J. Aust. Math. Soc. **99** (2015), 128–144 doi:10.1017/S1446788714000858

THERMIC MINORANTS AND REDUCTIONS OF SUPERTEMPERATURES

NEIL A. WATSON

(Received 30 April 2013; accepted 6 August 2014; first published online 6 March 2015)

Communicated by P. C. Fenton

Abstract

Let *u* be a supertemperature on an open set *E*, and let *v* be a related temperature on an open subset *D* of *E*. For example, *v* could be the greatest thermic minorant of *u* on *D*, if it exists. Putting w = u on $E \setminus D$ and w = v on *D*, we investigate whether *w*, or its lower semicontinuous smoothing, is a supertemperature on *E*. We also give a representation of the greatest thermic minorant on *E*, if it exists, in terms of PWB solutions on an expanding sequence of open subsets of *E* with union *E*. In addition, in the case of a nonnegative supertemperature, we prove inequalities that relate reductions to Dirichlet solutions. We also prove that the value of any reduction at a given time depends only on earlier times.

2010 *Mathematics subject classification*: primary 35K05; secondary 31B05, 31B20. *Keywords and phrases*: thermic minorant, supertemperature, reduction, PWB solution.

1. Introduction, notation and terminology

It is an elementary fact that, if u is a superharmonic function on an open subset E of \mathbb{R}^n , and B is a ball whose closure is contained in E, then replacing u on B by the Poisson integral of its restriction to ∂B gives a superharmonic function which is majorized by u on E. See, for example, [1, Corollary 3.2.5]. Moreover, that Poisson integral is the greatest harmonic minorant of u on B, by [1, Theorem 3.6.5].

The situation in heat potential theory is more complicated. Let now u be a supertemperature on an open subset E of \mathbb{R}^{n+1} , and let $C = B \times]a, b[$ be an open circular cylinder whose closure is contained in E. We denote by $\partial_n C$ the normal boundary $\partial C \setminus (B \times \{b\})$ of C. The Poisson integral of the restriction of u to $\partial_n C$ exists and is a temperature on $\overline{C} \setminus \partial_n C$. If we replace u on $\overline{C} \setminus \partial_n C$ by that Poisson integral, then the resultant function is a supertemperature which is majorized by u on E; see [16, Theorem 10] or [17, Theorem 3.21]. Note that replacing u by its Poisson integral only on C does not in general produce a supertemperature. Moreover, that Poisson integral is not in general equal to the greatest thermic minorant of u on C, as is implied

^{© 2015} Australian Mathematical Publishing Association Inc. 1446-7887/2015 \$16.00

by [17, Remark 3.24]. A similar situation occurs if we use a rectangle instead of C, as was noted in [12].

In this paper, we give the corresponding result for a heat ball. The heat ball is of increasing importance, and can now be found in several books, including [5, 7, 8, 17]. It was first studied by Pini [11] in the case n = 1, and Fulks [10] for general n. Specifically, we show that if u is a supertemperature on an open subset E of \mathbb{R}^{n+1} , and $\Omega = \Omega(p; c)$ is a heat ball whose closure is contained in E, then replacing u on Ω by the PWB solution S_u^{Ω} of the Dirichlet problem with boundary function the restriction of u to $\partial\Omega$, gives a supertemperature on $E \setminus \{p\}$ whose lower semicontinuous smoothing is a supertemperature on E. Furthermore, S_u^{Ω} is the greatest thermic minorant of u on Ω . Thus, if we take a heat ball instead of a circular cylinder (or rectangle), we obtain a much closer analogy with the superharmonic case.

The proofs are not elementary. On the way, we prove general results about changing a supertemperature to a temperature on an open subset, and whether the resultant function, or its lower semicontinuous smoothing, is a supertemperature. We also give a representation of the greatest thermic minorant in terms of PWB solutions on an expanding sequence of open subsets of E with union E. In addition, in the case of a nonnegative supertemperature, we prove inequalities that relate reductions to Dirichlet solutions. Finally, we show that the value of any reduction at a given time depends only on earlier times.

Notation and terminology are the same as in [17], where full details can be found. We acknowledge that Bauer's theory of harmonic spaces [2] includes the heat equation. However, his approach is very different, and in particular his notion of the Dirichlet problem is different for a general open set. We illustrate this by the following simple example, where *E* consists of two circular cylinders one on top of the other. Let *B* be a ball in \mathbb{R}^n , and let $E = B \times (]a, b[\cup]b, c[)$. We put $E_1 = B \times]a, b[, E_2 = B \times]b, c[$ and, for any circular cylinder $D = B \times]\alpha, \beta[$, we put $\partial_n D = (B \times \{\alpha\}) \cup (\partial B \times [\alpha, \beta])$. If $f \in C(\partial E)$, then the restriction of f to ∂E_1 is continuous and real-valued, and hence there is a function $u_f^{(1)} \in C(\overline{E}_1)$ which is a temperature on $\overline{E}_1 \setminus \partial_n E_1$ and equal to fon $\partial_n E_1$. Thus, we cannot hope to prescribe the boundary values of $u_f^{(1)}$ on $\partial E_1 \setminus \partial_n E_1$. Similarly, there is a function $u_f^{(2)} \in C(\overline{E}_2)$ which is a temperature on $\overline{E}_2 \setminus \partial_n E_2$ and equal to f on $\partial_n E_2$. The temperature u_f on E that corresponds to f is given by $u_f = u_f^{(i)}$ on E_i for each $i \in \{1, 2\}$. At all points of $\partial B \times (]a, b[\cup]b, c[)$, the boundary values are attained on any approach through E. For each point $x \in B$,

$$u_f(y, s) \rightarrow f(x, b)$$
 as $(y, s) \rightarrow (x, b+)$,

but in general

$$u_f(y, s) \not\rightarrow f(x, b)$$
 as $(y, s) \rightarrow (x, b-)$.

Thus, we can expect the boundary values to be attained on approach from above, but not on approach from below. The version of the Dirichlet problem in [12, 17] takes this into account, and considers all points of $B \times \{b\}$ to be regular. All points of $B \times \{c\}$ are considered to be irrelevant. By contrast, the version adopted by Bauer [2], Doob [6]

and others, treats all boundary points in the same way, requiring the boundary values to be attained on any approach through *E*. They regard all points of $B \times \{b\}$ and $B \times \{c\}$ to be irregular. Thus a parabolic problem is treated as if it were an elliptic problem. This may be inevitable if one wants a theory which applies to both elliptic and parabolic equations.

We do not need any results from harmonic space theory that are not also given for the present context in [17]. Indeed, we make no reference to Bauer's book [2] in any of the proofs of our results. Moreover, the only essential references to Doob's book that we make in such proofs are to [6, page 287], an elementary lemma. For other references to [6], we give alternatives.

We briefly list the notation and terminology that we shall use here.

We denote by *W* the *fundamental temperature*, defined for all $(x, t) \in \mathbb{R}^{n+1}$ by

$$W(x,t) = \begin{cases} (4\pi t)^{-(n/2)} \exp\left(-\frac{|x|^2}{4t}\right) & \text{if } t > 0, \\ 0 & \text{if } t \le 0. \end{cases}$$

Given any two points p = (x, t) and q = (y, s) in \mathbb{R}^{n+1} , we put G(p; q) = W(x - y, t - s). For any point $p_0 = (x_0, t_0) \in \mathbb{R}^{n+1}$ and any positive number *c*, the set

$$\Omega(p_0; c) = \{q \in \mathbb{R}^{n+1} : G(p_0; q) > (4\pi c)^{-(n/2)}\}$$

is called the *heat ball* with *centre* p_0 and *radius c*. The boundary of a heat ball is called a *heat sphere*.

