COEFFICIENT ESTIMATES FOR A CLASS OF STAR-LIKE FUNCTIONS

D. A. BRanNAN, J. CLunie, AND W. E. Kirwan \dagger

1. Introduction. In this note we continue the study, initiated in [1], of the class $S^{*}(\alpha)$ of functions

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

that are analytic and univalent in the unit disc U and satisfy the condition

$$
\begin{equation*}
-\alpha \frac{\pi}{2}<\arg \frac{z f^{\prime}(z)}{f(z)}<\alpha \frac{\pi}{2} \quad(0<\alpha \leqq 1) \tag{1.2}
\end{equation*}
$$

$S^{*}(1)$ is the frequently studied class of univalent star-like functions. For each $\alpha, S^{*}(\alpha)$ is a subclass of the class $K(\alpha)$ of close-to-convex functions of order α introduced by Pommerenke [4]. Properties of the class $S^{*}(\alpha)$ proved useful in studying the coefficient behaviour of bounded univalent functions that are analytic and map U onto a convex domain [1]. In this note we investigate the problem of determining

$$
\begin{equation*}
A_{n}(\alpha)=\max _{f \in S^{*}(\alpha)}\left|a_{n}\right| \tag{1.3}
\end{equation*}
$$

but we are able to give only a partial solution.
In § 3 we introduce the related class $\Sigma^{*}(\alpha)$ of functions

$$
F(z)=\frac{1}{z}+\sum_{k=0}^{\infty} A_{k} z^{k}
$$

that are analytic and univalent in the punctured disc and satisfy the condition

$$
\begin{equation*}
\left(1-\frac{\alpha}{2}\right) \pi<\arg \frac{z F^{\prime}(z)}{F(z)}<\left(1+\frac{\alpha}{2}\right) \pi \quad(0<\alpha \leqq 1) \tag{1.4}
\end{equation*}
$$

$\Sigma^{*}(1)$ is the class of univalent meromorphic star-like functions studied in $[3 ; 5]$. For the class of functions $\Sigma^{*}(\alpha)$, we show that

$$
\left|A_{n}\right| \leqq \frac{2 \alpha}{n+1}
$$

with equality for a fixed integer n if and only if

$$
\frac{z F^{\prime}(z)}{F(z)}=-\left(\frac{1+\epsilon z^{n+1}}{1-\epsilon z^{n+1}}\right)^{\alpha} \quad(|\epsilon|=1)
$$

[^0]It is convenient to denote by $\mathscr{P}_{\alpha}(0<\alpha \leqq 1)$ the class of functions

$$
P(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}
$$

that are analytic in U and subordinate to the function $((1+z) /(1-z))^{\alpha}$. We note that $P(z) \in \mathscr{P}_{\alpha}$ if and only if $P(z)=[Q(z)]^{\alpha}$, where $Q(z) \in \mathscr{P}_{1}$.

For future reference we observe that (1.2) and (1.4) are equivalent to

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=[P(z)]^{\alpha} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=-[P(z)]^{\alpha}, \tag{1.6}
\end{equation*}
$$

respectively, where $P(z)$ belongs to \mathscr{P}_{1}.
2. We begin by determining $A_{n}(\alpha)$ in the case that $n=2$ and $n=3$.

Theorem 2.1. Let

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

belong to $S^{*}(\alpha)(0<\alpha \leqq 1)$. Then $\left|a_{2}\right| \leqq 2 \alpha$, with equality if and only if

$$
\frac{z f^{\prime}(z)}{f(z)}=\left[\frac{1+\epsilon z}{1-\epsilon z}\right]^{\alpha} \quad(|\epsilon|=1)
$$

If $0<\alpha<\frac{1}{3}$, then $\left|a_{3}\right| \leqq \alpha$ with equality if and only if

$$
\frac{z f^{\prime}(z)}{f(z)}=\left[\frac{1+\epsilon z^{2}}{1-\epsilon z^{2}}\right]^{\alpha} \quad(|\epsilon|=1)
$$

if $\frac{1}{3}<\alpha \leqq 1$, then $\left|a_{3}\right| \leqq 3 \alpha^{2}$ with equality if and only if

$$
\frac{z f^{\prime}(z)}{f(z)}=\left[\frac{1+\epsilon z}{1-\epsilon z}\right]^{\alpha} \quad(|\epsilon|=1)
$$

and if $\alpha=\frac{1}{3}$, then $\left|a_{3}\right| \leqq \frac{1}{3}$, with equality if and only if

