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COEFFICIENT ESTIMATES FOR A CLASS OF 
STAR-LIKE FUNCTIONS 

D. A. BRANNAN, J. CLUNIE, AND W. E. KIRWANt 

1. Introduction. In this note we continue the study, initiated in [1], of 
the class 5* (a) of functions 

oo 

(i.i) /(*) = » + £**** 

that are analytic and univalent in the unit disc U and satisfy the condition 

(1.2) - a f < a r g ^ < « f (0 < a ^ 1). 

5*(1) is the frequently studied class of univalent star-like functions. For each 
a, S*(a) is a subclass of the class K(a) of close-to-convex functions of order a 
introduced by Pommerenke [4]. Properties of the class 5* (a) proved useful 
in studying the coefficient behaviour of bounded univalent functions that are 
analytic and map U onto a convex domain [1]. In this note we investigate 
the problem of determining 

(1.3) An(a) = max \an\ 
res* (a) 

but we are able to give only a partial solution. 
In § 3 we introduce the related class 2* (a) of functions 

that are analytic and univalent in the punctured disc and satisfy the condition 

(1.4) ( l - | ) x < a r g ^ < ( l + | ) x (0 < a ^ 1). 

2*(1) is the class of univalent meromorphic star-like functions studied in 
[3; 5]. For the class of functions 2*(a), we show that 

\A I < - — lAnl -n + 1 
with equality for a fixed integer n if and only if 

- vr=^y (le| = 1}-F(z) 
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It is convenient to denote by ^ a (0 < a ^ 1) the class of functions 

oo 

P(z) = 1+Efcs* 

that are analytic in U and subordinate to the function ((1 + z)/(l — z))a. 
We note that P(s) G «^a if and only if P(s) = [Q(z)]a, where (2(2) 6 ^ \ . 

For future reference we observe that (1.2) and (1.4) are equivalent to 

(1.5) 

and 

(1.6) 

^ = [P(z)T 

zF'jz) 
F{z) = -Lpoor, 

respectively, where P(z) belongs to SP\. 

2. We begin by determining An(a) in the case that n = 2 and n = 3. 

THEOREM 2.1. Let 

oo 

/(*) = 2 + Z akz* 

belong to S*(a) (0 < a ^ 1). 77z£w |a2| ^ 2a, with equality if and only if 

/(*) Ll - ezj U€i X)-

If 0 < a < -|, ^ew [«a] ^ a ÎW% equality if and only if 

if I < a ^ 1, //^n |a3| ^ 3a2 wi/& equality if and only if 

(1*1 = i); 

and if a = ^, then |a3| ^ | , w£& equality if and only if 

<"> 51? - M H H ) + " - »(£$]"• 
where \e\ = 1 aw^ 0 ^ A ^ 1. 

Proo/. If/(*) € 5*(a), then by (1.5), 

*f(*) 

5fM = f l + «*T 
/(*) Ll - esJ 

(2.2) -[P(2)r = [ i + Ë ^ 
J (2) L *=1 
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where P(z) € ^ \ . From (2.2) it follows that a2 = api and 

(2.3) 2a3 = a! P2 + 
3a v] 

By a well-known theorem due to Carathéodory [2], \pn\ :g 2 and |/>i| = 2 if 
and only if 

1 + ez 
P(z) = 

€Z 

where |e| = 1. This completes the proof of the first part of the theorem. 
If | < OL ^ 1, then since \p2\ S 2, (2.3) implies that |a3| ^ 3a2 and again 

equality holds if and only if 

/(^) Li 
+ 62 

€3J 

If a = I, then by (2.3) |#3| ^ | with equality if and only if \p2\ = 2. It 
follows from Carathéodory's theorem that if \p2\ = 2, then 

P(z) = x- - + (l - x) 
ez 1 — € Z 

where |e| = 1 and O ^ À ^ l ; consequently, zf'(z)/f(z) satisfies (2.1). 
It remains to consider the case 0 < a < ^. By (2.3) we have 

(2.4) 2Rea s = a R e ^ 2 -'} 
Since P(z) £ ^ \ , the Herglotz representation formula (see [7, p. 232]) states 
that 

