseline value to ζ = 4 × 10−3. Figure 16(a) shows that the behaviour
is qualitatively different in this case, with the central dimple noticeably rebounding while
the drop profile spreads outward. Figure 16(b) shows a zoomed-in region of the thin gas
layer. Other than V , all physical simulation parameters are identical to those used in
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Figure 16. (a) Profiles of the height of the gas layer spaced 0.4998 μs apart for a liquid viscosity of νl =
32 mm2 s−1 and an initial drop velocity of V = 2 m s−1, where the gas compressibility becomes important.
The timestep multiplier is set to ζ = 4 × 10−3. All other parameters use the baseline values in tables 2 and 3.
(b) Zoomed-in plot of the same data. (c) Semi-log plot of the centreline height h(0, t) for four different drop
velocities when νl = 32 mm2 s−1, with all other parameters using the baseline values.

figure 4(e), yet the results are considerably different with a much thinner gas layer, and
visually, they are a closer match to the simulations without surface tension. For these
simulations, we were therefore not able to identify the lift-off time. Figure 16(c) shows
plots of the centreline height h(0, t) for four different values of V indicating that the relative
rebound of the central dimple is much larger for higher drop impact velocities.

5. Conclusion

In this paper we investigated the viscous effects in the early stages of drop impact on
a surface. We coupled a Navier–Stokes solver to model flow in the interior of the drop
with a partial differential equation to model the pressure and height in the thin gas layer
between the drop and the surface. We demonstrated that our simulations are consistent
with previous work using potential flow theory where flow in the liquid is assumed
incompressible (Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner 2012). However,
our simulations allow us to go beyond this previous work and investigate viscous effects.
We showed that at low initial drop velocities, viscosity plays a weak role in the deceleration
of the drop, and the height H∗ at which it reaches a stagnation point.

Using our simulations, we are able to recreate the lift-off phenomenon that was
experimentally reported by Kolinski et al. (2014b). We have therefore demonstrated that
with the reduced model described in § 2, our simulations are able to capture lift-off. Our
numerical results for the lift-off time τ are consistent with the ν

1/2
l scaling relationship

found by Kolinski et al. (2014b). However, the additional precision afforded by the
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simulations indicates that the precise relationship between τ and νl is more complex,
due to the effects of capillary waves and the sensitivity of the results to the definition
of the time origin. The simulation allows us to probe conditions that would be difficult
to observe experimentally. Using this capability, our results provide strong evidence that
surface tension is necessary for lift-off to occur. This is consistent with the numerical
study of Duchemin & Josserand (2011), who found that surface tension was required
for the formation of a thin jet skating above the surface. In their study, the absence of
surface tension led to a finite-time singularity where the liquid–gas interface touches
the substrate, whereas in our case the interface asympotically approaches the substrate.
However, there are several differences between their simulations and ours, such as the
usage of axisymmetric coordinates, and a different way to represent the liquid–gas
interface and solve for the relevant physical variables. It is therefore difficult to make an
exact comparison.

There are a number of possible next steps. The simulations provide a detailed view of
the lift-off phenomenon, and all aspects (e.g. stress, velocity, vorticity) can be calculated.
The results may therefore guide theoretical analyses of lift-off, and may allow scaling
relationships similar to those presented by Mandre et al. (2009), Mandre & Brenner
(2012) and Mani et al. (2010) to be derived. As part of our study, we have released a
complete high-performance open source code that can examine lift-off across a wide range
of configurations.

We opted to use a fixed-grid simulation for simplicity in coupling the liquid domain and
gas layer together, and as described in Appendices B and C we are able to obtain accurate
simulation results in a reasonable timeframe. However, it is likely that the behaviour at
the bottom of the liquid domain, close to the liquid–gas interface and near the leading tip,
dominates. Because of this, the simulation is a good candidate for use with adaptive mesh
refinement (Berger & Oliger 1984; Guittet, Theillard & Gibou 2015), where the liquid–gas
interface and the region around the leading tip could use a finer mesh. Adaptive mesh
refinement has already been used for full-scale simulations of droplet impact, such as those
using the Gerris/Basilisk software (Popinet 2003, 2009; Lagrée et al. 2011; Popinet 2015;
Philippi et al. 2016), but it could also be a useful avenue to explore for our reduced model. It
would result in substantial computational savings, although the liquid–gas coupling would
become more complicated and numerical errors would be harder to quantify.

