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Abstract

We present a Rayleigh—Ritz method for the approximation of fluid flow in a curved duct,
including the secondary cross-flow, which is well known to develop for nonzero Dean
numbers. Having a straightforward method to estimate the cross-flow for ducts with
a variety of cross-sectional shapes is important for many applications. One particular
example is in microfluidics where curved ducts with low aspect ratio are common, and
there is an increasing interest in nonrectangular duct shapes for the purpose of size-based
cell separation. We describe functionals which are minimized by the axial flow velocity
and cross-flow stream function which solve an expansion of the Navier—Stokes model
of the flow. A Rayleigh—Ritz method is then obtained by computing the coefficients
of an appropriate polynomial basis, taking into account the duct shape, such that the
corresponding functionals are stationary. Whilst the method itself is quite general,
we describe an implementation for a particular family of duct shapes in which the top
and bottom walls are described by a polynomial with respect to the lateral coordinate.
Solutions for a rectangular duct and two nonstandard duct shapes are examined in detail.
A comparison with solutions obtained using a finite-element method demonstrates the
rate of convergence with respect to the size of the basis. An implementation for circular
cross-sections is also described, and results are found to be consistent with previous
studies.
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1. Introduction

This paper is motivated by a technical note in which Wang [16] describes a Rayleigh—
Ritz method for Stokes flow in a curved duct. Wang’s own motivation was the
consideration of miniaturized fluid devices in which typical Reynolds numbers are
of the order of 1073 or lower, at which the magnitude of the secondary cross-flow,
well known to develop in curved ducts since the work of Dean [3], is negligible.
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Whilst results were provided for rectangular and elliptical shaped ducts, the method
is applicable to ducts having arbitrary cross-sectional shape (one need only construct
a function g which is zero on the boundary and positive on the interior of the cross-
section, and be able to accurately approximate the integral of functions defined over
the cross-section). Wang describes the method as being versatile and superior to finite-
element methods as: (a) the domain need not be discretized, (b) boundary conditions
are embedded in the basis functions, and (c) the memory requirements are much less.

We too are interested in miniaturized fluid apparatus, and a motivation for this work
is the use of curved ducts for the separation and sorting of particles/cells in microfluidic
devices [5, 8, 14]. Whilst the duct dimensions in these applications are quite small, the
flow rates are sufficiently high, in order to obtain reasonable throughput/flux, that the
Reynolds number can be as high as O(100) and the effects of the secondary cross-flow
cannot be neglected. Indeed, the additional effect of the secondary flow on particles
is generally assumed to contribute towards the enhanced separation that is observed in
these devices. Furthermore, some experiments have found nonrectangular ducts to be
superior in some applications. An example of this is spiral ducts having trapezoidal
cross-section which have been reported as more efficient devices for size-based cell
separation/isolation [18]. Studies of the inertial lift force rely on a separation of the
fluid behaviour with and without a particle; a recent example which considered the
effect of inertial migration within a straight square duct utilized a truncated Fourier
expansion of the background flow [12]. Extending this methodology to curved ducts
and nonrectangular shapes will similarly require an approximation of the fluid flow
that is both simple and efficient to evaluate.

Whilst flow in curved ducts having circular and rectangular cross-sections has been
studied extensively [6, 15, 19, 20], the methods employed are generally specific to
circular or rectangular ducts and cannot be readily adapted to other shapes. Fluid
flow through spiral ducts having cross-sections with small aspect ratio and variable
top wall shape has also been explored [11]. In contrast, here we consider the curved
duct to have a constant bend radius, allow for a larger range of duct shapes and not
require separate corrections near the side walls.

In this paper, we extend Wang’s approach to moderate Dean number (Dn) by
developing a Rayleigh—Ritz method to approximate the secondary cross-flow in
addition to the axial flow. We begin with the standard Navier—Stokes equations in
a cylindrical coordinate system to model steady pressure-driven flow through a curved
duct in Section 2. The equations are then nondimensionalized and the pressure
is eliminated, leading to equations in terms of the axial flow component u and a
stream function @ describing the secondary flow within the cross-sectional plane. The
approach is similar to that of Dean and Hurst [4] but using an alternative scaling and
without eliminating any terms based on a small characteristic channel length relative
to the bend radius. Upon applying a perturbation expansion to both # and ® with
respect to the square of the Dean number, we obtain a sequence of partial differential
equations (PDEs) satisfied by successively higher-order corrections to the flow.
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A general form of the Rayleigh-Ritz method for approximating the flow is
developed in Section 3.1. Since the equations for the leading-order axial flow
component are exactly the Stokes model considered by Wang [16], the same Rayleigh—
Ritz method can be applied. On the other hand, the leading-order ® component is
governed by an inhomogeneous fourth-order PDE driven by the leading-order axial
flow solution. The fourth-order terms in this PDE form a biharmonic operator, and,
to that end, the problem is similar to the plate stress problem considered by Liew and
Wang [13], where a Rayleigh—Ritz method was formulated via an energy functional.
However, our PDE governing ® has additional lower-order terms, and there is no
obvious equivalent of the energy functional. Nonetheless, we find that there does exist
a relatively straightforward functional which is minimized by the stream function ®.
A Rayleigh—Ritz method for approximating the stream function then follows naturally,
given an appropriate basis satisfying the boundary conditions. Since the PDEs for the
higher-order u and @ corrections differ only with respect to the inhomogeneous part,
which depends on components that are already known, it is straightforward to use the
method to approximate these terms as well. Furthermore, this can be adapted into an
iterative method to obtain the complete flow solution.

