LETTERS TO THE EDITOR

A NOTE ON THE OCCURRENCE TIMES OF A PÓLYALUNDBERG PROCESS

DIETMAR PFEIFER,* Technical University Aachen

Recently Albrecht (1983) has pointed out that for the occurrence-time sequence $\left\{T_{n}\right\}$ of an appropriate version of a mixed Poisson process $\bar{N}(t)=N(t \Delta)$ (where $N(t)$ is a Poisson process with unit intensity and Δ is the mixing variable) the relation

$$
\begin{equation*}
\frac{T_{n}}{n} \rightarrow \frac{1}{\Delta} \quad \text { a.s. } \quad(n \rightarrow \infty) \tag{1}
\end{equation*}
$$

holds. We shall show here by a martingale argument that such a relation is always valid for any version $N^{*}(t)$ of a Pólya-Lundberg process which is a mixed Poisson process with a gamma mixing variable with mean $\lambda>0$ and variance $\alpha \lambda^{2}, \alpha>0$.

Theorem. The sequence $\left\{S_{n}\right\}$ defined by $S_{n}=n /\left(1+\alpha \lambda T_{n}\right), n \geqq 1$ forms a submartingale with $E\left(S_{n}\right) \leqq 2 / \alpha, n \geqq 2$.

Proof. By the Markov property of $\left\{T_{n}\right\}$ (Pfeifer (1982)) we need only show

$$
\begin{equation*}
E\left(\left.\frac{1}{1+\alpha \lambda T_{n+1}} \right\rvert\, T_{n}=t\right) \geqq \frac{n}{n+1} \frac{1}{1+\alpha \lambda t} \quad \text { a.s. } \tag{2}
\end{equation*}
$$

which follows easily from the transition probabilities

$$
\begin{equation*}
P\left(T_{n+1}>s \mid T_{n}=t\right)=\left(\frac{1+\alpha \lambda t}{1+\alpha \lambda s}\right)^{n+1 / \alpha} \quad \text { a.s., } \quad s \geqq t \geqq 0 . \tag{3}
\end{equation*}
$$

Also, $E\left((n-1) / T_{n}\right)=\lambda$ for $n \geqq 2$, hence $E\left(S_{n}\right) \leqq 2 / \alpha$.
By the martingale convergence theorem now $S_{n} \rightarrow S$ a.s. ($n \rightarrow \infty$) for some random variable S, from which we also have

$$
\begin{equation*}
\frac{T_{n}}{n} \rightarrow \frac{1}{\alpha \lambda S} \quad \text { a.s. } \quad(n \rightarrow \infty) \tag{4}
\end{equation*}
$$

i.e. $\alpha \lambda S$ is a canonical representation of the mixing variable.

Note that using estimations given in Albrecht (1983) (4) also implies that for the process $N^{*}(t)$ itself

$$
\begin{equation*}
\frac{N^{*}(t)}{t} \rightarrow \alpha \lambda S \quad \text { a.s. } \quad(t \rightarrow \infty) \tag{5}
\end{equation*}
$$

References

Albrecht, P. (1983) A note on a limiting behaviour of the occurrence times of a mixed Poisson process. Adv. Appl. Prob. 15, 460.

Pfeifer, D. (1982) An alternative proof of a limit theorem for the Pólya-Lundberg process. Scand. Actuarial. J. 15, 176-178.

[^0]
[^0]: Received 18 July 1983; revision received 7 September 1983.

 * Postal address: Rheinisch-Westfälische Technische Hochschule Aachen, Institut für Statistik und Wirtschaftsmathematik, Wüllnerstrasse 3, D-5100 Aachen, W. Germany.

