
2 Rigid-Body Configuration Space

This chapter considers a freely moving rigid body, B, surrounded by stationary rigid
bodies O1, . . . ,Ok . The body B represents an object being grasped by a robot hand.
The surrounding bodies represent fingertips, or segments of a robot hand supporting an
object B against gravity. The chapter introduces the notion of rigid-body configuration
space, or c-space, which is essential for analyzing the mobility and stability of the object
B with respect to the surrounding finger bodies. The chapter begins with a parametriza-
tion of B’s c-space in terms of Euclidean coordinates, effectively transforming c-space
from an abstract manifold to a familiar Euclidean space. Configuration space obstacles,
or c-obstacles, are then introduced and several of their properties are described. The
chapter proceeds to describe the first- and second-order geometric properties of the
c-obstacles, as this geometry plays a key role in subsequent chapters.

2.1 The Notion of Configuration Space

The object B is assumed to be a rigid body that moves freely in Euclidean space R
n,

where n= 2 or 3. Rigidity implies that the distance between the object’s points remains
fixed as B moves in R

n. The object’s configuration specifies the position of its points
in R

n. The parametrization of B’s configurations requires a selection of two frames,
depicted in Figure 2.1. The first is a fixed world frame, denoted FW , which establishes
a coordinate system for the physical space Rn. The second is a body frame, denoted FB ,
which is rigidly attached to B. The configuration of B is specified by a vector d ∈R

n
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Figure 2.1 The basic setup for the c-space representation of a rigid object B.
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18 Rigid-Body Configuration Space

describing the position of FB ’s origin with respect to FW , and an orientation matrix,
R ∈R

n×n, whose columns describe the orientation of FB ’s axes with respect to those
of FW . The orientation matrices form a group under matrix multiplication, which is
defined as follows (see Exercises).

definition 2.1 (orientation matrices) The n × n orientation matrices form the
special orthogonal group:

SO(n) = {R ∈R
n×n : RT R = I and det(R) = 1

}
,

where I is the n × n identity matrix.

The orientation matrices possess two important properties. First, every orienta-
tion matrix acts as a rotation on vectors v ∈R

n. That is, R preserves the norm of
v: ‖Rv‖ = (vT RT RvT )1/2 =‖v‖ for v ∈R

n. Second, SO(n) is a smooth manifold of
dimension 1

2n(n − 1) in the space of n × n matrices.1 In particular, SO(2) is a compact
one-dimensional manifold in the space of 2 × 2 matrices, while SO(3) is a compact
three-dimensional manifold in the space of 3 × 3 matrices. The practical meaning of
this topological property is that one needs a single scalar, θ ∈R, to parametrize SO(2),
and three scalars, θ= (θ1,θ2,θ3) ∈R

3, to parametrize SO(3).

Manifold structure of SO(3): The manifold SO(3) is topologically equivalent to
a canonical three-dimensional manifold, the projective space RP 3. One way to construct
RP 3 is to take the unit ball centered at the origin of R3 and identify antipodal points on
its bounding sphere. The manifold RP 3 is path connected, compact and orientable. ◦
The configuration space, or c-space, of the freely moving object B consists of pairs
(d,R) as stated in the following definition.

definition 2.2 (configuration space) The c-space of an n-dimensional rigid body B
is the smooth manifold C =R

n × SO(n), consisting of pairs (d,R) such that d ∈R
n and

R ∈ SO(n), where n= 2 or 3.

The dimension of C is the sum: m = n + 1
2n(n − 1) = 1

2n(n + 1), giving m = 3 when B
is two-dimensional (2-D) and m = 6 when B is three-dimensional (3-D). Every position
and orientation of B is represented by a point in C, while every continuous motion of
B is represented by a curve in C. However, practical analysis requires coordinates for
the c-space manifold. Therefore, we shall introduce global coordinates for C in terms of
a Euclidean space R

m, with some periodicity rules for the coordinates representing the
orientation matrices.

First consider the coordinates for the orientation matrices, which form a matrix group.
A standard means for parametrizing such groups is by exponential coordinates:

R(θ) = e[θ×] θ ∈R
1
2 n(n−1),

1 An m-dimensional manifold is a hypersurface, M, such that at each point p ∈M the manifold can be
locally represented by Euclidean coordinates Rm.
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2.1 The Notion of Configuration Space 19

where the matrix exponential is defined by the series: eA = I + A + 1
2!A

2 + . . ., and
[θ×] is the following skew-symmetric matrix.2 In the case of SO(2), the parameter
θ ∈R represents the orientation of FB relative to FW in R

2. The 2 × 2 matrix [θ×] is
given by

[θ×] =
[

0 −θ
θ 0

]
θ ∈R.