Section 3.2 describes our specific implementation for ducts in which polynomials
can be used to describe the shape of the top and bottom walls of the duct. These duct
shapes are interesting to consider for two main reasons. The first is that modifications
of the top and bottom wall shape are the most straightforward changes to make in the
context of the typical manufacturing processes used to produce microfluidic devices.
The second is that, with an appropriate basis, the integrals that need to be estimated can
be calculated directly with very high accuracy (essentially only affected by floating-
point rounding errors). We also examine how the conditioning of the linear system
grows with the size of the basis, an issue which has been overlooked by previous works
and can seriously inhibit the accuracy of the method if not addressed appropriately.

Section 4.1 provides and discusses solutions for several examples, including an
example having an asymmetric trapezoidal cross-section inspired by that used for
the experiments by Warkiani et al. [18]. By examining the decay in magnitude
of higher-order terms in the perturbation expansion, we are also able to estimate
the flow conditions in which the given perturbation expansion of the flow can be
reasonably expected to converge. In Section 4.2 it is shown how quickly the Rayleigh—
Ritz solutions converge towards high-order finite-element solutions, as the maximum
degree of the polynomials used in the construction of the basis increases. We choose
this as a form of verification due to a lack of readily available approximations for
nonstandard duct shapes (particularly in relation to the secondary flow), and because
it allows for a global error analysis as opposed to comparing some select summary
statistics. Lastly, in Section 4.3 we describe a modification to handle curved (circular)
pipes, and show that the Rayleigh—Ritz solutions are consistent with other results from
the literature.
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FiGure 1. View of a rotationally symmetric duct in the plane of a fixed angle. The main axial flow is
directed into the page. The cross-section after another r radians is also shown as a dashed outline on the
left where the axial flow is directed out of the page (see text for details).

2. Governing equations of the flow

Consider a duct which is curved around the vertical z-axis, and exhibits rotational
symmetry around this axis (that is, the cross-section does not vary with respect to the
angle). With r as the radial coordinate with respect to the xy-plane, let the cross-
section of the duct be described by a function g(r, z) which is zero on the boundary
and strictly positive in the interior. We require that g(r, z) be three times differentiable
over the cross-section. The centre of the cross-section is taken to be the centre of the
smallest rectangle containing the cross-section. Let 2a and 2b denote the width and
height of the bounding rectangle, respectively. The bend radius R is taken to be the
distance of the centre from the z-axis. Without loss of generality, a duct can always be
shifted vertically such that the centre of the cross-section is (7, z) = (R, 0). To illustrate,
a curved rectangular duct may be described by

g(r,2) = {a* - (r - R*)(b* - ).

The set-up for a nonrectangular example is depicted in Figure 1.

Suppose that the fluid flow through the duct is described by the Navier—Stokes
equations. Consider a cylindrical coordinate system x(6, r, 7) = r cos 61 + rsin6j + zk
with velocity vector u = (u, v, w), where the components denote the angular, lateral and
vertical velocities, respectively. With the assumption that the fluid velocity is steady
with respect to time, that is, Ju/dt = 0, and is independent of the angular coordinate,
that is, du/06 = 0, the governing equations are

0:%+58_V; ; (2.1a)
p(v%+wg—;}—ru2):—g—l: +u(g—z+%+%%—%), (2.1¢)
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We assume no-slip/penetration boundary conditions on the walls, that is, u = 0 on the
boundary described by g(r,z) =0

Equations (2.1) will be nondimensionalized similarly to Dean and Hurst [4] but
with a different choice of scale for the secondary flow velocities. Let £ = min{a, b} be
a characteristic length scale for the duct cross-section (that is, analogous to taking the
radius of a curved pipe as a characteristic length scale). Of particular interest are ducts
that have height smaller than width, that is, b < a and thus £ = b, since this is typical of
the microfluidic ducts motivating this work. Introducing the new spatial variable s such
that r = R + s (and dr = ds), the duct cross-section can be described with respect to s, z
by the function g(s, z) = g(R + s, 7). The spatial variables s, z are nondimensionalized
with respect to ¢, that is, z = £Z and s = £§, whilst r is nondimensionalized with respect
to R, that is, r = R7". Defining € = /R, notice that 7 =1+ s/R =1 + €8, and also
dr = Rdi ={ds. Now let U be a characteristic velocity for the axial velocity which
we define to be the maximum of the (physical) axial velocity ru. With this, the axial
velocity is nondimensionalized as ru = Ui, or equivalently u = Uii/R#. The (duct)
Reynolds number is defined as Re = pfU/u. The secondary flow has a different scale
than the axial flow, and so, taking V to be the characteristic velocity of the secondary
flow, the corresponding dimensionless velocity components are v = V) and w = Vib.
We make the specific choice V = eRe U (or equivalently V = pf2U?/uR), since this
ensures that the term 7 in (2.1c) is an O(1) driver of the secondary flow even when
eRe? is small.

It remains to consider the nondimensionalization of the pressure. From (2.1) it
can be deduced that the pressure must have the form p = C6 + g(r, z), where C is
constant. It is typical to choose C = —GR such that G is the pressure gradient per
unit length along the centre of the duct. Therefore, one has dp/d6 = —GR, dp/dr =
0q/0r and 0p/dz = dq/0z. The pressure gradient G may be nondimensionalized as
G = uUG/€* with the specific value of G fixed such that 2 has a maximum of 1 to be
consistent with the chosen characteristic velocity U (and therefore the value of G will
depend on the specific shape of the cross-section). On the other hand, the remaining
pressure component g only features in the momentum equations for the secondary flow
velocities and is, therefore, nondimensionalized as g = uVg/¢.

Putting all of this together, the equations (2.1) in dimensionless form are

o=t o)
K( g§+rwg—lz+euv) G+r§2§; 63; 66—?—62%, (2.2b)
2 20 25 5

2. 2.

where K = eRe”?. Note that whilst some studies have taken the Dean number
to be 2K (see, for example, [10]), others have taken (up to a constant factor)
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Dn = VK = veRe [7, 20]. We sometimes refer to K as the square of the Dean number
to be consistent with the latter. Some studies also make use of the Dean approximation
in which terms involving factors of € = /R are eliminated under the assumption € < 1
(noting it is always the case that € < 1). We do not take this approach, so that the
resulting method can be applied in cases where € is not so small. For ease of readability
and convenience, the carets will be dropped in the remainder of the paper.