The fundamental *mean value over the heat sphere* $\partial \Omega(p_0; c)$ is defined by

$$\mathcal{M}(u; p_0; c) = (4\pi c)^{-(n/2)} \int_{\partial\Omega(p_0; c)} \mathcal{Q}(p_0 - p) u(p) \, d\sigma(p)$$

for any function *u* such that the integral exists. Here σ denotes surface area measure on $\partial \Omega(p_0; c)$, $p = (x, t) \in \partial \Omega(p_0; c)$ and

$$Q(p_0 - p) = \frac{|x_0 - x|^2}{(4|x_0 - x|^2(t_0 - t)^2 + (|x_0 - x|^2 - 2n(t_0 - t))^2)^{\frac{1}{2}}}$$

Let *u* be a lower finite and lower semicontinuous function on an open subset *E* of \mathbb{R}^{n+1} . If, given any point $p \in E$ and a positive number ϵ , there is a positive number $c < \epsilon$ such that the closed heat ball $\overline{\Omega}(p; c)$ is a subset of *E* and the inequality $u(p) \ge \mathcal{M}(u; p; c)$ holds, then *u* is called a *hypertemperature* on *E*. If, in addition, $u < +\infty$ on a dense subset of *E*, then *u* is called a *supertemperature* on *E*. Bauer [3] proved that our hypertemperatures are the same as his hyperharmonic functions (associated with the heat equation). A more natural and elementary proof of this is given in both [16] and [17].

The negative -u of a hypertemperature u is called a *hypotemperature*, and that of a supertemperature is called a *subtemperature*. A function which is both a supertemperature and a subtemperature is called a *temperature*, and is a solution of

the heat equation. The use of the term 'temperature' for a solution of the heat equation goes back at least as far as Widder's paper [19], and our terminology above is a natural extension of this.

Given an open subset *E* of \mathbb{R}^{n+1} and a point $p \in E$, we denote by $\Lambda(p; E)$ the set of points $q \in E$ that are lower than p relative to E, in the sense that there is a polygonal path $\gamma \subseteq E$ joining p to q along which the temporal variable t is strictly decreasing.

Given any point $p = (x, t) \in \mathbb{R}^{n+1}$ and a number r > 0, we denote by H(p, r) the open lower half-ball $B(p, r) \cap (\mathbb{R}^n \times] - \infty, t[)$, and by $H^*(p, r)$ the open upper half-ball $B(p,r) \cap (\mathbb{R}^n \times]t, +\infty[).$

Let E be an open set, and let $q \in \partial E$. We call q a normal boundary point if either q is the point at infinity, or $q \in \mathbb{R}^{n+1}$ and $H(q, r) \setminus E \neq \emptyset$ for each r > 0. Otherwise we call q an abnormal boundary point. The abnormal boundary points are of two kinds. If there is an r > 0 such that $H^*(q, r) \cap E = \emptyset$, then q is called a *singular* boundary point. On the other hand, if for every r > 0 we have $H^*(q, r) \cap E \neq \emptyset$, then q is called a *semisingular* boundary point.

The set of all normal boundary points of E is denoted by $\partial_n E$, that of all abnormal ones by $\partial_a E$, that of all singular ones by $\partial_s E$ and that of all semisingular ones by $\partial_{ss} E$. Thus, $\partial E = \partial_n E \cup \partial_a E$ and $\partial_a E = \partial_s E \cup \partial_{ss} E$. The essential boundary $\partial_e E$ is defined by $\partial_{\mathbf{e}} E = \partial_{\mathbf{n}} E \cup \partial_{\mathbf{ss}} E$.

Let f be a function on $\partial_e E$. The upper class determined by f, denoted by \mathfrak{U}_f^E . consists of all lower bounded hypertemperatures on E that satisfy

$$\liminf_{(x,t)\to(y,s)} w(x,t) \ge f(y,s) \quad \text{for all } (y,s) \in \partial_n E$$

and

$$\liminf_{(x,t)\to(y,s+)} w(x,t) \ge f(y,s) \quad \text{for all } (y,s) \in \partial_{ss} E.$$

The lower class determined by f, denoted by \mathfrak{L}_{f}^{E} , consists of all upper bounded hypotemperatures on *E* that satisfy

$$\limsup_{(x,t)\to(y,s)} w(x,t) \le f(y,s) \quad \text{for all } (y,s) \in \partial_n E$$

and

$$\limsup_{(x,t)\to(y,s+)} w(x,t) \le f(y,s) \quad \text{for all } (y,s) \in \partial_{ss} E.$$

The function $U_f^E = \inf\{w : w \in \mathfrak{U}_f^E\}$ is called the *upper solution* for f on E, and $L_f^E = \sup\{w : w \in \mathfrak{L}_f^E\}$ is called the *lower solution* for f on E. We say that f is *resolutive* for E if $L_f^E = U_f^E$ and is a temperature on E. In particular, if $f \in C(\partial_e E)$ then f is resolutive for E, by [17, Theorem 8.26]. For any resolutive function f, we define $S_f^E = L_f^E = U_f^E$ to be the *PWB solution* for *f* on *E*. A point $(y, s) \in \partial_e E$ is called *regular* if, for every function $f \in C(\partial_e E)$,

$$\lim_{(x,t)\to(y,s)} S_f^E(x,t) = f(y,s)$$

if $(y, s) \in \partial_n E$, or

$$\lim_{(x,t)\to(y,s+)} S_f^E(x,t) = f(y,s)$$

if $(y, s) \in \partial_{ss} E$. The set *E* is called *regular* if every point $(y, s) \in \partial_e E$ is regular.

If u is an extended real-valued function on an open set E, then the *lower* semicontinuous smoothing \hat{u} of u is defined by

$$\widehat{u}(p) = u(p) \wedge \liminf_{q \to p} u(q)$$

for all $p \in E$. It is the greatest lower semicontinuous minorant of u on E.

If u is a supertemperature on E that is minorized by a subtemperature on E, then there is a greatest such minorant, which is in fact a temperature on E. It is called the *greatest thermic minorant* of u on E.

Let *u* be a nonnegative supertemperature on an open set *E*. If $L \subseteq E$, then the *reduction of u over L* (relative to *E*), denoted by R_u^L , is the infimum of the family of nonnegative supertemperatures on *E* that majorize *u* on *L*. The lower semicontinuous smoothing \widehat{R}_u^L is called the *smoothed reduction of u over L* (relative to *E*).

The above form of the PWB solution gives more general results than the form mentioned by Doob [6]. Here is yet another illustration of that fact. Here, and below, we abbreviate $(x, t) \rightarrow (y, s\pm)$ to $p \rightarrow q\pm$, respectively.

LEMMA 1.1. Let u be a lower bounded supertemperature on an open set E, and let v be its greatest thermic minorant on E. If there is a continuous function f on $\partial_e E$ such that $\lim_{p\to q} u(p) = f(q)$ for all $q \in \partial_n E$ and $\lim_{p\to q+} u(p) = f(q)$ for all $q \in \partial_{ss} E$, and v is upper bounded on E, then f is resolutive for E with $S_f^E = v$ on E.

PROOF. Under these hypotheses, we have $u \in \mathfrak{U}_f^E$ and $v \in \mathfrak{L}_f^E$. Therefore $v \leq L_f^E \leq U_f^E \leq u$ on *E*, so that U_f^E is lower finite on *E* and is upper finite on a dense subset of *E*. Hence, U_f^E is a temperature on *E*, by [18, Lemma 15] or [17, Lemma 8.15]. The definition of *v* now shows that $v = L_f^E = U_f^E$, as required.

A similar result was claimed by Doob [6, Example (e), page 331] under the hypotheses that *f* is continuous on ∂E and $\lim_{p\to q} u(p) = f(q)$ for all $q \in \partial E$.