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\left[\lambda\left(\frac{1+\epsilon z}{1-\epsilon z}\right)+(1-\lambda)\left(\frac{1+\epsilon^{2} z^{2}}{1-\epsilon^{2} z^{2}}\right)\right]^{1 / 3} \tag{2.1}
\end{equation*}
$$

where $|\epsilon|=1$ and $0 \leqq \lambda \leqq 1$.
Proof. If $f(z) \in S^{*}(\alpha)$, then by (1.5),

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=[P(z)]^{\alpha}=\left[1+\sum_{k=1}^{\infty} p_{k} z^{k}\right]^{\alpha} \tag{2.2}
\end{equation*}
$$

where $P(z) \in \mathscr{P}_{1}$. From (2.2) it follows that $a_{2}=\alpha p_{1}$ and

$$
\begin{equation*}
2 a_{3}=\alpha\left[p_{2}+\frac{3 \alpha-1}{2} p_{1}{ }^{2}\right] . \tag{2.3}
\end{equation*}
$$

By a well-known theorem due to Carathéodory [2], $\left|p_{n}\right| \leqq 2$ and $\left|p_{1}\right|=2$ if and only if

$$
P(z)=\frac{1+\epsilon z}{1-\epsilon z}
$$

where $|\epsilon|=1$. This completes the proof of the first part of the theorem.
If $\frac{1}{3}<\alpha \leqq 1$, then since $\left|p_{2}\right| \leqq 2$, (2.3) implies that $\left|a_{3}\right| \leqq 3 \alpha^{2}$ and again equality holds if and only if

$$
\frac{z f^{\prime}(z)}{f(z)}=\left[\frac{1+\epsilon z}{1-\epsilon z}\right]^{\alpha}
$$

If $\alpha=\frac{1}{3}$, then by (2.3) $\left|a_{3}\right| \leqq \frac{1}{3}$ with equality if and only if $\left|p_{2}\right|=2$. It follows from Carathéodory's theorem that if $\left|p_{2}\right|=2$, then

$$
P(z)=\lambda \frac{1+\epsilon z}{1-\epsilon z}+(1-\lambda) \frac{1+\epsilon^{2} z^{2}}{1-\epsilon^{2} z^{2}}
$$

where $|\epsilon|=1$ and $0 \leqq \lambda \leqq 1$; consequently, $z f^{\prime}(z) / f(z)$ satisfies (2.1).
It remains to consider the case $0<\alpha<\frac{1}{3}$. By (2.3) we have

$$
\begin{equation*}
2 \operatorname{Re} a_{3}=\alpha \operatorname{Re}\left\{p_{2}-\frac{1-3 \alpha}{2} p_{1}^{2}\right\} . \tag{2.4}
\end{equation*}
$$

Since $P(z) \in \mathscr{P}_{1}$, the Herglotz representation formula (see [7, p. 232]) states that

$$
P(z)=\int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t)
$$

where $\mu(t)$ is increasing on $[0,2 \pi]$, and $\mu(2 \pi)-\mu(0)=1$. It follows that

$$
p_{n}=2 \int_{0}^{2 \pi} e^{-i n t} d \mu(t) \quad(n=1,2, \ldots)
$$

Substituting in (2.4) we have

$$
\begin{align*}
2 \operatorname{Re} a_{3}= & 2 \alpha \int_{0}^{2 \pi} \cos 2 t d \mu(t) \tag{2.5}\\
- & 2 \alpha(1-3 \alpha)\left\{\left[\int_{0}^{2 \pi} \cos t d \mu(t)\right]^{2}-\left[\int_{0}^{2 \pi} \sin t d \mu(t)\right]^{2}\right\} \\
& \leqq 2 \alpha \int_{0}^{2 \pi} \cos 2 t d \mu(t)+2 \alpha(1-3 \alpha)\left[\int_{0}^{2 \pi} \sin t d \mu(t)\right]^{2} \\
= & 2 \alpha\left\{1+(1-3 \alpha)\left[\int_{0}^{2 \pi} \sin t d \mu(t)\right]^{2}-2 \int_{0}^{2 \pi} \sin ^{2} t d \mu(t)\right\}
\end{align*}
$$