The simulation could also be generalized to use cylindrical axisymmetric coordinates.
The overall numerical approach would stay the same, but additional radial factors would
have to be incorporated throughout the simulation. The Navier–Stokes solver that we
employ has already been demonstrated to work in axisymmetric coordinates (Yu et al.
2003, 2007), but the routines that involve the gas layer would require modifications. For
example, the kernel in (2.10) would need to be modified. While the current simulation
is already in good agreement with the experimental results of Kolinski et al. (2014b), an
axisymmetric solver would allow for a near-perfect comparison. This would, for example,
help elucidate further the precise relationship between lift-off time τ and liquid viscosity
νl.

Experiments by Thoroddsen and coworkers have used interferometry to examine the
evolution of the gas layer across a full two-dimensional surface (Langley et al. 2017).
Their results show a number of interesting effects beyond the scope of our current model,
such as a breakage of rotational symmetry and the formation of ruptures in the air film
(Langley et al. 2017; Li et al. 2017). They have also examined the case of nano-rough
surfaces (Langley et al. 2018). To connect with this work, our model could be generalized
to a full three-dimensional simulation of the liquid and two-dimensional simulation of the
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gas layer. This would be substantially more computationally challenging, and would be a
good candidate for using parallel computing and adaptive mesh refinement (Zhang et al.
2019).
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Appendix A. Calculations for the governing equation in the gas layer

A.1. Derivation of the gas layer pressure update equation
Substituting for ρg from the equation of state, (2.5), into the lubrication equation for the
pressure in the gas layer, (2.4), we get

12μg

((
ρ0

p1/γ

0

p1/γ
g

)
h

)
t

=
((

ρ0

p1/γ

0

p1/γ
g

)
h3pg,x

)
x

. (A1)

Dividing both sides by ρ0/p1/γ

0 ,

12μg(p1/γ
g h)t = ( p1/γ

g h3pg,x)x. (A2)

Using the product rule to expand the brackets,

12μg

(
1
γ

p1/γ−1
g pg,th + p1/γ

g ht

)
= 1

γ
p1/γ−1

g pg,xh3pg,x + p1/γ
g 3h2hxpg,x + p1/γ

g h3pg,xx.

(A3)
Dividing both sides by p1/γ−1

g ,

12μ

(
1
γ

pg,th + pght

)
= 1

γ
pg,xh3pg,x + pg3h2hxpg,x + pgh3pg,xx. (A4)

Dropping the subscript g for gas yields

12μ

(
1
γ

pth + pht

)
= 1

γ
pxh3px + p3h2hxpx + ph3pxx, (A5)

which can be rearranged to give (3.4).

A.2. Numerical solution of the gas layer pressure
We now describe how to solve (3.5) in the main text for updating the gas layer pressure
using the Newton–Raphson method. Let Pk be a vector containing the pressure estimates
at the kth Newton–Raphson iteration. As an initial estimate, we set P0 to be the pressure

945 A13-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/chr1shr/vdropimpact
https://github.com/chr1shr/tgmg
https://orcid.org/0000-0002-9487-5531
https://orcid.org/0000-0002-9487-5531
https://orcid.org/0000-0002-2897-2579
https://orcid.org/0000-0002-2897-2579
https://orcid.org/0000-0003-4677-6990
https://orcid.org/0000-0003-4677-6990
https://doi.org/10.1017/jfm.2022.445


S. Mishra, S.M. Rubinstein and C.H. Rycroft

values from the nth timestep. We then write (3.5) as a nonlinear system F(P) = 0, where
the ith component of F is given by the left-hand side minus the right-hand side of (3.5)
evaluated at the ith grid point. An improved estimate Pk+1 for the pressure is given in
terms of Pk by

JF(Pk)(Pk+1 − Pk) = −F(Pk), (A6)

where JF(Pk) is the Jacobian of F, which has components

Jk+1
F,ij = ∂Fi

∂Pk+1
j

. (A7)

Since the finite-difference stencils in (3.5) only involve adjacent grid points, JF is a
tridiagonal system. It can be written as

JF =

⎛
⎜⎜⎝

b0 c0
a1 b1 c1

a2 b2 c2
. . .