The continuity equation (2.2a) can be eliminated with the introduction of a
(dimensionless) stream function ®, for which 0®/ds = rw and d®/dz = —rv. The v
and w components of the momentum equations (2.2c) and (2.2d) respectively can then
be combined to eliminate the remaining pressure ¢ (that is, by taking —d/0dz of equation
(2.2¢) and 9/ds of equation (2.2d), then adding the two). The resulting equations for
u and O are

0P 0D du uod ou u
K-+ 2 2 Au+e— — €= 2.
( 0z 0s 0s 0z raz) Gtr u+€6s Er (2.32)

( 20000 1 0DOAD 1 0D 6A(I) 2 3 00 00

Er?@_zza_z_r_zﬁ_zwﬁ-rz ds 0z Fﬁ_zg
300D 10D D\ 2udu
Pz o ﬁﬁ?ﬁz) Jre

1 2 HAD 3 %@ 300
e T h e g (230)
where A = 0%/0s® + 3% /0z*. The boundary conditions for ® are ® = 0 and d®/dn = 0
on the walls of the duct (where n denotes the unit normal vector of the boundary of the

duct cross-section).

Now consider a perturbation expansion of u and @ with respect to K, that is,

u= i Ku;, ®= i K'®;. (2.4)
i=0 i=0

Note that whilst it is more common to see € used as the perturbing parameter, we have
found K to be useful since it incorporates the axial velocity scale. Substituting (2.4)
into equations (2.3), and equating terms having the same power of K, we obtain

i-1
8q)j('3u,~,1,j 861)] 8u,~,1,j Ui—1-j 6(13 ou u; o Ui
- - —— GO,y = rAu; — —€—,
Z( 0z 0Os +6s 0z Er 6z) 0ru+€(9s Er
(2.5a3)
lzll( 2 62(1) 0D;_;_ 0Di-1-j 1 (9<DJ 6A(D,'_1_j 1 (9(1)] (9A(D,'_1_j 5 3 (9@] 6@,'_1_]‘
4\For e e o 2 os a9z oz 0s
3 GCD 6 (Di—l—j 1 6<I)J 82(1),'_1_]' i 2Mj au,-_j
o T e Y =
1 2 OAD; 3 0%, 3 00,
= AN —e=m—L 4L S 2.5b
r Er2 os e r3 Os? € r* Os ( )
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with 6, the Kronecker delta. For each u; we require only the u;, ®; terms with j < i to
obtain a solution. To solve for ®; we additionally need u;. For example, the equations
for the leading-order terms ug and @ are

0
—G = rAug + €22 - 22, (2.6a)
0s r
Qugdug 1, 20ADy 5,3 0%®y ;3 0D
—— = —-A"Dy—e— +€e = - —=—. 2.6b
r 9z r 0T 2Ty T P a2 S A as (2.6b)
Similarly, the equations for the O(K) terms u; and ®@; are
8(1)0 6140 8(1)0 auo Uugp 8<I)0 6141 o Up
-t ————-—€——F—=rAuy+te— —€ —,
9z 9s | ds 9z r oz T %% T

2 0*Dy 0Dy 1 0D OADy 1 0Dy IAD,  , 3 AP, Oy

J— —_— + —_— _—
Po2 oz P oz s P as oz P oz o
300Dy 1 0D 87Dy 2ug Ouy  2uy dug
teEs—F——F5 €5 —— +——F+——
r3 9z 0s? 3 ds dsdz  r 0z r 0z
1 2 0AD, L3 0%D; 4300
= € +e— —€ = —F.
rr ds r3 0s? r* ds
In the general case, we use fl.(”) and fi@) to denote the left-hand side of the equations
(2.5a) and (2.5b), respectively, for brevity.

3. A Rayleigh—Ritz method

3.1. Derivation Letie N (takingN ={0,1,2,...}) be fixed, and suppose that u;, ®;
are known for j=0,1,...,i — 1. Since the equation (2.6a) governing u is exactly the
Stokes flow model considered by Wang [16], the same Rayleigh—Ritz method can be
used and is straightforward to adapt to the general case. In particular, the u; which is a
solution to (2.5a) is also the extremum of

\2 \2 2
J"(u) N ff r(%) - r(%) + ezu—' + Zf,-(u)“i dzds, G.D
Q s Z r

where Q denotes the duct cross-section. This is easily verified via the classical Euler—
Lagrange equations obtained via the calculus of variations. From here one considers
expressing u; as

ui(s,2) = ) Cuthn(s,2) (3.2)
n=1

with ¢, being an appropriate set of basis functions satisfying the boundary condition
¢, = 0 on the walls of the duct. A typical choice is taking {¢,}.cn as the set
of monomials {1, s, z, 52, 52, 2%, §°, §22, $2%,2°, ... } multiplied by the function g(s, z).
Substituting (3.2) into (3.1), one then takes c’)Jl.(”)/ dc,, = 0 to obtain a linear equation

of the form
> AWy =BY, (3.3)

n
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for each m (noting the sum on the right-hand side of equation (19) in [16] appears to
be a typographical error), where

0y, 3¢m 0¢n 3¢m Gnm
AW ff + 220 g2 ds, 34
e ds 0Os Gz 0z r Tas (3.42)
BYW = f O f" dzds. (3.4b)
Q

In practice, the basis is truncated so that the sums in equations (3.2) and (3.3) are
finite. We refer to the degree of the approximation as the highest degree to which we
truncate the sequence of monomials {1, s, z, s%, 52,72, 83, %2, 522, 2%, ...}, used in the
construction of the basis. For example, if D is the degree of the approximation then
the truncated basis is

{0 =1{s'2/g(s,2) |i,jeNand i+ j< D}, (3.3)

where N = (D + 1)(D + 2)/2 is the total number of terms. With each of the integrals in
(3.4a) and (3.4b) evaluated for n,m € {1,..., N}, an N X N linear system of equations
is obtained from (3.3), and can be solved to find the coeflicients c,.