2. Resolutivity and reductions

We begin with an essential lemma, which is more general than [15, Lemma 2] and [17, Lemma 7.20].

LEMMA 2.1. Let u be a supertemperature on an open set E, and let v be a supertemperature on an open subset D of E. If

 $\liminf_{p \to q, p \in D} v(p) \ge u(q) \qquad for \ all \ q \in E \cap \partial_{\mathbf{n}} D, \tag{2.1}$

$$\liminf_{p \to q+, p \in D} v(p) \ge u(q) \quad \text{for all } q \in E \cap \partial_{ss}D \tag{2.2}$$

and

$$\liminf_{p \to q^-} v(p) > -\infty \qquad for \ all \ q \in E \cap \partial_a D, \tag{2.3}$$

then the function w, defined by

$$w(q) = \begin{cases} (v \land u)(q) & \text{if } q \in D, \\ u(q) & \text{if } q \in E \setminus (D \cup \partial_{a}D), \\ \left(\liminf_{p \to q^{-}} v(p)\right) \land u(q) & \text{if } q \in E \cap \partial_{a}D, \end{cases}$$

is a supertemperature on E.

PROOF. It is clear that *w* is a supertemperature on $E \setminus \partial D$, and that $w < +\infty$ on a dense subset of *E*. Condition (2.3) ensures that $w > -\infty$ on *E*.

If $q \in E \cap \partial_n D$, then condition (2.1) implies that

$$w(q) = u(q) \le \left(\liminf_{p \to q, p \in D} v(p)\right) \land \left(\liminf_{p \to q} u(p)\right) = \liminf_{p \to q} w(p),$$

so that w is lower semicontinuous at q. On the other hand, if $q \in E \cap \partial_s D$, we have

$$w(q) = \left(\liminf_{p \to q^-} v(p)\right) \land u(q) \le \left(\liminf_{p \to q, p \in D} v(p)\right) \land \left(\liminf_{p \to q} u(p)\right) = \liminf_{p \to q} w(p)$$

so that *w* is lower semicontinuous at *q*. Moreover, if $q \in E \cap \partial_{ss}D$, then condition (2.2) implies that

$$w(q) \leq \left(\liminf_{p \to q^-} v(p)\right) \wedge \left(\liminf_{p \to q} u(p)\right) \wedge \left(\liminf_{p \to q^+, p \in D} v(p)\right) = \liminf_{p \to q} w(p),$$

so that w is lower semicontinuous at q. Hence w is lower semicontinuous on E.

It remains only to check that the inequality $w(q) \ge \mathcal{M}(w; q; c)$ holds whenever $q \in E \cap \partial D$ and c is sufficiently small. If $q \in E \cap \partial D$ and w(q) = u(q), then

$$w(q) \ge \mathcal{M}(u;q;c) \ge \mathcal{M}(w;q;c)$$

whenever $\overline{\Omega}(q; c) \subseteq E$. Otherwise $q \in E \cap \partial D$ and $w(q) \neq u(q)$, so that $q \in \partial_a D$ and $w(q) = \liminf_{p \to q^-} v(p)$. Condition (2.3) shows that there is an open half-ball $H(q, \delta) \subseteq D$ such that v is lower bounded on $H(q, \delta)$. We can assume that $\overline{H}(q, \delta) \subseteq E$. We choose a positive number c_0 such that $\overline{\Omega}(p; c) \subseteq H(q, \delta)$ whenever $p \in H(q, \delta/2)$ and $0 < c \leq c_0$. For all such p and c, we have $v(p) \geq \mathcal{M}(v; p; c) \geq \mathcal{M}(w; p; c)$, so that $w(q) \geq \liminf_{p \to q^-} \mathcal{M}(w; p; c)$. Since $\overline{H}(q, \delta) \subseteq E$, the function u is lower bounded on $H(q, \delta)$, and so the same is true of w. We may therefore use Fatou's lemma to obtain $w(q) \geq \mathcal{M}(w; q; c)$. This completes the proof. \Box

REMARK 2.2. If, in Lemma 2.1, v is defined on an open superset of $\overline{D} \cap E$, then $\liminf_{p \to q^-} v(p) = v(q)$ for all $q \in \overline{D} \cap E$, by [17, Lemma 3.16] or [16, Lemma 2]. Therefore w takes the simpler form

$$w(q) = \begin{cases} (v \land u)(q) & \text{if } q \in E \cap (D \cup \partial_{a}D), \\ u(q) & \text{if } q \in E \setminus (D \cup \partial_{a}D). \end{cases}$$

https://doi.org/10.1017/S1446788714000858 Published online by Cambridge University Press

REMARK 2.3. If, in Lemma 2.1, $\partial_e D \subseteq E$ and *u* is lower bounded on $\partial_e D$, then conditions (2.1) and (2.2) combine with the minimum principle to show that *v* is lower bounded on *D*, so that condition (2.3) is automatically satisfied. In particular, this occurs whenever $\overline{D} \subseteq E$.

Lemma 2.1 is necessarily more complicated than its superharmonic counterpart. Doob [6, page 297] neglected this extra complication, and the following example shows that his argument is flawed.

EXAMPLE 2.4. We choose a positive real number *a*, put $H = \mathbb{R}^n \times [2a, +\infty[$ and denote by χ_H the characteristic function of *H*. Then the function $v = G(\cdot; 0) + \chi_H$ is a nonnegative supertemperature on \mathbb{R}^{n+1} . We choose $A = \mathbb{R}^n \times \{a, 3a\}, q_0 = (0, 3a)$, and put $\Lambda = \Lambda(q_0; \mathbb{R}^{n+1}) = \mathbb{R}^n \times]-\infty$, 3a[. According to Doob [6, page 297], if *u'* is a nonnegative supertemperature on Λ that majorizes *v* on $A \cap \Lambda$, and *u* is a nonnegative supertemperature on \mathbb{R}^{n+1} that majorizes *v* on *A*, then the function

$$u^{\prime\prime} = \begin{cases} u & \text{on } \mathbb{R}^{n+1} \backslash \Lambda \\ u \wedge u^{\prime} & \text{on } \Lambda \end{cases}$$

is a supertemperature on \mathbb{R}^{n+1} that majorizes v on A. However, $G(\cdot; 0)$ is a nonnegative supertemperature on Λ that equals v on $A \cap \Lambda = \mathbb{R}^n \times \{a\}$, and so we can take $u' = G(\cdot; 0)$. This gives

$$\liminf_{p \to q_{0^-}} u''(p) \le \lim_{p \to q_{0^-}} G(p; 0) = G(q_0; 0) < v(q_0) \le u(q_0) = u''(q_0),$$

so that u'' is not lower semicontinuous. Of course, u'' can be redefined on $\mathbb{R}^n \times \{3a\}$ to make it lower semicontinuous, by putting $u''(q) = \liminf_{p \to q^-} (u \land u')(p)$ for all $q \in \mathbb{R}^n \times \{3a\}$, but then u'' would not majorize v on A.

We use the following theorem in two situations, namely when $u \ge 0$ and f = 0, and when $\overline{D} \subseteq E$. The analogous situations for superharmonic functions are treated separately in both [1, page 191] and [6, page 122], but it seems desirable to have a general result that covers both cases.