. . .
. . .

⎞
⎟⎟⎠ , (A8)

where the terms are given by

ai = ∂F

∂pn+1
i−1

= 1
γ

h̄3

Δx

(
pn+1

i+1 − pn+1
i−1

2Δx

)
− 3h̄2h̄x

2Δx
pn+1

i + h̄3

Δx2 pn+1
i , (A9)

bi = ∂F

∂pn+1
i

= −12
μ

γ

h̄
Δt

(1) − 12μh̄t −
[

3h̄2h̄x

2Δx

(
pn+1

i+1 − pn+1
i−1

)

= + h̄3

Δx2

(
pn+1

i+1 − 2pn+1
i + pn+1

i−1

)
+ h̄3

Δx2 pn+1
i (−2)

]
, (A10)

ci = ∂F

∂pn+1
i+1

= − 1
γ

h̄3

Δx

(
pn+1

i+1 − pn+1
i−1

2Δx

)
− 3h̄2h̄x

2Δx
pn+1

i − h̄3

Δx2 pn+1
i . (A11)

Solving (A6) can be done efficiently using LAPACK’s tridiagonal solver dgtsv (Anderson
et al. 1999). In most cases, since the pressure does not change by a large amount per
timestep, fewer than five iterations are required in order to achieve numerical convergence.

Appendix B. Tests of the simulation performance

Table 4 contains statistics about the performance of the code for several simulations that
were referenced in the main text. All tests were run using ten threads on an Ubuntu Linux
computer with a ten-core 2.8 GHz Intel Core i9-10900 CPU, and the code was compiled
with GCC version 10.3.

The initial dynamics simulations only need to capture the large-scale deformation of the
drop, and can therefore be run on relatively coarse computational grids. Consequently, a
typical simulation takes approximately 40 min of wall clock time to run. A large portion
of the computation time is spent on solving the linear systems with the multigrid method.
This should be expected since the multigrid V-cycles involve repeated scans over the
entire grid. Collectively, the four multigrid solves take up 44 % of the total computation
time. The MAC and FEM linear systems take slightly more time and V-cycles, since
apart from where Dirichlet boundary conditions are applied, these linear systems are
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Initial dynamics, Lift-off, Lift-off,
νl = 10 mm2 s−1 νl = 10 mm2 s−1 νl = 100 mm2 s−1

Grid size 2048 × 256 5120 × 960 5120 × 960
Total WC time 0.641 h 20.6 h 29.8 h
Total timesteps 28500 71250 95000
WC time / timestep 81 ms 1041 ms 1130 ms
WC fraction on gas layer 0.25 % 0.047 % 0.045 %
WC fraction on BCs 3.39 % 1.61 % 1.49 %
WC fraction on MAC solve 11.21 % 13.05 % 12.09 %
WC fraction on FEM solve 12.77 % 14.31 % 14.36 %
WC fraction on viscous solve 20.11 % 26.67 % 31.12 %
Mean MAC V-cycles 5 4.4 4.5
Mean FEM V-cycles 5.6 4.9 5.3
Mean viscosity V-cycles 3.7 4.3 5.5

Table 4. Performance statistics for several different simulations, compiled using GCC 10.3 on an Ubuntu
Linux computer with an 2.8 GHz Intel Core i9-10900 CPU. Ten threads were used, and all simulations use
the baseline parameter choices in tables 2 and 3 unless otherwise noted. The wall clock (WC) time is reported
for each test, and the fraction of time on major components, such as the computation of boundary conditions
(BCs), solving the MAC linear system and solving the FEM linear system, are reported.

only weakly diagonally dominant. By contrast, the linear systems for the implicit viscous
term are strictly diagonally dominant. We note that the linear systems for the u and v

velocity components are slightly different, since at x = 0 we apply different boundary
conditions, (u, vx) = (0, 0). Hence, it is not possible to vectorize this system, and there is
no substantial computational advantage over solving for the updates to u and v separately.