The uy solution is precisely an approximation to the Stokes flow solution (that is,
the limit Dn — 0) which Wang [16] compared to a truncated Fourier—Bessel solution
in the case of rectangular ducts, and found that both methods agreed within 0.1% with
respect to the average flow velocity. Note that one could consider an alternative basis
consisting of g(s,z) multiplied by a sequence of polynomials which are orthogonal
over the cross-section with respect to the integral (3.4a); however, as pointed out by
Brown and Stone [2], the solution up to a given polynomial degree is (analytically)
identical, and the effect is only to modify the numerical stability of the solution (the
conditioning of A® in particular). The issue of stability and conditioning is explored
in more detail in Section 3.2.

It is possible to make some optimizations and simplifications to the computation in
some cases. Note that if the same basis {¢,} used for each ;, then the matrix A® needs
only to be calculated/constructed once for a given duct , and only the vector B* needs
to be updated for each i. As noted by Wang [16], if the duct cross-section happens to
possess mirror symmetry with respect to z then u (and each u;) is even with respect
to z. Therefore, if one constructs g such that g(s, —z) = g(s, z), then basis functions
with odd j can be omitted in the expansion (3.2) of each u;. Symmetry in the duct
cross-section with respect to s cannot be exploited in the same way due to asymmetry
induced in the flow with respect to s because of the duct being curved.

We now describe a similar Rayleigh—Ritz method for approximating the ®; terms
by utilizing the following result.

PropositioN 3.1. The ®; which solves (2.5b) is a stationary point of

S - ff a2c1> 100, o, ) ,4 (acb,- )2
Qr (9s2 €7 Bs 072 ¢ 3\ ds
.40

e ) —2f D, dz ds. (3.6)
0z

73
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Proor. This is straightforward to verify via the Euler-Lagrange equations, that is,
letting £ denote the integrand of (3.6),

0L _ 9oL 9oL & L & oL & oL
0D; - asﬁ(D,"S 3Z8(Diyz ds? 0D, s asazaq)i,sz 072 a(I)i,zz,

with @, ; = 00;/0s, ©;, = 0D;/0z7 etc., is precisely equation (2.5b) up to a constant
factor of 2. O

Similar to the u;, we now consider an expansion of @; of the form
Oi(r,2) = ) dia(r,2), (3.7)
n=1

where ¢, is an appropriate set of basis functions satisfying both the Dirichlet and
Neumann boundary conditions. One such choice is to take the i, as the set of
monomials multiplied by g(s,z)>. Note that by squaring g we ensure both ¢, = 0
and O0y,,/0n = 0 are satisfied on the boundaries. Substituting (3.7) into (3.6) for each
m, one then takes 6]1@)/ dd,, = 0 to form the linear equation

> A, =By, (3.8)

where

A@) — f f P VO O, )(8% PR R azwm)
o r 6s2 “Fos T oz N r Os 072
24 Y W - 24 OYn O

——dzds, 3.9
r3 O0s Os ¢ B 0z 0z (3.92)

B® = f U [ dzds. (3.9b)
Q

As with the u;, in practice, the basis (3.7) is truncated. We again refer to the
degree of the approximation as the maximum degree of the polynomials used in the
construction of the basis; in particular, if D is again the degree of the approximation,
the truncated basis for @; is

WY, =1{s'z/g(s,2)* |i,jeNand i+ j < D}, (3.10)

where N = (D + 1)(D + 2)/2. Each of the integrals in (3.9a) and (3.9b) can then be
estimated numerically for n,m € {1, ..., N} to form a linear N X N system of equations
from (3.8), which can be solved to find the coefficients d,. Note that the degree of the
®; approximation need not be the same as that of the u; approximation; however, for
convenience we have chosen to use the same degree for the results in Section 4, and
therefore, use the same D and N here.

As with the case of the u;, if the same basis is used for each ®; then the matrix A®
need only be computed/constructed once and only B® needs to be updated for each
subsequent i. Furthermore, if the duct cross-section possesses mirror symmetry with
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respect to z then @ (and each ®;) is an odd function with respect to z and thus, given
g(s, z) which is even with respect to z, all basis functions with even j may be dropped
from (3.10).

Note that, given these Rayleigh—Ritz methods for the u; and ®;, we can also use
them in an iterative scheme for directly estimating the complete u, @ solutions by
iterating on equations (2.3) with the inertial/quadratic terms on the left-hand side
estimated by the preceding iterations. That is, letting u, @ =0, thenfork=1,2,...
until sufficiently converged one solves

K( a(I)k’l aukfl aq)kfl aukfl uk*l aq)kl) auk 2uk

=G+rAf + e— — € —,
or r

0z Or " or 0z r 0z
2 POF R 1 JOFT AR 1 D! GADF!
A o2 6z R & o R o o
)3 00T GO 3 g0k ROkl | gkl ok ) | 2 o

e

Ao or P oz o P or ooz

1 2 OAD* 3 0%t 3 00*
— AP — 2 + a2 3292
r “Car P ar P ar
This would be expected to converge whenever K = Dn? is small enough such that the
perturbation series (2.4) converges for a given duct shape.