By Jensen's inequality [7, p. 61],

$$
\left[\int_{0}^{2 \pi}|\sin t| d \mu(t)\right]^{2} \leqq \int_{0}^{2 \pi} \sin ^{2} t d \mu(t)
$$

and thus it follows from (2.5) that $2 \operatorname{Re} a_{3} \leqq 2 \alpha$.
If $2 \operatorname{Re} a_{3}=2 \alpha, \mu(t)$ must satisfy

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin ^{2} t d \mu(t)=0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi} \cos t d \mu(t)=0 \tag{2.7}
\end{equation*}
$$

(2.6) is possible only if $\mu(t)$ is constant on $(0, \pi)$ and on $(\pi, 2 \pi)$. For such a $\mu(t)$, (2.7) is possible only if the jump of $\mu(t)$ at $t=\pi$ equals the sum of the jumps at $t=0$ and $t=2 \pi$. It follows that $\operatorname{Re} a_{3}=\alpha$ if and only if

$$
\frac{z f^{\prime}(z)}{f(z)}=\left[\frac{1}{2} \frac{1+z}{1-z}+\frac{1}{2} \frac{1-z}{1+z}\right]^{\alpha}=\left[\frac{1+z^{2}}{1-z^{2}}\right]^{\alpha}
$$

and therefore $\left|a_{3}\right|=\alpha$ if and only if

$$
\frac{z f^{\prime}(z)}{f(z)}=\left[\frac{1+\epsilon z^{2}}{1-\epsilon z^{2}}\right]^{\alpha} \quad(|\epsilon|=1)
$$

This completes the proof of the theorem.
The "logical" choice for an extremal function for the problem of determining $A_{n}(\alpha)$ would be the function $f_{\alpha}(z)$ defined by

$$
\begin{equation*}
\frac{z f_{\alpha}^{\prime}(z)}{f_{\alpha}(z)}=\left(\frac{1+z}{1-z}\right)^{\alpha} \tag{2.8}
\end{equation*}
$$

As seen in the previous theorem, if $n=3$ and $0<\alpha<\frac{1}{3}, f_{\alpha}(z)$ is not an extremal function for this problem. The next theorem shows however that for each $n, f_{\alpha}(z)$ is an extremal function provided α is sufficiently near 1 .

Theorem 2.2. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ belong to $S^{*}(\alpha), 0<\alpha \leqq 1$, and let $n>1$ be a fixed integer. There exists a number $\beta_{n}\left(0<\beta_{n}<1\right)$ such that if $\beta_{n}<\alpha \leqq 1,\left|a_{n}\right|=A_{n}(\alpha)$ if and only if $f(z)={ }_{\epsilon} f_{\alpha}(\epsilon z)$, where $f_{\alpha}(z)$ is defined by (2.8) and $|\epsilon|=1$.

Proof. By (1.5),

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=[P(z)]^{\alpha}=1+\sum_{k=1}^{\infty} \alpha_{k} z^{k} \tag{2.9}
\end{equation*}
$$

where $P(z) \in \mathscr{P}_{1}$. If $P(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}$, then it follows from (2.9) that

$$
\begin{equation*}
\alpha_{k}=\sum \Psi\left(\alpha ; m_{1}, \ldots, m_{j}\right) p_{m_{1}} \ldots p_{m_{j}} \tag{2.10}
\end{equation*}
$$

(where $\Psi\left(\alpha ; m_{1}, \ldots, m_{j}\right)$ is a polynomial of degree at most k in α) is independent of $P(z)$; and the summation is taken over all j-tuples (m_{1}, \ldots, m_{j}) of positive integers which satisfy

$$
m_{1} \leqq \ldots \leqq m_{j} \quad \text { and } \quad m_{1}+\ldots+m_{j}=k
$$

Also from (2.9) we have

$$
\begin{equation*}
(k-1) a_{k}=\alpha_{1} a_{k-1}+\ldots+\alpha_{k-2} a_{2}+\alpha_{k-1} \tag{2.11}
\end{equation*}
$$