THEOREM 2.5. Let u be a supertemperature on an open set E, let D be an open subset of E such that u is lower bounded on $E \cap \partial_e D$, and suppose that there is a lower bounded Borel measurable function f on $\partial E \cap \partial_e D$ such that

$$f(q) \le \liminf_{p \to q, p \in D} u(p) \quad for \ all \ q \in \partial E \cap \partial_n D$$

and

$$f(q) \leq \liminf_{p \to q^+, p \in D} u(p) \quad for \ all \ q \in \partial E \cap \partial_{ss} D.$$

If \bar{u} is defined on $\partial_e D$ by

$$\bar{u} = \begin{cases} u & on \ E \cap \partial_{e}D, \\ f & on \ \partial E \cap \partial_{e}D, \end{cases}$$

then \bar{u} is resolutive for D, and the function h, defined by

$$h = \begin{cases} u & on \ E \setminus \overline{D}, \\ S^{D}_{\overline{u}} & on \ D, \end{cases}$$

can be extended to a supertemperature majorized by u on E.

PROOF. The function \bar{u} is Borel measurable, and the conditions on f ensure that the restriction of u to D belongs to the class $\mathfrak{U}_{\bar{u}}^D$. Therefore, $U_{\bar{u}}^D \leq u < +\infty$ on a dense subset of D. Since \bar{u} is also lower bounded, it follows from [17, Lemma 8.15] or [18, Lemma 15] that $U_{\bar{u}}^D$ is a temperature on D. Now [17, Corollary 8.33] or [18, Corollary 26] shows that \bar{u} is resolutive for D.

Let *v* be any supertemperature in the class $\mathfrak{U}_{\overline{u}}^{D}$, and put $m = \inf_{\partial_{c}D} \overline{u}$. Then $\liminf_{p \to q} v(p) \ge m$ for all points $q \in \partial_{n}D$, and $\liminf_{p \to q^{+}} v(p) \ge m$ for all points $q \in \partial_{ss}D$, so that $v \ge m$ on *D* by the minimum principle. Therefore *v* satisfies all the conditions in Lemma 2.1, so that the function $w = w_{v}$ of that lemma is a supertemperature on *E*, and $w_{v} \ge m$ on *D*. We now put

 $g = \inf\{w_v : v \text{ is a supertemperature in } \mathfrak{U}_{\overline{u}}^D\} \le w_u = u$

on *E*. Then $g \ge m$ on *D* and, if *K* is any compact subset of *E* then $g \ge m \land (\inf_{K} u)$ on *K*, so that *g* is locally lower bounded on *E*. Now [17, Theorem 7.13] or [6, page 295] shows that the lower semicontinuous smoothing \widehat{g} is a supertemperature on *E*, and is equal to *g* at every point *q* where $g(q) = \liminf_{p \to q} g(p)$. Clearly g = u on $E \setminus \overline{D}$, so that $\widehat{g} = u$ there too, in view of [17, Lemma 3.16] or [16, Lemma 2]. Moreover, on *D* we have $g = \inf\{v \land u : v \in \mathfrak{U}_{\overline{u}}^{D}\}$. Since $u \in \mathfrak{U}_{\overline{u}}^{D}$ we have $v \land u \in \mathfrak{U}_{\overline{u}}^{D}$ whenever $v \in \mathfrak{U}_{\overline{u}}^{D}$, and it follows that $S_{\overline{u}}^{D} = \inf\{v \land u : v \in \mathfrak{U}_{\overline{u}}^{D}\} = g = \widehat{g}$ on *D*. Hence, $\widehat{g} = h$ wherever the latter is defined.

COROLLARY 2.6. Let u be a supertemperature on an open set E, and let D be a bounded, regular open set such that $\overline{D} \subseteq E$ and $\partial_n D = \partial D$. Then the restriction of u to ∂D is resolutive for D, and if

$$h = \begin{cases} u & on \ E \setminus D, \\ S_u^D & on \ D, \end{cases}$$

then h is a supertemperature majorized by u on E.

PROOF. By Theorem 2.5, the restriction of *u* to ∂D is resolutive for *D*, and $S_u^D \le u$ on *D*. Since *u* is lower semicontinuous, *D* is regular, and $\partial_n D = \partial D$, we have

$$\liminf_{p \to q} S_u^D(p) \ge \liminf_{p \to q, p \in \partial D} u(p) \ge u(q)$$

for all $q \in \partial D$, by [17, Theorems 8.46 and 8.44]. Therefore, by [17, Lemma 7.20] with V = D and $v = S_u^D$, the function *h* is a supertemperature on *E*.

COROLLARY 2.7. Let u be a supertemperature on an open set E, and suppose that there is a lower bounded Borel measurable function f on $\partial_e E$ such that

$$f(q) \le \liminf_{p \to q} u(p) \quad \text{for all } q \in \partial_n E$$

and

$$f(q) \leq \liminf_{p \to q^+} u(p) \quad \text{for all } q \in \partial_{ss} E.$$

Then f is resolutive and $S_f^E \leq u$ on E.

PROOF. Take D = E in Theorem 2.5.

In the next theorem, we obtain inequalities between two particular reductions of a nonnegative supertemperature u on E, and the PWB solution on an open subset D of E with boundary function as given in Theorem 2.5 with f = 0. The result is analogous to [1, Theorem 6.9.1] and a result in [6, page 122], but is less satisfactory insofar as in the superharmonic case there is an equality rather than two inequalities.

THEOREM 2.8. Let u be a nonnegative supertemperature on an open set E, let D be an open subset of E, and let u_0 be defined on $\partial_e D$ by

$$u_0 = \begin{cases} u & on \ E \cap \partial_e D, \\ 0 & on \ \partial E \cap \partial_e D. \end{cases}$$

Then u_0 is resolutive for D, and

$$R_{u}^{E\setminus(D\cup\partial_{a}D)} \leq S_{u_{0}}^{D} \leq R_{u}^{E\setminus(D\cup\partial_{s}D)}$$

$$(2.4)$$

on D.

Moreover, if $E \cap \partial_{ss}D$ is polar, then $R_u^{E \setminus (D \cup \partial_a D)} = R_u^{E \setminus (D \cup \partial_s D)}$ on $E \setminus \partial_{ss}D$ and equality holds in (2.4).

PROOF. The fact that u_0 is resolutive for *D* follows from Theorem 2.5 by taking f = 0. If *v* is a nonnegative supertemperature on *E* such that $v \ge u$ on $E \setminus (D \cup \partial_s D)$, then

$$\liminf_{p \to q, p \in D} v(p) \ge v(q) \ge u(q)$$

for all points $q \in E \cap \partial_e D$, and

$$\liminf_{p \to q, p \in D} v(p) \ge 0$$

for all $q \in \partial E \cap \partial_e D$, so that the restriction of v to D belongs to the class $\mathfrak{U}_{u_0}^D$. Therefore on D we have $v \ge S_{u_0}^D$, and hence $R_u^{E \setminus (D \cup \partial_s D)} \ge S_{u_0}^D$.

On the other hand, if v is now any supertemperature in the class $\mathfrak{U}_{u_0}^D$, then v satisfies all the conditions in Lemma 2.1. Therefore the function w, defined as in Lemma 2.1, is a supertemperature on E. Since w = u on $E \setminus (D \cup \partial_a D)$, we have $w \ge R_u^{E \setminus (D \cup \partial_a D)}$ on E, and hence $v \ge R_u^{E \setminus (D \cup \partial_a D)}$ on D. It follows that $S_{u_0}^D \ge R_u^{E \setminus (D \cup \partial_a D)}$ on D.