r 0z

3.2. Implementation Whilst the method described above is quite general, we
describe here an implementation for computing the solution for a specific family
of duct shapes. Consider curved ducts whose cross-section has a boundary easily
described by height functions hp(s) and hip(s) which provide the z value of the
bottom and top walls of the duct, respectively, for all s € [-a,a]. It is additionally
assumed that Zpo(s), and hop(s) are polynomials and hpoi(s) < hiop(s) for all s €
(=a,a). If hop(—a) # hyo(—a) and/or hyp(a) # hpo(a), then the duct is closed by the
addition of appropriate side walls, that is, the domain is Q = {(s,2) | s € [-a,a], z €
[71bot (), Iop(s)]}. This family of duct shapes is relevant in the context of microfluidics,
since such modifications of the top and bottom wall are relatively straightforward
with the processes often used in the manufacture of such devices (micro-milling,
photolithography, stereolithography, etc.). Furthermore, we are able to explicitly
define a general g(s, z) for this family of duct shapes, and provide a modified basis
in which the integrals that need to be computed in the construction of the linear system
become simple to evaluate.
For the cross-sections described above one may take

8(5,2) = (@ = $°)(z = hoo()(hiop(s) — 2).
Given hop(s) and hyei(s) as polynomials in s, then the integrands of (3.4b) and (3.9)
become rational polynomials in s,z. However, the denominators in each case are
simply powers of r = 1 + €s and can be eliminated with a careful modification of the
basis. In particular, upon taking the truncated basis for u; and ®; to be

0N = 1(s/a)'(z/b) g(s,2)(1 + €s) | i, j€eNand i + j < D}, (3.11a)
Wl = {(s/a) (z/bYg(s,2)*(1 + €5)* | i, je N and i + j < D}, (3.11b)
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condition number

102 [’ ]
I I I I I I I I

6 8 10 12 14 16 18 20
degree

Fiure 2. Condition number of A“ (blue, star) and A®’ (red, circle) versus the maximum degree of the
polynomials used in the construction of the basis. The duct cross-section in this particular example is
rectangular with @ =2, b = 1 and R = 100. Results are qualitatively similar for other duct cross-sections
(colour available online).

respectively, then the integrands of (3.4b) and (3.9) become standard polynomials in
s,z. These can be evaluated almost exactly (that is, up to floating-point rounding
errors), since upon obtaining the indefinite integral with respect to z first, the two
integration limits /i, (s), hitop(s) can be substituted to obtain a polynomial in s, which is
then trivial to integrate over [—a, a]. Note also that in (3.11) the monomial factors s'z/
have been replaced with (s/a)!(z/b)’ in order to partially normalize with respect to the
duct dimensions. Some examples of such ducts of this form and their corresponding
solutions are provided in Section 4.1.

It is noteworthy that as one increases the degree D of the Rayleigh—Ritz
approximation, the condition number of A,,L,')n and A,(ff ,), grows exponentially (see
Figure 2). This means that even small rounding errors accumulated in the evaluation
of the integrals in (3.4b) and (3.9) can have a large effect on the computed coeflicients.
There are several strategies one could take to alleviate the effects of high condition
number, including but not limited to choosing a different basis, adding some form
of regularization, or using multi-precision arithmetic. Whilst this is perhaps not the
most attractive solution, given the additional computational cost associated with multi-
precision arithmetic, it provides a benchmark against which other approaches can be
measured, since it ensures the problem is solved accurately even when the condition
number is large. Our implementation consists of a minimal polynomial class and linear
algebra routines written in C++ which use the MPFR C library to provide multiple-
precision arithmetic. Note that once the coefficients have been computed, the use of
multiple-precision arithmetic is generally no longer necessary, that is, the coefficient
vectors ¢, d can be rounded back to double-precision floating-point numbers (since
the calculation of (3.2) and (3.7), given the bases (3.5) and (3.10), can be done in a
stable manner). For the results reported in Section 4, the coefficients (computed in
multi-precision) were rounded to double-precision floating-point numbers prior to the
evaluation of u, ®.
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The use of an alternative basis was considered. An ideal basis would be orthogonal
with respect to the integrals that define A® and A‘®). However, such a basis would
depend on the shape of the domain, making it difficult to implement in a general
way. A simple modification of the basis that one might try, in general, is to use
Chebyshev polynomials, since they are well known to be better behaved numerically
than monomials in many applications. Specifically, the (s/a)'(z/b)’ factors in (3.11)
could be replaced with Ti(s/a)T (z/b), where T,(x) denotes the Chebyshev polynomial
of degree n. Indeed, this choice of basis reduces the condition number by several orders
of magnitude in the specific case of a rectangular duct. However, for nonrectangular
ducts we found that using Chebyshev polynomials did not improve the conditioning,
and for this reason, chose to use monomials to maintain the simplicity of exposition.

The addition of a simplified form of Tikhonov regularization in solving (3.3) and
(3.8) in a least-squares sense was also considered. Specifically, we solved the modified
linear systems

(A(M)TA(M) + QZDC — A(L‘)TB("), (A((D)TA((D) +ﬂ2]I)d = ADTp® ,

respectively, where «, 8 are regularization parameters and I is the identity matrix. In
the case of a rectangular duct for degrees 10 < D < 20, a choice of @ = 1/10and 8 = 1
kept the conditioning of the new matrices below 2 x 10°, whilst providing a solution
that differed less than 0.1% from that obtained using multi-precision arithmetic
(measured as a relative L, norm of the u;, ®; constructed from both regularized and
nonregularized c, d solutions, respectively). An advantage of using regularization is
that the computations can be performed in double-precision floating-point arithmetic,
but simultaneously there is a trade-off in the accuracy of the method. A more complete
analysis of different types of regularization and their effect on the solution remains the
subject of further investigation.