Using (2.10) and induction we deduce

$$
\begin{equation*}
a_{n}=a_{n}(\alpha)=\sum \phi\left(\alpha ; m_{1}, \ldots, m_{j}\right) p_{m_{1}} \ldots p_{m_{j}} \tag{2.12}
\end{equation*}
$$

(where $\phi\left(\alpha ; m_{1}, \ldots, m_{j}\right)$ is a polynomial of degree at most $n-1$ in α) is independent of $f(z)$; and the range of summation is as defined in (2.10) with $k=n-1$. If $\alpha=1$, then $\alpha_{k}=p_{k}$. An induction argument using (2.11) and (2.12) shows that $\phi\left(1 ; m_{1}, \ldots, m_{j}\right)>0$ for all $m_{1} \leqq \ldots \leqq m_{j}$ with $m_{1}+\ldots+m_{j}=n-1$. It follows that there is a constant $\beta_{n}, 0<\beta_{n}<1$, such that each $\phi\left(\alpha ; m_{1}, \ldots, m_{j}\right)$ is positive in the interval $\left(\beta_{n}, 1\right]$. Thus by (2.12), $a_{n}(\alpha)=A_{n}(\alpha)\left(\beta_{n}<\alpha \leqq 1\right)$ if and only if $\left|p_{j}\right|=2$ for $1 \leqq j \leqq n-1$; i.e.,

$$
P(z)=\frac{1+\epsilon Z}{1-\epsilon Z}, \quad|\epsilon|=1
$$

It follows that for this range of α, the only extremal functions for this problem are functions of the form $\bar{\epsilon} f_{\alpha}(\epsilon z)$, where $|\epsilon|=1$.

The previous theorem determines $A_{n}(\alpha)$ for a given n if α is near 1 . We now give a theorem which determines $A_{n}(\alpha)$ for a given n when α is near 0 . This theorem requires the following result.

Theorem 2.3 (Rogosinski [6, p. 70]). Let $f(z)=a+\sum_{k=1}^{\infty} a_{k} z^{k}$ be subordinate to $F(z)=a+\sum_{k=1}^{\infty} A_{k} z^{k}$ in U. If $F(z)$ is univalent in U and $F(U)$ is convex, then $\left|a_{n}\right| \leqq\left|A_{1}\right|$. If $F(U)$ is not a half plane, then equality can hold for a given n only if $f(z)=F\left(\epsilon z^{n}\right)(|\epsilon|=1)$.

If $P(z) \in \mathscr{P}_{\alpha}(0<\alpha<1)$, then $P(z)$ is subordinate to $((1+z) /(1-z))^{\alpha}$. It follows from Theorem 2.3 that if

$$
P(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}
$$

then $\left|p_{n}\right| \leqq 2 \alpha$. Moreover, $\left|p_{n}\right|=2 \alpha$ if and only if

$$
P(z)=\left(\frac{1+\epsilon z}{1-\epsilon z}\right)^{\alpha} \quad(|\epsilon|=1)
$$

We shall also need the following lemma.

Lemma. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k}(\alpha) z^{k}$ be a function in $S^{*}(\alpha)$ for which $a_{n}(\alpha)=A_{n}(\alpha)$. If

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\left[\frac{1+W_{\alpha}(z)}{1-W_{\alpha}(z)}\right]^{\alpha}, \tag{2.13}
\end{equation*}
$$

where $\left|W_{\alpha}(z)\right|<1$ and $W_{\alpha}(0)=0$, then

$$
\lim _{\alpha \rightarrow 0} W_{\alpha}(z)=z^{n-1} .
$$

Proof. Let

$$
\begin{equation*}
P_{\alpha}(z)=\left[\frac{1+W_{\alpha}(z)}{1-W_{\alpha}(z)}\right]^{\alpha}=1+\sum_{k=1}^{\infty} p_{k}(\alpha) z^{k} . \tag{2.14}
\end{equation*}
$$

It follows from (2.13) and (2.14) that

$$
\begin{equation*}
(k-1) a_{k}(\alpha)=p_{k-1}(\alpha)+p_{k-2}(\alpha) a_{2}(\alpha)+\ldots+p_{1}(\alpha) a_{k-1}(\alpha) . \tag{2.15}
\end{equation*}
$$