P(z) = C\+"~"tdii(j), 
Jo J- — ze 

where ix(t) is increasing on [0, 27r], and IJL(2T) — /z(0) = 1. It follows that 

J
»2TT 

e"'"' ^ ( 0 ( « = 1 , 2 , . . .)• 
0 

Substituting in (2.4) we have 

J
»2TT 

cos 2tdfi(t) 
o 

- 2a (1 - 3a) J] J cos t dn(t)\ - I f sin / dfi(t) J f 

S*2T r /*2TT "]2 

^ 2a I cos 2tdn(t) + 2a (1 - 3a) I smtd^i) 

( r /»2TT ~|2 /»2TT } 

= 2 a | l + (1 ~ 3a) I J sin / dfi(t) J - 2 J sin2 / dM(0 f . 
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By Jensen's inequality [7, p. 61], 

J \sin t\dn(f) ^ I sin2 tdfx(t)t 

and thus it follows from (2.5) that 2 Re az rg 2a. 
If 2 Re a3 = 2a, M(0 must satisfy 

J
»2TT 

sin2 tdn(t) = 0 
o 

and 

J
»2TT 

cost dp (t) = 0. 
0 

(2.6) is possible only if fx(t) is constant on (0, IT) and on (x, 2ic). For such a 
JLI(£), (2.7) is possible only if the jump of n(t) at t — IT equals the sum of the 
jumps at t = 0 and t = 2-K. It follows that Re a3 = a if and only if 

zf'jz) [ll±z 11 - s > [l+z2la 

f(z) L 2 1 - z ~ i ~ 2 1 + d Ll-z2J' 

and therefore |a3| = a if and only if 

*/(*) _ 1 + * 
f(z) Ll - e*2J 

This completes the proof of the theorem 

2 

(M = i ) . 

The "logical" choice for an extremal function for the problem of deter
mining An(a) would be the function fa(z) defined by 

(2*8) 1M ~ \T=-ZJ • 
As seen in the previous theorem, if n = 3 and 0 < a < f, fa(z) is not an 
extremal function for this problem. The next theorem shows however that 
for each n, fa{z) is an extremal function provided a is sufficiently near 1. 

THEOREM 2.2. Let f(z) = z + 2*=2 akz
k belong to 5*(a), 0 < a ^ 1, awd 

let n > 1 be a fixed integer. There exists a number /3n (0 < fin < 1) swc& / t o if 
j3w < a ^ 1, |an| = An(a) if and only if f(z) = efa(ez)y where fu{z) is defined 
by (2.8) and |e| = 1. 

Proof. By (1.5), 

(2.9) s£g> = [p«r = i+£«***, 

where P(s) G ^ i . If P(s) = 1 + L*-i/>***» then it follows from (2.9) that 

(2.10) a* = £ ^ ( « ; m, . . . , w ^ f f l l . . . £TOy 
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(where ty(a] m\, . . . , mf) is a polynomial of degree at most k in a) is inde
pendent of P(z); and the summation is taken over all j-tuples (mi, . . . , mf) 
of positive integers which satisfy 

Wi ^ . . . ^ nij and m\ + . . . + m^ = k. 

Also from (2.9) we have 

(2.11) (k - l)ak = aiafe_i + . . . + a*_2a2 + «*_!. 

Using (2.10) and induction we deduce 

(2.12) an = an(a) = X) <K<*; Wi, . . . , w,)£m i . . . pmj 

(where 4>{a\ mi, . . . , mf) is a polynomial of degree at most n — 1 in a) is 
independent of / (s ) ; and the range of summation is as defined in (2.10) with 
k = n — 1. If a = 1, then ak = pk. An induction argument using (2.11) and 
(2.12) shows that 0(1 ; mi, . . . , mf) > 0 for all mi g . . . ^ mj with 
Mi + . . . + nij = w — 1. It follows that there is a constant /3re, 0 < fin < 1, 
such that each 0(a; mi, . . . , m ;) is positive in the interval (0n, 1]. Thus by 
(2.12), aw(a) = 4 n (a ) (/3n < a ^ 1) if and only if \pj\ = 2 for 1 S j S n - 1; 
i.e., 

P(z) = {±fz, H = i. 