4. Results and discussion

4.1. Solutions for several examples Here we examine the flow solutions for
several different duct shapes which are obtained using the implementation described
in Section 3.2. Consider a rectangular, trapezoidal and bulging cross-section defined
by the zero level set curves (restricted to s € [-2, 2]) of

Great (5,2) = (4 = s7)(1 = 2,

8oule.(5:2) = (4 = 5°)(1 = 5°/16) = 22),

8uap.(5:2) = (4= 5)(1 + 2)(8/10 + 5/10 ~ 2),
respectively. Note that the trapezoidal duct case is nonsymmetric with respect to s
and z, thereby illustrating that the method works equally well in such cases. Whilst
the cross-sections chosen here all have similar aspect ratio a/b, the method works just
as well for other aspect ratios and similar results can be expected. Much of the flow

behaviour discussed herein is generally well known in the context of a rectangular
duct, and thereby provides qualitative validation of the Rayleigh—Ritz method.
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x10~% 9.69
6.46
3.23
0.00
—3.23
—6.46
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FiGure 3. Degree-10 Rayleigh—Ritz approximations of the flow through a rectangular duct described by
Zrect. (5, 2) with bend radius R = 100.

Considering first the case of a rectangular duct, in Figure 3 we plot solutions of
u;, ®; for i = 1,2 when R = 100. Solid lines represent positive contours, dashed lines
represent negative contours, and dash-dotted lines are the zero contour. The direction
of secondary flow along the streamlines @, @, is clockwise around positive contours
and anti-clockwise around negative contours. The leading-order axial flow solution
is driven by the pressure gradient and is even with respect to z, owing to the vertical
symmetry of the cross-section. Note, however, that u, is skewed horizontally, very
slightly towards the inside wall (left edge) of the duct. This is explained by the Stokes
solution favouring flow towards the inside wall as this provides a shorter path through
the duct. The leading secondary flow solution @ is driven by the inertia of the leading-
order axial flow. It is odd with respect to z, and shows the two circulations we expect to
develop for flow in a curved duct. Like ug, @ is also skewed very slightly towards the
inside edge. The order-Dn? terms u;, @, are driven by the inertia of the leading-order
flow solution, and act to push the skew back towards the outside wall (right edge).
It is seen from the small magnitude that a moderate Dn is necessary before this has
appreciable impact on the flow. Like ug, ®g, the u;, ®; solutions are even and odd
with respect to z, respectively. Additionally, the vertical (dash-dotted) line for the zero
contour is slightly left of centre because of the slight skewness in the leading-order
flow components. Furthermore, the maximum magnitude of the solutions is slightly
larger on the left-hand side of the zero-contour line. Note there are four circulation
cells in @;, which is indicative of the existence of four-vortex solutions when Dn is
large (see, for example, [19, 20]), albeit that the perturbation expansion (2.4) used in
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Ficure 4. Degree-10 Rayleigh—Ritz approximations of the flow through a rectangular duct described by
Zrect. (5, 7) with bend radius R = 10.

our method is unlikely to converge at such high Dean numbers. Additional terms u;, ®;
for i > 1 are also straightforward to compute but are not shown here since their effect
is small for Dn? = O(1).

In Figure 4 we plot the solutions of u;, ®; for i = 1,2 again for the same rectangular
duct, but with the smaller bend radius R = 10. The solutions are similar to those in
Figure 3, except that the larger curvature of the duct exacerbates the skew in the
solution towards the left (inside) wall of the duct. The difference in magnitude on
the left- and right-hand sides of the order Dn? solutions is also more clearly evident.
Note that one might expect the increased curvature to amplify the magnitude of the
secondary flow, but observe that our nondimensionalization is such that the magnitude
of @ has not changed significantly.

We now move on to look at solutions for the nonrectangular ducts. Figure 5
depicts the solutions for flow through the bulging cross-section shape with R = 100.
Qualitatively, the flow behaviour is similar to the rectangular case with R = 100 but
is “stretched” to fit the shape of the cross-section. Like the rectangular duct, the
solutions for the u; and ®; components are even and odd with respect to z, respectively,
owing to the vertical symmetry of the cross-section. The solutions are again slightly
skewed towards the inside wall of the duct, although to an even lesser extent than
the rectangular case in Figure 3, because the bulging shape concentrates the axial flow
more towards the centre. The effect of #; and @ for moderate Dn is again to effectively
push the skew in uy and @, respectively, towards the outside wall.

Solutions for ug, u;, @y, @; in the case of the asymmetric trapezoidal duct are shown
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FiGure 5. Degree-10 Rayleigh—Ritz approximations of the flow through a duct with a bulging cross-
section described by gpug. (s, z) having width 2a = 4, height 25 = 2 in the centre, and bend radius R = 100.

in Figure 6. Since this cross-section has neither symmetry with respect to z nor s, the
solutions differ from the previous cases. The u and ® components are no longer even
and odd, respectively, with respect to z due to the loss of vertical symmetry. It may
initially appear that @, is odd with respect to the zero-contour line, but on closer
inspection it is evident that this is not the case. Since the duct is taller towards the
outside edge, it can be seen that the leading-order axial flow uo favours the right-
hand side to some extent, because the pressure gradient leads to faster flow where
the surrounding area is greater. As a consequence, similar skew towards the outside
wall is observed in each of @y, u#; and ®;. The ®y component demonstrates two
circulations that occur as a result of the curvature which one could again interpret as
being “stretched” from the result for the rectangular duct to fit the trapezoidal shape.
Note, however, that the circulation in the lower half is affected to a lesser extent than
that in the upper half. The u;, @, components may be viewed as pushing the skew in
the flow further towards the outside edge for moderate Dn.

Given the ability to compute many u; and ®; terms, we can examine the magnitude
as a function of i, and thereby estimate the largest K (and Dn) for which the
perturbation expansion (2.4) converges. In Figure 7 we plot ||u;||» (excluding odd i) and
[|D;]]> (excluding even i) for the rectangular duct (with the L, norm taken over the cross-
section). The cases of the bulging and trapezoidal shaped ducts decay similarly and
are therefore not shown. The slope is approximately constant for i > 1, demonstrating
a geometric rate of decay. Being somewhat conservative, the perturbation expansion
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Ficure 6. Degree-10 Rayleigh—Ritz approximations of the flow through a duct with an (asymmetric)
trapezoidal cross-section described by grp. (s, z) having width 2a = 4, height 2b = 2 in the centre, bend
radius R = 100 and a slope on the top wall such that the height is 10% smaller at the left wall compared
to the right wall.