By Theorem 2.3 and induction we deduce that

$$
(k-1) a_{k}(\alpha)=p_{k-1}(\alpha)+O\left(\alpha^{2}\right) \quad(\alpha \rightarrow 0) .
$$

In particular,

$$
(n-1) a_{n}(\alpha)=\operatorname{Re} p_{n-1}(\alpha)+O\left(\alpha^{2}\right) \leqq 2 \alpha+O\left(\alpha^{2}\right) \quad(\alpha \rightarrow 0)
$$

If $g(z)$ is the function in $S^{*}(\alpha)$ defined by

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=\left(\frac{1+z^{n-1}}{1-z^{n-1}}\right)^{\alpha} \tag{2.16}
\end{equation*}
$$

then

$$
\begin{equation*}
g(z)=z+\frac{2 \alpha}{n-1} z^{n}+\ldots \tag{2.17}
\end{equation*}
$$

Since $a_{n}(\alpha)=A_{n}(\alpha)$ and $\operatorname{Re} p_{n-1}(\alpha) \leqq 2 \alpha$,

$$
2 \alpha \leqq(n-1) a_{n}(\alpha) \leqq \operatorname{Re} p_{n-1}(\alpha)+O\left(\alpha^{2}\right) \leqq 2 \alpha+O\left(\alpha^{2}\right)
$$

It follows that

$$
\lim _{\alpha \rightarrow 0} \frac{1}{2 \alpha} \operatorname{Re} p_{n-1}(\alpha)=1 .
$$

The function $\left[P_{\alpha}(z)\right]^{1 / 2 \alpha} \in \mathscr{P}_{1 / 2}$. If

$$
\left[P_{\alpha}(z)\right]^{1 / 2 \alpha}=1+\sum_{k=1}^{\infty} q_{k}(\alpha) z^{k}
$$

then using the fact that $\left|p_{k}(\alpha)\right| \leqq 2 \alpha$ we obtain

$$
\operatorname{Re} q_{n-1}(\alpha)=\operatorname{Re} \frac{p_{n-1}(\alpha)}{2 \alpha}+o(\alpha) \quad(\alpha \rightarrow 0)
$$

Thus $\lim _{\alpha \rightarrow 0} \operatorname{Re} q_{n-1}(\alpha)=1 . \mathscr{P}_{1 / 2}$ is a normal compact family of functions,
and thus it follows from the theory of normal families and the comments following Theorem 2.3 that

$$
\left[\frac{1+z^{n-1}}{1-z^{n-1}}\right]^{1 / 2}=\lim _{\alpha \rightarrow 0}\left[P_{\alpha}(z)\right]^{1 / 2 \alpha}=\lim _{\alpha \rightarrow 0}\left[\frac{1+W_{\alpha}(z)}{1-W_{\alpha}(z)}\right]^{1 / 2}
$$

This completes the proof of the lemma.
Theorem 2.4. For each integer $n>1$, there exists a number $\gamma_{n}, 0<\gamma_{n}<1$, such that if $0<\alpha<\gamma_{n}$, then $A_{n}(\alpha)=2 \alpha /(n-1)$. Moreover, if

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

is a function in $S^{*}(\alpha)$ for which $\left|a_{n}\right|=2 \alpha /(n-1)$, then

$$
\frac{z f^{\prime}(z)}{f(z)}=\left[\frac{1+\epsilon z^{n-1}}{1-\epsilon z^{n-1}}\right]^{\alpha}
$$

where $|\epsilon|=1$.
Proof. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k}(\alpha) z^{k}$ be a function in $S^{*}(\alpha)$ for which $a_{n}(\alpha)=A_{n}(\alpha)$. Using the notation of the lemma we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=P_{\alpha}(z)=\left[\frac{1+W_{\alpha}(z)}{1-W_{\alpha}(z)}\right]^{\alpha} \tag{2.18}
\end{equation*}
$$

and $\lim _{\alpha \rightarrow 0} W_{\alpha}(z)=z^{n-1}$. We show that there exists a number $\gamma_{n}, 0<\gamma_{n}<1$, such that

$$
\begin{equation*}
W_{\alpha}(z)=z^{n-1} \tag{2.19}
\end{equation*}
$$

for $0<\alpha<\gamma_{n}$. In view of (2.18), (2.16), and (2.17), this will complete the proof.