[9]

137

If $E \cap \partial_{ss}D$ is polar, we put $L = E \setminus (D \cup \partial_a D)$ and $Z = E \cap \partial_{ss}D$, so that $L \cup Z = E \setminus (D \cup \partial_s D)$. Given a point $p_0 \in E \setminus Z$, we can find a nonnegative supertemperature w on E such that $w = +\infty$ on Z and $w(p_0) < +\infty$, by [12, Theorem 27] or [17, Theorem 7.3]. If v is a nonnegative supertemperature on E such that $v \ge u$ on L, then for each $\epsilon > 0$ we have $v + \epsilon w \ge u$ on $L \cup Z$, and so $v + \epsilon w \ge R_u^{L \cup Z}$ on E. In particular, $v(p_0) + \epsilon w(p_0) \ge R_u^{L \cup Z}(p_0)$ for all $\epsilon > 0$, so that $v(p_0) \ge R_u^{L \cup Z}(p_0)$, and hence $R_u^L(p_0) \ge R_u^{L \cup Z}(p_0)$. Therefore $R_u^L(p_0) = R_u^{L \cup Z}(p_0)$, because $R_u^L \le R_u^{L \cup Z}$ on E. Thus, $R_u^{E \setminus (D \cup \partial_u D)} = R_u^{E \setminus (D \cup \partial_s D)}$ on $E \setminus \partial_{ss} D$, which gives the result.

REMARK 2.9. Theorem 2.8 leaves open the question of whether the two reductions in (2.4) are equal if $E \cap \partial_{ss}D$ is not polar. For two arbitrary disjoint subsets L and Z of E, the hypothesis that Z is not polar is insufficient to guarantee that $R_u^L \neq R_u^{L\cup Z}$ on E. For example, if $E \cap (\mathbb{R}^n \times \{a\}) \neq \emptyset$, and we take $L = E \cap (\mathbb{R}^n \times] -\infty, a[)$ and $Z = E \cap (\mathbb{R}^n \times \{a\})$, then whenever v is a nonnegative supertemperature on E such that $v \ge u$ on L, for every point $q \in Z$ we have

$$v(q) = \liminf_{p \to q^-} v(p) \ge \liminf_{p \to q^-} u(p) = u(q),$$

by [17, Lemma 3.16] or [16, Lemma 2]. Thus, $v \ge u$ on $L \cup Z$, so that $v \ge R_u^{L \cup Z}$, and hence $R_u^L \ge R_u^{L \cup Z}$ on *E*. The reverse inequality is always true, so that equality holds even though *Z* is not polar.

The following example shows that the two reductions in (2.4) may not be equal. In it, we are able to evaluate the reductions explicitly, and to show that $S_{u_0}^D$ is equal to the larger one.

EXAMPLE 2.10. Let *F* be a closed subset of \mathbb{R}^n with Lebesgue measure $m_n(F) > 0$, let $E = \mathbb{R}^n \times [-\infty, 1[$ and let $D = E \setminus (F \times \{0\})$. Then $\partial_n D$ contains only the point at infinity, $\partial_s D = \mathbb{R}^n \times \{1\}$ and $\partial_{ss} D = F \times \{0\}$. Therefore $E \setminus (D \cup \partial_a D) = \emptyset$, so that $R_1^{E \setminus (D \cup \partial_a D)} = 0$ on *E*. Moreover, $E \setminus (D \cup \partial_s D) = F \times \{0\}$ and, if *v* is a nonnegative supertemperature on *E* such that $v \ge 1$ on $F \times \{0\}$, then

$$\liminf_{(x,t)\to(y,0+)} v(x,t) \ge v(y,0) \ge \chi_{F\times\{0\}}(y,0)$$

for all $y \in \mathbb{R}^n$, where χ_A denotes the characteristic function of a set *A*. It follows that, if W_F is defined on *E* by

$$W_F(x,t) = \begin{cases} \int_F W(x-y,t) \, dy & \text{if } t > 0, \\ 0 & \text{if } t \le 0, \end{cases}$$

then $v \ge W_F$ on *E* by [6, page 287]. Since $m_n(F) > 0$, we have $W_F(x, t) > 0$ if t > 0, and it follows that $R_1^{F \times \{0\}} \ge W_F > 0 = R_1^{\emptyset}$ on $\mathbb{R}^n \times [0, 1[$. Thus, $R_1^{E \setminus (D \cup \partial_s D)} > R_1^{E \setminus (D \cup \partial_a D)}$ on $\mathbb{R}^n \times [0, 1[$. Furthermore, given any function *v* as above, and any positive number *c*, the function v_c , defined by

$$v_c(x,t) = \begin{cases} v(x,t) & \text{if } t > -c, \\ 0 & \text{if } t \le -c, \end{cases}$$

satisfies the same conditions as v, so that $v_c \ge R_1^{F \times \{0\}}$ on E. Therefore, $R_1^{F \times \{0\}}(x, t) = 0$ whenever t < 0. Because $R_1^{F \times \{0\}}$ is a temperature on D, it follows that $R_1^{F \times \{0\}}(x, t) = 0$ whenever $(x, t) \in D$ and $t \le 0$. Furthermore, since the restriction of $R_1^{F \times \{0\}}$ to $\mathbb{R}^n \times [0, 1[$ is a temperature that takes values only in the interval [0, 1], it is, in view of [13,Theorem 5.5], the Gauss–Weierstrass integral of the function

$$f(x) = \liminf_{t \to 0+} R_1^{F \times \{0\}}(x, t) \le \chi_F(x).$$

Therefore, $R_1^{F \times \{0\}} \leq W_F$ on $\mathbb{R}^n \times [0, 1[$, and so equality holds there. Thus,

$$R_1^{F \times \{0\}}(x, t) = \begin{cases} W_F(x, t) & \text{if } t \neq 0, \\ \chi_F(x) & \text{if } t = 0. \end{cases}$$

We now put $u_0 = 1$ on $F \times \{0\}$ and $u_0(\infty) = 0$. Theorem 2.8 shows that u_0 is resolutive for *D*, and that $S_{u_0}^D \leq R_1^{F \times \{0\}}$ on *D*. If *w* is any supertemperature in the class $\mathfrak{U}_{u_0}^D$, then $w \ge 0$ on *D* by the minimum principle, and $w \ge W_F$ on $\mathbb{R}^n \times [0, 1[$ by [6, page 287]. Therefore, $w \ge W_F$ on *D*, so that $S_{u_0}^D \ge W_F = R_1^{F \times \{0\}}$ on *D*, and hence equality holds.

3. Greatest thermic minorants

In this section, we first give a characterization of the greatest thermic minorant of a given supertemperature on an open set. We then use the characterization to show that, if *u* is a nonnegative supertemperature on *E* and *D* is an open subset of *E*, then replacing *u* on *D* by its greatest thermic minorant on *D* gives a function whose lower semicontinuous smoothing is a supertemperature on *E* and equal to *u* on $E \setminus \overline{D}$. Specializing to the case where *D* is a heat ball Ω such that $\overline{\Omega} \subseteq E$, we show that the greatest thermic minorant of *u* on Ω is equal to S_u^{Ω} . Furthermore, if we replace *u* on Ω by S_u^{Ω} , then the resultant function, whose lower semicontinuous smoothing is a supertemperature on *E*, is itself a supertemperature except at the centre of the heat ball.

Theorem 3.1 is analogous to [1, Theorem 6.4.10], which is also mentioned in [6, page 123].

THEOREM 3.1. Let u be a supertemperature on an open set E, and let $\{E_k\}$ be an expanding sequence of bounded open sets such that $E_k \cup \partial_e E_k \subseteq E$ for all k and $\bigcup_{k=1}^{\infty} E_k = E$.

- (a) For each positive integer m, the sequence $\{S_u^{E_k}\}_{k\geq m}$ is decreasing on E_m .
- (b) If there is a point $p_0 \in E$ such that

$$\lim_{k\to\infty}S_u^{E_k}(p_0)>-\infty,$$

then u has a thermic minorant on $\Lambda(p_0; E)$.

(c) If u has a thermic minorant on E, then the greatest one is $\lim_{k\to\infty} S_u^{E_k}$.