(2.4) could be expected to converge for a given K, if there exists a ¢ € [0, 1) such that
Klluir1lla < clluill,  and K[|z < cl|Dill2,

for all i > 0. Estimating the largest allowable K for which such a c exists from the data
plotted in Figure 7 gives approximately K = 212.3, or equivalently, Dn = 14.57 (noting
[lusllr =~ 212.3||ug||, gives the smallest estimate). However, for practical purposes we
may wish to restrict K such that ¢ < 1/2 so that convergence is reasonably quick,
in which case it would be reasonable to take the largest K to be approximately 100
(or equivalently, the largest Dn as approximately 10). To summarize, we conclude
that our expansion of the flow through a curved duct is appropriate for applications
with Dn < 10, and furthermore, for Dn = O(1), which is a common case for many
microfluidic experiments, only one or two terms in the expansion may be needed.

4.2. Comparison with finite-element solutions In this section, we validate that
our Rayleigh—Ritz method provides solutions which are globally consistent with those
obtained via the finite-element method. In particular, the convergence (in an L, sense)
of the Rayleigh—Ritz solutions with increasing degree towards a high-order finite-
element solution is investigated. Recalling that fi(") is used to denote the left-hand
sides of (2.5a), we obtain a standard weak formulation for the u;, specifically

(1)
oz i i v
f—Vu,--Vw—”f—ﬂdA:ff dA,
Q 9 Q

rr r r

https://doi.org/10.1017/51446181118000287 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181118000287

[17] Rayleigh—Ritz method for flow through curved ducts 17

100 * T T T ]
102 O -
o. ~
S 10t S~ g * ~ -
= e
E 1070 | ~ Sk .
% -8 =~ 9 ~
g 10 S S
—10
g 10 i Ol Sk
10—12 | ~ ]
14 A
10 [ ! ! ! L
0 1 2 3 4
perturbation index ¢
Figure 7. Plot of ||u;||, (blue %) and ||®;]|, (red e) versus the perturbation index i for a rectangular duct

witha =2, b =1 and R = 100. Results are similar for other duct cross-sections (colour available online).

where v denotes a suitable test function. We implement this using FEniCS [1] with
the domain Q discretized as a triangular mesh (of approximately 40000 cells) over
which quadratic Lagrangian elements are used, and the Dirichlet boundary conditions
are enforced explicitly at the linear algebraic level. The ®; are a little more complex
to solve, being governed by the fourth-order PDE (2.5b). As both Dirichlet and
Neumann boundary conditions must be enforced for the ®;, we apply an interior
penalty implementation of the biharmonic A>®; term (having multiplied (2.5b) by r),
based on the discontinuous Galerkin method described by Georgoulis and Houston [9].
For the remaining terms in (2.5b) we simply multiply by the appropriate test function
and integrate as per usual. Quartic Lagrangian elements are used as a basis for @; over
the same mesh used for the ;. In order to compare solutions obtained from the two
methods accurately, the Rayleigh—Ritz approximations are interpolated onto the same
finite-element spaces used to compute the finite-element solutions. We then proceed to
compute the L, norm of the difference between the two, and divide by the L, norm of
the finite-element solution in order to obtain a relative error. Note that whilst it would
be sufficient to use linear and cubic Lagrange elements for u; and ®;, respectively, we
choose to use one degree higher in order to improve the accuracy of the finite-element
solutions and reduce the error which is introduced when interpolating the Rayleigh—
Ritz approximations.

In Figure 8 we show the convergence of the Rayleigh—Ritz approximations
up, uy, ®g, ®; to their corresponding finite-element solutions with respect to the
polynomial degree of the basis. Observe that even with only terms up to degree
3, the relative error is of the order of 102 or smaller for each of the terms. This
steadily decreases in each case as the degree of the basis increases, down towards a
relative error of the order of 107> when the degree is 20 for uy, ®y and u;. Note
that ®; seems to reach an asymptote at around 10~*, because the difference in the
finite-element and Rayleigh—Ritz approximations becomes dominated by the error of
the finite-element solution. For the same reason, the improvement in relative error
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Ficure 8. Relative convergence of Rayleigh—Ritz approximations of u (blue, solid), @, (green, dashed),
u; (red, dotted) and ®; (cyan, dash-dotted) to their corresponding finite-element solutions with respect
to the polynomial degree for the two different duct cross-sections (a) rectangular, and (b) trapezoidal. In
each case, R = 100 is used (colour available online).

for the other three components also begins to flatten out beyond approximations of
degree 20. Observe that no improvement is made to the approximation quality of
in the case of a rectangular duct when going from an even to odd degree, because
the addition of polynomials which are odd with respect to z does not affect an even
function. One might expect, then, that @, should not improve going from an odd to
even degree given it is even, since @ is odd. However, one does not see this because @
is driven by u%, and thereby improves in accuracy because of the better approximation
of ugy. For larger degrees when the improvement in i is diminishing, one can begin
to see only marginal improvement in @y going from odd to even degree. In the case
of a trapezoidal duct, this behaviour does not occur since the vertical symmetry is
lost, although some step-like behaviour can still be observed, because the addition of
even-degree terms to ug is generally more beneficial than the addition of odd-degree
terms since the asymmetry is not too extreme. Generally speaking, the convergence
of the Rayleigh—Ritz approximation is quite steady, albeit with a slow diminishing of
returns as the degree increases. It is worth pointing out that most of the error is, in
fact, concentrated near the corners of the cross-section, and that over the majority of
the domain the agreement is even better than what the relative L, error suggests.