In the case of SO(3), the parameters θ= (θ1,θ2,θ3) ∈R
3 represent the orientation of

FB relative to FW in R
3. The 3 × 3 matrix [θ×] is given by

[θ×] =
⎡⎣ 0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0

⎤⎦ θ= (θ1,θ2,θ3) ∈R
3.

The skew symmetric matrix [θ×] acts as a cross-product on vectors v ∈R
3: [θ×]v =

θ × v for v ∈R
3. Hence, it is called the cross-product matrix. When the skew sym-

metric matrices are substituted into the exponential series, one obtains the following
parametrization of SO(n).

theorem 2.1 (exponential coordinates for SO(n)) The 2 × 2 orientation matrices
are globally parametrized by θ ∈R, according to the formula:

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
θ ∈R,

where θ is measured using the right-hand rule (Figure 2.1). The 3 × 3 orientation
matrices are globally parametrized by θ= (θ1,θ2,θ3) ∈R

3 according to Rodrigues’
formula:

R(θ) = I + sin(‖θ‖)[θ̂×] + (1 − cos(‖θ‖)
)
[θ̂×]2 θ ∈R

3

where I is the 3×3 identity matrix, [θ̂×] is a 3×3 cross-product matrix, and θ̂= θ/‖θ‖.

The parametrization of SO(2) in terms of θ ∈R is periodic in 2π, with each 2π interval
parametrizing the entire manifold SO(2) (Figure 2.2). In Rodrigues’ formula, the unit
vector θ̂ represents the axis of rotation of R(θ), while the scalar ‖θ‖ corresponds to the
angle of rotation about this axis according to the right-hand rule. The parametrization
of SO(3) in terms of θ ∈R

3 satisfies the following periodicity rule. The origin θ= �0 is
mapped to the identity orientation matrix I . Similarly, all concentric spheres of radius
‖θ‖ = 2π,4π, . . . are mapped to I . Each pair of antipodal points on the sphere of radius
‖θ‖ =π is mapped to the same matrix R, since R(πθ̂) =R(−πθ̂) for all θ̂ (similarly,
antipodal points on the spheres of radius ‖θ‖ = 3π,5π, . . . are identified). Since θ̂ can
have any direction in R

3, the manifold SO(3) is fully parametrized by the closed ball of
radius π centered at the origin, with antipodal points on its bounding sphere identified.
Note that this rule matches the definition of RP 3, thus providing a constructive proof
that SO(3) is topologically equivalent to RP 3.

The pair (d,θ) provides a global parametrization of the c-space manifold C =R
n ×

SO(n) in terms of c-space coordinates, q ∈R
m, as stated in the following definition.

2 The skew-symmetric matrices [θ×] form the Lie algebra of the matrix group SO(n).
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20 Rigid-Body Configuration Space
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Figure 2.2 (a) The c-space coordinates q = (dx,dy,θ) of a 2-D object B, where θ is periodic
in 2π. (b) A physical motion of B is represented by a c-space trajectory in R

m.

definition 2.3 (c-space coordinates) When B is a 2-D body, its c-space coordinates
are q = (d,θ) ∈R

3, where d = (dx,dy) ∈R
2 and θ ∈R. When B is a 3-D body,

its c-space coordinates are q = (d,θ) ∈R
6, where d = (dx,dy,dz) ∈R

3 and θ=
(θ1,θ2,θ3) ∈R

3.

The c-space coordinates allow us to model the physical motions of B as trajectories of
a point in R

m, where m = 3 for a 2-D object and m = 6 for a 3-D object. For simplicity
we will refer to R

m as the c-space of B. Before we discuss how the finger bodies
appear as forbidden regions in B’s c-space, let us review the key notion of rigid-body
transformation.

definition 2.4 (rigid-body transformation) When a rigid body B is located at a
configuration q, the position of its point b ∈B expressed in FB relative to FW is given
by the rigid-body transformation, X(q,b) :Rm × B→R

n, according to the formula
(Figure 2.2(a)):

X(q,b) =R(θ)b + d q = (d,θ) ∈R
m, b ∈B

where m = 3 in 2-D and m = 6 in 3-D.

We will occasionally use the notation Xb(q) to specify the rigid-body transformation
with the point b ∈B held fixed on B. In this case, Xb(q) gives the world position of the
fixed point b as a function of B’s configuration q.