Let $W_{\alpha}(z)=\sum_{k=1}^{\infty} w_{k}(\alpha) z^{k}$. If we can show that there exists a $\gamma_{n}>0$ such that

$$
\begin{equation*}
w_{n-1}(\alpha)=1 \quad\left(0<\alpha<\gamma_{n}\right) \tag{2.20}
\end{equation*}
$$

then (2.19) will follow.
Suppose that (2.20) does not hold. Then there exists a set S which contains arbitrarily small values of $\alpha>0$ such that

$$
\left|w_{n-1}(\alpha)\right|=1-\lambda(\alpha) \quad(\alpha \in S)
$$

and $0<\lambda(\alpha)<1$. By the lemma, $\lim _{\alpha \rightarrow 0} \lambda(\alpha)=0$.
Since $\left|W_{\alpha}(z)\right|<1$ in $|z|<1$, Parseval's identity implies that

$$
\left|w_{1}(\alpha)\right|^{2}+\ldots+\left|w_{n-1}(\alpha)\right|^{2} \leqq 1 .
$$

Thus if $\alpha \in S$,

$$
\begin{equation*}
\left|w_{k}(\alpha)\right|^{2} \leqq 2 \lambda(\alpha) \quad(1 \leqq k \leqq n-2) \tag{2.21}
\end{equation*}
$$

It follows from (2.18) that

$$
\begin{align*}
P_{\alpha}(z) & =1+2 \alpha \sum_{j=1}^{\infty}\left[W_{\alpha}(z)\right]^{j}+2 \alpha(\alpha-1)\left\{\sum_{j=1}^{\infty}\left[W_{\alpha}(z)\right]^{j}\right\}^{2}+\ldots \tag{2.22}\\
& =1+2 \alpha W_{\alpha}(z)+2 \alpha^{2} W_{\alpha}^{2}(z)+\alpha h(z)
\end{align*}
$$

where $h(z)$ is a sum of powers of $W_{\alpha}(z)$ of degree at least 3 .
If $\alpha \in S$, then (2.21) and (2.22) imply that

$$
\begin{equation*}
p_{k}(\alpha)=2 \alpha w_{k}(\alpha)+\alpha^{2} O(\lambda(\alpha))+\alpha O\left([\lambda(\alpha)]^{3 / 2}\right) \tag{2.23}
\end{equation*}
$$

for $1 \leqq k \leqq n-1$. Substituting (2.23) in (2.15), applying (2.21), and using induction, we obtain

$$
\begin{aligned}
(n-1) a_{n}(\alpha) & =2 \alpha w_{n-1}(\alpha)+\alpha^{2} O(\lambda(\alpha))+\alpha O\left([\lambda(\alpha)]^{3 / 2}\right) \\
& \leqq 2 \alpha\left[1-\lambda(\alpha)+\alpha O(\lambda(\alpha))+O\left([\lambda(\alpha)]^{3 / 2}\right)\right] \\
& <2 \alpha
\end{aligned}
$$

for sufficiently small α in S. This is a contradiction since (2.17) implies that $(n-1) A_{n}(\alpha) \geqq 2 \alpha$ for $0<\alpha \leqq 1$. Thus no such set S can exist which implies the existence of a number γ_{n} with the desired properties.

3. The coefficient problem for $\Sigma^{*}(\alpha)$. Let

$$
F(z)=\frac{1}{z}+\sum_{k=0}^{\infty} A_{k} z^{k}
$$

belong to $\Sigma^{*}(1)$. It was shown in [3] that for $n \geqq 1,\left|A_{n}\right| \leqq 2 /(n+1)$ with equality if and only if

$$
\frac{z F^{\prime}(z)}{F(z)}=-\frac{1+\epsilon z^{n+1}}{1-\epsilon z^{n+1}}
$$

where $|\epsilon|=1$. Using this result, we prove the following theorem.
Theorem 3.1. Let

$$
F(z)=\frac{1}{z}+\sum_{k=0}^{\infty} A_{k} z^{k}
$$

belong to $\Sigma^{*}(\alpha)(0<\alpha \leqq 1)$. Then for $n \geqq 1$,

$$
\begin{equation*}
\left|A_{n}\right| \leqq \frac{2 \alpha}{n+1} \tag{3.1}
\end{equation*}
$$

with equality if and only if

$$
\frac{z F^{\prime}(z)}{F(z)}=-\left(\frac{1+\epsilon z^{n+1}}{1-\epsilon z^{n+1}}\right)^{\alpha}
$$

where $|\epsilon|=1$.