Calculating the boundary conditions according to (2.10) requires applying Simpson’s
rule along the M grid points on the bottom edge. This must be done for the top edge of
length M, and the right edge of length N, requiring O(M(M + N)) work in total. This is
a sizable amount of work and takes 3.4 % of the total computation time. Even though the
gas layer involves several Newton steps and tridiagonal matrix solves, it only needs O(M)

work and, therefore, takes up a minimal amount of the total computation time.
Table 4 also contains performance information for two lift-off simulations, which are

run on larger computational grids to obtain high accuracy in the height of the gas layer.
The wall clock time per timestep increases from 81 ms to 1.041 s. Based on a linear scaling
with grid points, we would expect 81 ms to increase to (81 ms) 5120×960

2048×256 = 760 ms. Thus,
the performance is comparable, but slightly worse than, linear scaling, which may be
due to reduced cache efficiency for a larger grid. Overall, the percentages spent on the
different parts of the simulation are comparable, although the fraction spent on multigrid
V-cycles increases slightly, and the fraction spent on the gas layer (which scales like O(M))
decreases. In particular, more V-cycles are required to handle the implicit viscosity linear
system when νl is larger.

Appendix C. Tests of the simulation accuracy

The simulation domain size, which is set via the non-dimensional parameter L̃ in table 3
and the domain aspect ratio β, may have an effect on the results. Since the boundary
conditions on the top and right boundaries are based on an inviscid assumption, the domain
size affects the extent to which viscosity is resolved. In addition, when solving for the
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Figure 17. Plots of the height profiles at t = 102.07 μs for simulations with (a) liquid viscosity νl =
10 mm2 s−1 and (b) liquid viscosity νl = 100 mm2 s−1. Baseline parameters from tables 2 and 3 are used
although the original domain size for both values of νl uses L̃ = 30 and β = 16

3 . Results are also shown where
the simulation domain is extended by a factor of 1.5 in either or both dimensions. In the extended simulations,
the number of grid points is increased to keep the grid spacings Δx = Δy the same.
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Figure 18. Plots of the height profiles spaced 6.004 μs apart for three different resolutions using the
baseline parameters from tables 2 and 3, and liquid viscosity νl = 10 mm2 s−1, with (a) surface tension
σ = 0.072 N m−1 and (b) zero surface tension.

pressure in the gas layer, the boundary condition of p = P0 is imposed at x = L, and thus
extending the domain affects the influence of this boundary condition on the simulation.

To test the sensitivity of the simulation results to the domain size, we performed
simulations where either the horizontal dimension, vertical dimension or both dimensions
were extended by a factor of 1.5. In each of these simulations the grid spacings Δx = Δy
were kept the same, so that the horizontal extension increases the grid points from
5120 to 7680, and the vertical extension increases the grid points from 960 to 1440.
Figure 17 shows the height profiles in the thin gas layer for the four simulations, for
(a) νl = 10 mm2 s−1 and (b) νl = 100 mm2 s−1. The vertical extensions give visually
indistinguishable curves, indicating that the vertical dimension is sufficiently large to
resolve the viscous effects even for the larger value of νl. The horizontal extensions create
minor vertical shifts in the curves, suggesting that the pressure boundary condition has
an effect on the results. However, these shifts are still acceptably small, and result in no
substantial change to the position and time at which lift-off occurs.
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We also examined the sensitivity of the results to the numerical grid size. Figure 18(a)
shows height profiles for a simulation using the baseline parameters with liquid viscosity
νl = 10 mm2 s−1 and surface tension σ = 0.072 N m−1. Simulations with higher
resolutions of 8192 × 1536 and 12288 × 2304 are also plotted, resulting in visually
indistinguishable results. Figure 18(b) shows height profiles when the surface tension is set
to zero and all other parameters are kept the same. In this case, as discussed in § 4.3, the
leading tip becomes very sharp since the regularizing effect of surface tension is removed.
As the tip moves across the grid, there will be a resolution-dependent numerical diffusion
that will act as an effective small surface tension. Thus, in this case there is a small shift in
the height profiles. While this remains small, it makes the precise behaviour of the leading
tip difficult to resolve for small values of νl, requiring larger grid sizes as presented in
§ 4.3.
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