4.3. Flow through curved (circular) pipes Given the wealth of literature on flow
through curved circular pipes, it is natural to consider if the approach described herein
produces similar results. In this section we compare results with two particular results
from the literature. The first of these is by Yanase et al. [20] who considered the
flow through a curved (circular) pipe, both with and without the Dean approximation
(where one takes € = 0), by computing solutions via a spectral collocation method. A
strength of their approach is that they are able to approximate solutions at quite high
Dean numbers (much higher than is practical for microfluidics), which allowed them
to study the existence and stability of multiple solutions at high Dean numbers. In
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comparison, our method is not well suited for such large Dean numbers, although we
are able to compare results with the smaller of the Dn reported in [20]. They report a
total flux through the cross-section and the axial velocity at the centre (unfortunately,
no summary statistics of the secondary flow are provided). The second is the work
of Robertson and Muller [15] who considered the flow of Oldroyd-B fluids through
curved pipes. They derive the first few terms of the solution with respect to a
perturbation expansion in a/R (a being the cross-section radius), with their results
being applicable to Newtonian fluids by setting the Weissenberg number to zero.

Note that for a circular pipe the top and bottom walls are described by /op(s) =
—hpot(s) = Va? — s2, where a is the radius of the pipe. Since these are not polynomials
in s, the implementation described in Section 3.2 requires some modification to be
used in this case. Since the formulation in Section 3.1 is quite general, one need only
implement a quadrature routine to accurately evaluate the integrals (3.4b) and (3.9)
over the desired cross-section. For the specific case of a circular cross-section, one can
go even further and reformulate the problem in toroidal coordinates via the change of
variables s = ncos(@) and z = i sin(«@). This leads to

2 2 2
6 ou; 6 i ui u
(u) f f [ u 2(_1/!) +€2—+2f.( )u,]ndnda,
Oa r !

Jo fz” f[ 62c1> L o100 126*®;  esin(e) acbi)z
rp dn  n da? nr Oa

4E cos(2a)(0(l) )

r on
4€? cos(2a) [ 0D; 8¢€? sin(2a) 0D; OD; @)
il - - =217 0®;|ndnda,
n?r3 (60) n on oa /i ]77 e

where r = 1 + encos(a). With the bases for u;, ®; similarly transformed, a toroidal
implementation of the method is straightforward to obtain. Taking g(n, @) =1 — 5>
provides solutions for a circular cross-section.

Using the Dean approximation, Yanase et al. [20] report a total flux of 36.84 and
an axial velocity at centre of 22.45 for a Dean number of 96 (which is equivalent to
Dn = V288 in our dimensionless scaling). We too can approximate solutions using
the Dean approximation by simply setting € = 0, and obtain a total flux and centre
velocity which is in perfect agreement. Figure 9 shows the Rayleigh—Ritz solution for
the circular cross-section.

Our solutions are also in good agreement with the perturbation solution provided
by Robertson and Muller [15]. Noting their comment that “the perturbation results are
suspect much beyond a Reynolds number of 25.0”, we have chosen to compare for
Re = 25. Letting ury;, ®rM denote the perturbation solution of Robertson and Muller
(up to and including the terms of order (a/R)? ), respectively, we compute the relative
difference via

et — urmlle/llull, 1P — Prumll2/IDll2,
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FiGure 9. Degree-15 Rayleigh—Ritz approximations of the flow through a curved duct with circular cross-
section for Dn = V288 and G = 4, using the Dean approximation.

where the norm || - ||, denotes the usual L, norm over the circular cross-section. Taking
a/R = 0.01 such that Dn = 2.5 and using a basis of degree 10, we obtain a relative
difference of 6.35 x 107 and 1.84 x 10~ for u and @, respectively.

5. Conclusions

We have extended a Rayleigh—Ritz method for approximating the axial flow through
a curved duct [16] to the approximation of the secondary flow which develops within
the cross-section. Additionally, we have demonstrated that it can be iterated to
compute higher-order contributions with respect to the perturbation parameter Dn?
such that a complete Navier—Stokes solution can be approximated, provided the Dean
number is sufficiently small. We have developed an implementation specifically
for duct shapes with top and bottom walls described by a polynomial, and have
validated the method through the examination of several examples. A comparison with
finite-element solutions demonstrates that our method converges reasonably quickly.
Comparison with perturbation solutions in the case of a circular cross-section further
validates the method.

Wang [16] previously argued that the Rayleigh—Ritz method is advantageous
in that there is no need to discretize the domain. With the wide availability of
meshing software for finite-element computations it is arguable that this is not such
an advantage. However, a notable feature of the Rayleigh—Ritz solution is that once
the coeflicients have been computed they can be stored very cheaply and it is then
straightforward and efficient to reconstruct the solution from the coefficients. This, in
addition to the global nature of the solution, makes it particularly advantageous in the
context of sampling it within larger and more complex computations, for instance the
estimation of inertial lift forces in microfluidic devices briefly described in Section 1.
Such cases are not so straightforward with piecewise approximations (including finite-
element solutions), and will generally introduce additional approximation/sampling
errors when meshes do not align perfectly.
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Previous studies of flow through curved rectangular and circular pipes have
examined the existence and stability of multiple solutions at large Dean numbers. A
potential extension of this work may be to modify the method so that it converges
for similarly large Dn. Whilst such flow conditions are not of practical use in the
context of microfluidics, it would allow one to study how perturbations to the shape
of the cross-section may influence the existence and stability of multiple solutions.
The issue of conditioning was briefly explored here, and could be investigated in more
detail. Another potential extension is the implementation of Navier slip boundary
conditions, thereby extending what has been done for the Stokes approximation of the
axial flow by Wang [17].
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