PROOF. For each positive integer k, $\partial_e E_k$ is a compact subset of E, so that u is lower bounded on $\partial_e E_k$. It therefore follows from Theorem 2.5 that the restriction of u to $\partial_e E_k$ is resolutive for E_k , and that $S_u^{E_k} \leq u$ on E_k . If $w \in \mathfrak{L}_u^{E_{k+1}}$, then for all $q \in \partial_n E_{k+1}$ we have

$$\limsup_{p \to q} (w - u)(p) \le \limsup_{p \to q} w(p) - u(q) \le 0,$$

and for all $q \in \partial_{ss} E_{k+1}$ we similarly have $\limsup_{p \to q^+} (w - u)(p) \le 0$. Therefore $w \le u$ on E_{k+1} by the maximum principle [17, Theorem 8.2]. It follows that, for all $q \in \partial_n E_k$, we have

$$\limsup_{p \to q, p \in E_k} w(p) \le \limsup_{p \to q} u(p) \le u(q),$$

and for all $q \in \partial_{ss} E_k$ we similarly have $\limsup_{p \to q^+, p \in E_k} w(p) \le u(q)$. Therefore, since w is upper bounded, we have $w \in \mathfrak{L}_u^{E_k}$. It follows that $S_u^{E_{k+1}} \le S_u^{E_k}$ on E_k . This proves (a).

To prove (b), we take any point $q_0 \in \Lambda(p_0; E)$ and choose a polygonal path γ in E which joins p_0 to q_0 along which the temporal variable is strictly decreasing. Since γ is compact, we can find a positive integer m such that $\gamma \subseteq E_m$. If $h = \lim_{k \to \infty} S_u^{E_k}$ on E, then $h(p_0) > -\infty$, and so the Harnack monotone convergence theorem shows that h is a temperature on $\Lambda(p_0; E_m)$. This holds for all sufficiently large values of m, and so h is a temperature on $\Lambda(p_0; E)$. Therefore, because $S_u^{E_k} \leq u$ on E_k for all k, h is a thermic minorant of u on $\Lambda(p_0; E)$.

To prove (c), we let *w* denote a thermic minorant of *u* on *E*. For each *k*, $\partial_e E_k$ is a compact subset of *E*, so that *w* is upper bounded on $\partial_e E_k$. Therefore the maximum principle implies that *w* is upper bounded on E_k . Moreover, for any $q \in \partial_e E_k$ we have $\lim_{p \to q, p \in E_k} w(p) = w(q) \le u(q)$, and so it follows that $w \in \mathfrak{L}_u^{E_k}$. Therefore $w \le S_u^{E_k}$ on E_k , and so $w \le \lim_{k \to \infty} S_u^{E_k}$ on *E*.

THEOREM 3.2. Let u be a supertemperature which has a thermic minorant on an open set E, and let D be an open subset of E. If h is the greatest thermic minorant of u on D, and

$$w = \begin{cases} h & on D, \\ u & on E \setminus D, \end{cases}$$

then the lower semicontinuous smoothing \widehat{w} is a supertemperature on E such that $\widehat{w} = w$ on $E \setminus \partial D$.

PROOF. We first consider the case where $u \ge 0$ on *E*. By [17, Theorem 8.50], we can write *D* as the union of a sequence $\{D_k\}$ of bounded open sets such that, for each *k*, $\overline{D}_k \subseteq D_{k+1}$, $\partial_s D_k = \emptyset$ and $\partial_{ss} D_k$ has only finitely many points. By Theorem 2.8, for each *k*, the restriction of *u* to $\partial_e D_k$ is resolutive for D_k and, because $\partial_{ss} D_k$ is polar and $\partial_s D_k = \emptyset$, we have $S_u^{D_k} = R_u^{E \setminus D_k}$ on D_k . Therefore, $\widehat{R}_u^{E \setminus D_k} = S_u^{D_k}$ on D_k , by [17, Theorem 7.27(d)] or [6, page 297].

Since $\{E \setminus D_k\}$ is a contracting sequence of subsets of *E*, the sequence of smoothed reductions $\{\widehat{R}_u^{E \setminus D_k}\}$ is decreasing on *E*, and therefore tends to a limit *v* on *E*. Moreover, for each *k* the function $\widehat{R}_u^{E \setminus D_k}$ is a supertemperature on *E*, which is equal to $R_u^{E \setminus D_k} = u$

on $E \setminus \overline{D}_k$ by [17, Theorem 7.13] or [6, Theorem 1.XVII.2], and hence on $E \setminus D$. It follows that $\widehat{R}_u^{E \setminus D_k} = u$ on $E \setminus D$, and hence v = u on $E \setminus D$. Furthermore, by Theorem 3.1,

$$h = \lim_{k \to \infty} S_u^{D_k} = \lim_{k \to \infty} \widehat{R}_u^{E \setminus D_k} = v$$

on *D*. Since the sequence $\{\widehat{R}_{u}^{E \setminus D_{k}}\}$ is decreasing on *E*, and its limit v = w on *E*, it follows from [17, Theorem 7.13] or [6, page 295] that \widehat{w} is a supertemperature on *E* and equal to *w* on $E \setminus \partial D$.

We now consider the general case. If g is the greatest thermic minorant of u on E, then the case just proved can be applied to u - g. Thus, if

$$f = \begin{cases} h - g & \text{on } D, \\ u - g & \text{on } E \setminus D, \end{cases}$$

then \widehat{f} is a supertemperature on E such that $\widehat{f} = f$ on $E \setminus \partial D$. Since g is continuous on E, we have $\widehat{f} + g = \widehat{w}$ on E. Hence, \widehat{w} is a supertemperature on E and equal to f + g = w on $E \setminus \partial D$.

COROLLARY 3.3. Let u be a supertemperature on an open set E, let D be a bounded open set such that $\overline{D} \subseteq E$, and let h be the greatest thermic minorant of u on D. If

$$w = \begin{cases} h & on D, \\ u & on E \setminus D, \end{cases}$$

then \widehat{w} is a supertemperature on *E* and equal to *w* on *E*\ ∂D .

PROOF. Since \overline{D} is a compact subset of E, we can find a bounded open superset C of \overline{D} such that $\overline{C} \subseteq E$. Since \overline{C} is compact, u is lower bounded on C. Applying Theorem 3.2 to u on C, we deduce that \widehat{w} is a supertemperature on C and equal to w on $C \setminus \partial D$. The result follows easily.

Theorem 3.4 is the analogue for heat balls of [1, Theorem 3.6.5], but is far harder to prove.

THEOREM 3.4. Let u be a supertemperature on an open set E, and let $\Omega = \Omega(p_0; c_0)$ be a heat ball such that $\overline{\Omega} \subseteq E$. Then the greatest thermic minorant of u on Ω is S_u^{Ω} .

PROOF. By Theorem 2.5, the restriction of *u* to $\partial \Omega$ (= $\partial_e \Omega$) is resolutive for Ω , and the function *h*, defined by

$$h = \begin{cases} u & \text{on } E \setminus \overline{\Omega}, \\ S_u^{\Omega} & \text{on } \Omega, \end{cases}$$

can be extended to a supertemperature $v \le u$ on *E*. By Corollary 3.3, if w = u on $E \setminus \Omega$, and *w* is equal on Ω to the greatest thermic minorant of *u* on Ω , then \widehat{w} is a supertemperature on *E* and equal to *w* on $E \setminus \partial \Omega$. By [14, Theorem 2] or [17, Theorem 6.43], the functions $\mathcal{M}(\widehat{w}; p_0; \cdot)$ and $\mathcal{M}(v; p_0; \cdot)$ are continuous at c_0 , so that

$$\mathcal{M}(\widehat{w}; p_0; c_0) = \lim_{c \to c_0+} \mathcal{M}(u; p_0; c) = \mathcal{M}(v; p_0; c_0).$$

Since $\widehat{w} \ge S_u^{\Omega} = v$ on Ω , and $\widehat{w} = u = v$ on $E \setminus \overline{\Omega}$, we have $\widehat{w} \ge v$ almost everywhere on *E*, so that [17, Theorem 3.59] implies that $\widehat{w} \ge v$ everywhere on *E*. Furthermore, [14, Theorem 4] or [17, Theorem 6.45] shows that, whenever $0 < c \le c_0$,

$$\mathcal{M}(\widehat{w}; p_0; c) = \widehat{w}(p_0) = \mathcal{M}(\widehat{w}; p_0; c_0) = \mathcal{M}(v; p_0; c_0) = v(p_0) = \mathcal{M}(v; p_0; c).$$

Since $\widehat{w} - v$ is nonnegative and continuous on Ω , it follows that $\widehat{w} = v$ on Ω , as asserted.