Proof. Since $F(z) \in \Sigma^{*}(\alpha)$,

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=-P(z) \tag{3.2}
\end{equation*}
$$

where $P(z) \in \mathscr{P}_{\alpha}$. Let $G(z)$ be the function in $\Sigma^{*}(1)$ defined by

$$
\begin{equation*}
\frac{z G^{\prime}(z)}{G(z)}=-P(z)\left[\frac{1+d z^{n+1}}{1-d z^{n+1}}\right]^{1-\alpha} \quad(|d|=1) \tag{3.3}
\end{equation*}
$$

If $G(z)=1 / z+\sum_{k=0}^{\infty} B_{k} z^{k}$, then it follows from (3.2) and (3.3) that $A_{k}=B_{k}$ for $1 \leqq k \leqq n-1$ and

$$
\begin{equation*}
(n+1) B_{n}=(n+1) A_{n}-2 d(1-\alpha) \tag{3.4}
\end{equation*}
$$

Since $G(z) \in \Sigma^{*}(1),\left|(n+1) B_{n}\right| \leqq 2$, i.e.,

$$
\begin{equation*}
\left|(n+1) A_{n}-2 d(1-\alpha)\right| \leqq 2 \tag{3.5}
\end{equation*}
$$

$\arg d$ is arbitrary and thus if we choose

$$
\begin{equation*}
\arg d=\arg A_{n}+\pi, \tag{3.6}
\end{equation*}
$$

(3.5) implies that

$$
(n+1)\left|A_{n}\right|+2(1-\alpha) \leqq 2 \quad \text { or } \quad(n+1)\left|A_{n}\right| \leqq 2 \alpha
$$

This establishes (3.1). If equality holds; i.e., $(n+1)\left|A_{n}\right|=2 \alpha$, then

$$
(n+1)\left|B_{n}\right|=(n+1)\left|A_{n}\right|+2(1-\alpha)=2 .
$$

It follows from the result for $\Sigma^{*}(1)$ quoted above that

$$
\begin{equation*}
\frac{z G^{\prime}(z)}{G(z)}=-P(z)\left[\frac{1+d z^{n+1}}{1-d z^{n+1}}\right]^{1-\alpha}=-\frac{1+\epsilon z^{n+1}}{1-\epsilon z^{n+1}} \tag{3.7}
\end{equation*}
$$

where $|\epsilon|=1$ and $\arg \epsilon=\pi+\arg B_{n}$. In view of (3.4) and (3.6),

$$
\begin{equation*}
\arg \epsilon=\pi+\arg B_{n}=\arg d \quad(\bmod 2 \pi) \tag{3.8}
\end{equation*}
$$

Substituting (3.8) in (3.7) we obtain

$$
\frac{z F^{\prime}(z)}{F(z)}=-P(z)=-\left[\frac{1+\epsilon z^{n+1}}{1-\epsilon z^{n+1}}\right]^{\alpha} .
$$

This completes the proof of the theorem.

References

1. D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1(1969), 431-443.
2. C. Carathéodory, Über der Variabilitätsbereich der Fouriershen Konstanten von positiven harmonischen Functionen, Rend. Circ. Mat. Palermo 82 (1911), 193-217.
3. J. Clunie, On meromorphic schlict functions, J. London Math. Soc. 34 (1959), 215-216.
4. Ch. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259-269.
5. - On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235.
6. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943), 48-82.
7. W. Rudin, Real and complex analysis (McGraw-Hill, New York, 1966).

Syracuse University,
Syracuse, New York;
Imperial College,
London, England;
University of Maryland,
College Park, Maryland

[^0]: Received February 21, 1969.
 \dagger This research was supported in part by the National Science Foundation under grant GP-6891.