It follows that for this range of a, the only extremal functions for this problem 
are functions of the form efa(ez), where |e| = 1. 

The previous theorem determines An{a) for a given n if a is near 1. We now 
give a theorem which determines An(a) for a given n when a is near 0. This 
theorem requires the following result. 

THEOREM 2.3 (Rogosinski [6, p. 70]). Let f(z) = a + ]£fc=i akz
k be sub

ordinate to F{z) = a + Ylk=iAjcZk in U. If F(z) is univalent in U and F{U) 
is convex, then \an\ S 1-41|. If F(U) is not a half plane, then equality can hold 
for a given n only if f(z) = F(ezn) (|e| = 1). 

If P(z) e SPa (0 < a < 1), then P(z) is subordinate to ((1 + z)/(l - z))a. 
It follows from Theorem 2.3 that if 

CO 

P(z) = 1 + D ptz\ 
k=l 

then \pn\ ^ 2a. Moreover, \pn\ = 2a if and only if 

' « = fe)° «•!-')• 
We shall also need the following lemma. 

https://doi.org/10.4153/CJM-1970-055-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-055-8


STAR-LIKE FUNCTIONS 4 8 1 

LEMMA. Let f(z) = z + J2k=2dk(oi)zk be a function in S*(a) for which 
an(a) = An(a). If 

/ O I Q | 5flCç) _ f l + Wa(z)\ 
{2'l6) f(z) - Ll - Wa{z)\ ' 

where \Wa(z)\ < 1 a?zd Wa(0) = 0, ffora 

lim Wa(z) = 2T1. 
a_>0 

Proof. Let 

It follows from (2.13) and (2.14) that 

(2.15) (k - l)ak(a) = pk-i(a) + pk-2(a)a2(a) + . . . + pi(a)ak-i(a). 

By Theorem 2.3 and induction we deduce that 

(* - l)ak(a) = pk-i(a) + 0(a2) (a ->0) . 

In particular, 

(n - l)an(a) = Re pn-i(a) + 0(a2) S 2a + 0(a2) (a ->0) . 

If g (z) is the function in S* (a) defined by 

(2-16)
 g(z) - Vi - e-1) ' 

then 

(2.17) g(z)=z + ^ 1 z " + . . . . 

Since a„(a) = An(a) and Re£w_i(a) ^ 2a, 

2a: ^ (w - l)On(a) ^ Re£n_i(a) + 0(a2) ^ 2a + 0(a2) . 

It follows that 

lim —Re£w_i(a) = 1. 

The function [Pa(s)]1/2a G ̂ 1/2. If 

00 

[ P „ ( s ) ] 1 / 2 a = l + £ g * ( a ) S \ 

then using the fact that \pk(a)\ ^ 2a we obtain 

Re &_!(«) = Re ^ ^ + o(a) (a -> 0). 

Thus lim^o Re gn_i(a) = 1. «^1/2 is a normal compact family of functions, 
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and thus it follows from the theory of normal families and the comments 
following Theorem 2.3 that 

L r ^ H =b [p* ( s ) ] = S Li - w.(*)l 
1/2 

This completes the proof of the lemma. 

THEOREM 2.4. For each integer n > 1, £Âer# aw/5 a number ynj 0 < yn < 1, 
5^c/ï / t o if 0 < a < yn, then An(a) = 2a/ (n — 1). Moreover, if 

oo 

/(*) = 2 + £ %2* 
A;=2 

is a function in S*(a) for which \an\ = 2a/(n — 1), then 

zf'jz) 

m 
where lei = 1. 

Zf'jz) _ f l + e / - 1 ! " 
Ll - 6 2 ^ ] ' 

Proof. Let /(z) = z + £&=2 ak(a)zk be a function in 5* (a) for which 
an(a) = ^4m(a). Using the notation of the lemma we have 

(218) *m _ p (z) _ fi + w«(*)" 

and lim^o ^«(z) = zn~1. We show that there exists a number yw, 0 < yn < 1, 
such that 

(2.19) Wa(2) = z71-1 

for 0 < a < yn. In view of (2.18), (2.16), and (2.17), this will complete 
the proof. 