Theorem 3.4 shows that the greatest thermic minorant of u on Ω is equal to S_u^{Ω} regardless of whether the set of irregular points of $\partial \Omega$, namely $\{p_0\}$, is a null set for the Riesz measure associated with u. This is in contrast to an observation made by Brelot [4, page 116] concerning a formula of Frostman [9], for the superharmonic case.

We can now prove an analogue for heat balls of the elementary result [1, Corollary 3.2.5]. It is not, of course, covered by [2, Satz 4.1.4], because that result says nothing about the function values on $\partial\Omega$.

THEOREM 3.5. Let u be a supertemperature on an open set E, and let $\Omega = \Omega(p_0; c)$ be a heat ball such that $\overline{\Omega} \subseteq E$. Then the function w, defined by

$$w = \begin{cases} S_u^{\Omega} & on \ \Omega, \\ u & on \ E \backslash \Omega, \end{cases}$$

is a supertemperature on $E \setminus \{p_0\}$, and its lower semicontinuous smoothing \widehat{w} is a supertemperature on E.

PROOF. Theorem 2.5 shows that the restriction of u to $\partial_e \Omega$ is resolutive for Ω . Theorem 3.4 shows that S_u^{Ω} is the greatest thermic minorant of u on Ω . Therefore, Corollary 3.3 shows that \widehat{w} is a supertemperature on E and equal to w on $E \setminus \partial \Omega$. By [17, Corollary 3.41], every point $q \in \partial \Omega \setminus \{p_0\}$ is a regular point for Ω . It therefore follows from [17, Theorems 8.46 and 8.44], or [12, Theorem 34 and Lemma 32], that

$$\liminf_{p \to q} S_u^{\Omega}(p) \ge \liminf_{p \to q, p \in \partial \Omega} u(p) \ge u(q)$$

for every such point q. The lower semicontinuity of u on $E \setminus \Omega$ now implies that w is lower semicontinuous at every point $q \in \partial \Omega \setminus \{p_0\}$, and hence on $E \setminus \{p_0\}$. Thus $w = \widehat{w}$ on $E \setminus \{p_0\}$, which proves the result.

REMARK 3.6. In the context of Theorem 3.5, we cannot generally conclude that w is a supertemperature on E. For example, if $u(p) = -|p - p_0|^2$, then $\Theta u < 0$ on an open neighbourhood E of p_0 . If $\Omega = \Omega(p_0; c_0)$ is chosen such that $\overline{\Omega} \subseteq E$, and we put $v = u - S_u^{\Omega}$ on Ω , then v is a positive supertemperature on Ω because $\Theta v < 0$. If w was a supertemperature on E, then it would be lower semicontinuous at p_0 , and we would have

$$0 \leq \limsup_{p \to p_0} v(p) = u(p_0) - \liminf_{p \to p_0} S_u^{\Omega}(p) \leq 0,$$

so that v would be a barrier at p_0 . The point p_0 is irregular for Ω by [17, Example 8.36], and so [12, Theorem 34] or [17, Theorem 8.46] shows that there is no barrier at p_0 .

4. Reductions and the temporal variable

If the temporal variable truly represents time, then we would expect the values of the nonnegative supertemperature u(y, s) for $s \ge a$ to have no effect on the values of the reduction $R_u^L(x, t)$ for t < a. The next theorem implies that this is indeed the case.

THEOREM 4.1. Let u be a nonnegative supertemperature on an open set E, and let L be any subset of E.

- (a) If D is an open subset of E such that $E \cap \partial_e D = \emptyset$, then $R_u^L = R_u^{L \cap \overline{D}}$ on $E \cap \overline{D}$.
- (b) More generally, if there is an expanding sequence $\{D_k\}$ of open subsets of E such that $E \cap \partial_e D_k = \emptyset$ for all k, and $M = \bigcup_{k=1}^{\infty} \overline{D}_k$, then $R_u^L = R_u^{L \cap M}$ on $E \cap M$.

PROOF. (a) Since $L \cap \overline{D} \subseteq L$, we have $R_u^{L \cap \overline{D}} \leq R_u^L$ on E.

Let v be a nonnegative supertemperature on E such that $v \ge u$ on $L \cap \overline{D}$. The condition $E \cap \partial_e D = \emptyset$ implies that $E \cap \overline{D} = E \cap (D \cup \partial_a D)$ and $E \setminus \overline{D} = E \setminus (D \cup \partial_a D)$. Therefore, if w is defined by

$$w = \begin{cases} v \wedge u & \text{on } E \cap \overline{D}, \\ u & \text{on } E \setminus \overline{D}, \end{cases}$$

then *w* is a nonnegative supertemperature on *E*, by Lemma 2.1. Since $v \ge u$ on $L \cap \overline{D}$, we have $w \ge u$ on $L \cap \overline{D}$, and clearly w = u on $L \setminus \overline{D}$. Therefore $w \ge R_u^L$ on *E*, and in particular $v \ge w \ge R_u^L$ on $E \cap \overline{D}$. It follows that $R_u^{L \cap \overline{D}} \ge R_u^L$ on $E \cap \overline{D}$, and so equality holds there.

(b) By part (a), we have $R_u^L = R_u^{L \cap \overline{D}_k}$ on $E \cap \overline{D}_k$ for all k. The sequence $\{L \cap \overline{D}_k\}$ is expanding and its union is $L \cap M$, so that [6, page 318, (e)] or [17, Theorem 9.33] shows that $\lim_{k\to\infty} R_u^{L \cap \overline{D}_k} = R_u^{L \cap M}$ on E. Given any point $p \in E \cap M$, there is a positive integer k_p such that $p \in E \cap \overline{D}_k$ for all $k \ge k_p$. Since $R_u^L(p) = R_u^{L \cap \overline{D}_k}(p)$ for all such k,

$$R_u^L(p) = \lim_{k \to \infty} R_u^{L \cap \overline{D}_k}(p) = R_u^{L \cap M}(p)$$

as required.

EXAMPLE 4.2. In the context of Theorem 4.1, if $b \in \mathbb{R}$ and $D = \{(x, t) \in E : t < b\}$, then $E \cap \partial_e D = \emptyset$, so that Theorem 4.1(a) shows that $R_u^L = R_u^{\{(x,t) \in L: t \le b\}}$ on $\{(x,t) \in E : t \le b\}$. Moreover, if $D_k = \{(x,t) \in E : t < b - (1/k)\}$ for all k, then the sequence $\{D_k\}$ is expanding and $E \cap \partial_e D_k = \emptyset$ for all k. Therefore, since $\bigcup_{k=1}^{\infty} \overline{D}_k = \{(x,t) \in \overline{E} : t < b\}$, Theorem 4.1(b) implies that $R_u^L = R_u^{\{(x,t) \in L: t < b\}}$ on D.

EXAMPLE 4.3. In the context of Theorem 4.1, if $p_0 \in E$ and $\Lambda = \Lambda(p_0; E)$, then $E \cap \partial_e \Lambda = \emptyset$ by [17, Lemma 8.4] or [12, Lemma 1], so that Theorem 4.1(a) shows that $R_u^L = R_u^{L \cap \overline{\Lambda}}$ on $E \cap \overline{\Lambda}$. More generally, let $D_k = \bigcup_{j=1}^k \Lambda(q_j; E)$ for some points $q_1, \ldots, q_k \in E$. If $q \in \partial_n D_k$, then for every r > 0 we have $H(q, r) \setminus D_k \neq \emptyset$, so that $H(q, r) \setminus \Lambda(q_j; E) \neq \emptyset$ for any *j*, which implies that $q \in \partial_n \Lambda(q_j; E)$ for some *j*, and hence $q \in \partial_e E$ by [17, Lemma 8.4]. On the other hand, if $q \in \partial_{ss} D_k$, then for every

r > 0 we have $H^*(q, r) \cap D_k \neq \emptyset$. Therefore there is an integer j_0 , and a sequence $\{p_l\}$ in $H^*(q, 1) \cap \Lambda(q_{j_0}; E)$ such that $p_l \to q$ as $l \to \infty$. This implies that $q \in \partial_e \Lambda(q_{j_0}; E)$, and so $q \in \partial_e E$ by [17, Lemma 8.4]. Thus, $E \cap \partial_e D_k = \emptyset$ for all k, and Theorem 4.1(a) shows that $R_u^L = R_u^{L \cap \overline{D}_k}$ on $E \cap \overline{D}_k$.

Since $\Lambda(p_0; E) = \bigcup_{p \in \Lambda(p_0; E)} \Lambda(p; E)$, the Lindelöf property of \mathbb{R}^{n+1} shows that there is a sequence of points $\{q_j\}$ in $\Lambda(p_0; E)$ such that $\Lambda(p_0; E) = \bigcup_{j=1}^{\infty} \Lambda(q_j; E)$. Taking D_k as above, the sequence $\{D_k\}$ satisfies the hypotheses of Theorem 4.1(b), and so if $M = \bigcup_{k=1}^{\infty} \overline{D}_k$ then $R_u^L = R_u^{L \cap M}$ on the proper subset $E \cap M$ of $\overline{\Lambda}(p_0; E)$.

For the case considered in Example 4.2 we can go further, as follows.

THEOREM 4.4. Let u be a nonnegative supertemperature on an open set E, let $L \subseteq E$, let $b \in \mathbb{R}$, and let $D = \{(x, t) \in E : t < b\}$. Then the reduction of u over L relative to E, is equal on D to the reduction of u over $L \cap D$ relative to D.

PROOF. For any open subset C of E, we denote the reduction of u over $L \cap C$ relative to C by ${}^{C}R_{u}^{L\cap C}$.

If v is a nonnegative supertemperature on E such that $v \ge u$ on L, then its restriction to D is a nonnegative supertemperature on D such that $v \ge u$ on $L \cap D$. Therefore $v \ge^D R_u^{L \cap D}$ on D, and it follows that ${}^E R_u^L \ge^D R_u^{L \cap D}$ on D.

To prove the reverse inequality, we now suppose that w is a nonnegative supertemperature on D such that $w \ge u$ on $L \cap D$. For each positive integer k, we put $E_k = \{(x, t) \in E : t \le b - (1/k)\}$ and $D_k = \{(x, t) \in E : t < b - (1/k)\}$, and note that $E \cap \partial_e D_k = \emptyset$ for all k. Therefore, if w_k is defined on E by

$$w_k(q) = \begin{cases} (w \land u)(q) & \text{if } q \in D_k, \\ u(q) & \text{if } q \in E \setminus (D_k \cup \partial_a D_k), \\ \left(\liminf_{p \to q^-} w(p)\right) \land u(q) & \text{if } q \in E \cap \partial_a D_k, \end{cases}$$

then w_k is a supertemperature on E, by Lemma 2.1. Noting that $\liminf_{p\to q^-} w(p) = w(q)$ for all $q \in E \cap \partial_a D_k$, we see that w_k can be written as

$$w_k = \begin{cases} w \wedge u & \text{on } E_k, \\ u & \text{on } E \setminus E_k. \end{cases}$$

Since $w \ge u$ on $L \cap D \supseteq L \cap E_k$, it is now clear that $w_k \ge u$ on $L \cap E_k$, and hence on L. Therefore, $w_k \ge^E R_u^L$ on E, so that $w \ge^E R_u^L$ on E_k for every k, and hence on D. It follows that ${}^D R_u^{L \cap D} \ge^E R_u^L$ on D, and so equality holds.

References

- [1] D. H. Armitage and S. J. Gardiner, *Classical Potential Theory* (Springer, London, 2001).
- [2] H. Bauer, *Harmonische Räume und ihre Potentialtheorie*, Lecture Notes in Mathematics, 22 (Springer, Berlin, 1966).
- [3] H. Bauer, 'Heat balls and Fulks measures', Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 67–82.
- [4] M. Brelot, Éléments de la Théorie Classique du Potentiel, 4th edn (Centre de Documentation Universitaire, Paris, 1969).

- [5] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knoph, P. Lu, F. Luo and L. Ni, *The Ricci Flow: Techniques and Applications: Part III: Geometric–Analytic Aspects*, Mathematical Surveys and Monographs, 163 (American Mathematical Society, Providence, RI, 2010).
- [6] J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Grundlehren der mathematischen Wissenschaften, 262 (Springer, New York, 1984).
- [7] K. Ecker, *Regularity Theory for Mean Curvature Flow*, Progress in Nonlinear Differential Equations and their Applications, 57 (Birkhäuser, Basel, 2004).
- [8] L. C. Evans, *Partial Differential Equations*, Graduate Studies in Mathematics, 19 (American Mathematical Society, Providence, RI, 1998).
- [9] O. Frostman, 'Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions', *Medd. Lunds Univ. Mat. Sem.* 3 (1935), 1–118.
- [10] W. Fulks, 'A mean value theorem for the heat equation', Proc. Amer. Math. Soc. 17 (1966), 6–11.
- [11] B. Pini, 'Maggioranti e minoranti delle soluzione delle equazioni paraboliche', *Ann. Mat. Pura Appl.* **37** (1954), 249–264.
- [12] N. A. Watson, 'Green functions, potentials, and the Dirichlet problem for the heat equation', *Proc. Lond. Math. Soc.* 33 (1976), 251–298.
- [13] N. A. Watson, *Parabolic Equations on an Infinite Strip*, Monographs and Textbooks in Pure and Applied Mathematics, 127 (Marcel Dekker, New York, 1989).
- [14] N. A. Watson, 'A convexity theorem for local mean values of subtemperatures', Bull. Lond. Math. Soc. 22 (1990), 245–252.
- [15] N. A. Watson, 'An extension theorem for supertemperatures', Ann. Acad. Sci. Fenn. Math. 33 (2008), 131–141.
- [16] N. A. Watson, 'A unifying definition of a subtemperature', New Zealand J. Math. 38 (2008), 197–223.
- [17] N. A. Watson, *Introduction to Heat Potential Theory*, Mathematical Surveys and Monographs, 182 (American Mathematical Society, Providence, RI, 2012).
- [18] N. A. Watson, 'Caloric measure for arbitrary open sets', J. Aust. Math. Soc. 92 (2012), 391-407.
- [19] D. V. Widder, 'Positive temperatures on an infinite rod', Trans. Amer. Math. Soc. 55 (1944), 85–95.

NEIL A. WATSON, School of Mathematics and Statistics,

University of Canterbury, Private Bag, Christchurch, New Zealand e-mail: n.watson@math.canterbury.ac.nz