Let Wa(z) = S*=i wk(a)zk. If we can show that there exists a yn > 0 such 
that 

(2.20) w„_i(a) = 1 (0 < a < 7»), 

then (2.19) will follow. 
Suppose that (2.20) does not hold. Then there exists a set 5 which contains 

arbitrarily small values of a > 0 such that 

|wn_i(a)| = 1 - \(a) (cteS) 

and 0 < \(a) < 1. By the lemma, lim^o X(a) = 0. 
Since |Wa(z)| < 1 in \z\ < 1, Parseval's identity implies that 

\w!(a)\2 + . . . + \wn-i(a)\2 g 1. 

Thus if a G «S, 

(2.21) K ( Û O | 2 ^ 2X(a) (1 ^ * ^ » - 2). 
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It follows from (2.18) that 

oo ( co ) 2 

(2.22) Pa(z) = 1 + 2a £ [Wa(z)Y + 2a(a - 1)4 £ [Wa(z)]'\ +... 

= 1 + 2aWa(z) + 2a Wa\z) + ah(z), 

where h(z) is a sum of powers of Wa(z) of degree at least 3. 
lia £ S, then (2.21) and (2.22) imply that 

(2.23) pk(a) = 2awk(a) + a*0(\(a)) + a(9([X(a)]3/2) 

for 1 ^ k ^ n - 1. Substituting (2.23) in (2.15), applying (2.21), and using 
induction, we obtain 

(n - l)an(a) = 2awn^(a) + a*0(\(a)) + aO([X(a)]3/2) 

g 2a[l - X(a) + aO(X(a)) + 0([X(o:)]3/2)] 

< 2a 

for sufficiently small a in S. This is a contradiction since (2.17) implies that 
(n — l)An(a) ^ 2a for 0 < a ^ 1. Thus no such set 5 can exist which implies 
the existence of a number yn with the desired properties. 

3. The coefficient problem for 2*(a). Let 

i °° 

2 jfc=0 

belong to 2*(1). It was shown in [3] that for n ^ 1, \An\ S 2/(n + 1) with 
equality if and only if 

zF'jz) _ 1 + ezn+1 

F(z) 1 - ezn+1 ' 

where |e| = 1. Using this result, we prove the following theorem. 

THEOREM 3.1. Let 

1 °° 

2 £=0 

belong to 2* (a) (0 < a ^ 1). Then for n ^ 1, 

(3.1) H.| ^ ^ 

wiift equality if and only if 

zF'jz) _ _ (l + tz
n+1Y 

F(2) ~ \ 1 - 6S"+7 * 

where [el = 1. 
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Proof. Since F(z) G S*(a), 

(3.2) 

where P(z) 6 

(3.3) 

zF'jz) 
F(z) 

= -P(z), 

Let G(z) be the function in S*(l) denned by 

zG'jz) 
G(zT = -P(z) 

1 +dzn+1' 
.1 - dzn+1. 

(\d\ = 1). 

If Giz) = l/z + Zt=o £*z*, then it follows from (3.2) and (3.3) that Ak = Bk 

for 1 ^ H » - l and 

(3.4) (n + l)Bn = (n + l)An - 2d(l - a). 

Since G(z) € 2*(1), |(» + l)Bn\ g, 2, i.e., 

(3.5) \(n + l)An - 2d(l - a)\ g 2. 

arg d is arbitrary and thus if we choose 

(3.6) arg d = arg An + T, 

(3.5) implies that 

( » + 1)M.| + 2(1 - a ) ^ 2 or (n + 1)M,.| g 2a. 

This establishes (3.1). If equality holds; i.e., (n + 1)|.4»| = 2a, then 

(n + l)\Bn\ = (« + 1)L4„| + 2(1 - a) = 2. 

It follows from the result for 2*(1) quoted above that 

<"> f$--*«[£ dz .«+i 

dzn+iA 
1 + ez 
1 - «2? 

re+1 

where |e| = 1 and arg e = w + arg Bn. In view of (3.4) and (3.6), 

(3.8) arg e = 7r + arg JE>B = arg d (mod 2x). 

Substituting (3.8) in (3.7) we obtain 

zF'jz) 
F(z) 

= -P(z) = -
1 + ez' 

LI - es" 

,w+l~]a 

This completes the proof of the theorem. 
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