2.2 Configuration Space Obstacles

Rigid bodies cannot interpenetrate in physical space. Hence, when a rigid object B is sur-
rounded by stationary rigid finger bodies O1, . . . ,Ok , the finger bodies form obstacles

https://doi.org/10.1017/9781108552011.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552011.003


2.2 Configuration Space Obstacles 21

that constrain the object’s possible motions. The finger bodies induce the following
forbidden regions in B’s c-space, called c-obstacles.

definition 2.5 (c-obstacle) Let B(q) be the set of points in R
n occupied by B

at a configuration q. The c-obstacle induced by a stationary finger body O, denoted
CO, is the set of configurations at which B(q) intersects O:

CO= {q ∈R
m :B(q) ∩ O �= ∅}

where m = 3 for a 2-D object B and m = 6 for a 3-D object B.

When B is a full body with nonempty interior, its c-obstacle CO occupies an m-
dimensional set in B’s c-space R

m, even when O is a point obstacle. The c-obstacle
boundary, denoted S , forms a piecewise smooth (m − 1)-dimensional manifold whose
points satisfy the following property.

lemma 2.2 (c-obstacle boundary) The c-obstacle boundary consists of configura-
tions q at which B(q) touches O strictly from the outside:

S ={q ∈R
m :B(q) ∩ O �= ∅ and int(B(q)) ∩ int(O) =∅},

where int denotes set interior.

In the case of 2-D bodies, one can conceptually construct the c-obstacle surface as
follows. First fix the orientation of B’s reference frame to a particular θ. Then slide
B along the perimeter of O with fixed orientation, making sure that B maintains con-
tinuous contact with O. The trace of B’s frame origin during this circumnavigation
forms a closed curve. The resulting curve is the fixed-θ slice of S. When this process is
repeated for all θ, the resulting stack of loops forms the c-obstacle boundary.

Example: Figure 2.3 shows an elliptical object B moving in a planar environment
in the presence of a stationary disc finger O. The c-obstacle CO is depicted in
Figure 2.3(a) for a choice of FB ’s origin at the ellipse’s center. The c-obstacle forms
a spiraling stack of 2-D ovals. Each oval is formed by sliding the object B about O

Figure 2.3 The c-obstacle surface induced by a stationary disc representing a finger body, shown
for two choices of B’s reference frame: (a) at the ellipse’s center, and (b) at the ellipse’s tip.
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22 Rigid-Body Configuration Space

with fixed orientation, and the spiraling ovals represent the 2π periodicity of the θ
axis. The same c-obstacle is depicted in Figure 2.3(b) for a choice of FB ’s origin at the
tip of the ellipse’s major axis. While the c-obstacle geometric shape (surface normal
and curvature) has changed, it is topologically equivalent to the c-obstacle depicted in
Figure 2.3(a). This observation holds under all choices of the reference frames FW

and FB . ◦
A detailed discussion of the c-obstacles can be found in on robot motion planning texts;
see Bibliographical Notes. The following are some key properties of the c-obstacles.

1. Connectivity and compactness propagate. When B is compact and connected,
a compact and connected finger body O induces a compact and connected
c-obstacle CO.

2. Union propagates. When B is a union of two sets, B=B1 ∪ B2, the c-obstacle
induced by a finger body O is a union of the c-obstacles corresponding to the two
sets, CO= CO1 ∪ CO2.

3. Convexity propagates. A set A⊆R
n is said to be convex when every pair of

points in A can be connected by a line segment lying in A. When B and O are
convex bodies, each fixed-orientation slice of CO forms a convex set.

4. Polygonality propagates. When B and O are polygonal 2-D bodies, each fixed-
orientation slice of CO forms a polygonal set. When B and O are polyhedral 3-D
bodies, each fixed-orientation slice of CO forms a polyhedral set.

Parametrization of c-obstacle boundary: Explicit parametrization of the c-obstacle
boundary is available when B and O are convex bodies. This example considers a 2-D

smooth convex object B and a disc finger O centered at x0 of radius r . Let β(s) for s ∈R

be a counterclockwise parametrization of B’s perimeter in its body frame FB , such that
the tangent β′(s) is a unit vector. Note that J β′(s) is the unit outward normal to B in
FB , where J =

[
0 1
−1 0

]
. When B touches O at a point x(s,q) =R(θ)β(s) + d where

q = (d,θ), the two bodies share collinear contact normals:

1

r
(x − x0) =−R(θ)J β′(s). (2.1)

It follows from Eq. (2.1) that x(s,q) = x0 − rR(θ)J β′(s). Substituting for x in the rigid-
body transformation, then solving for d in terms of s and θ gives

d(s,θ) = x(s,θ) − R(θ)β(s) = x0 − R(θ)
(
β(s) + rJ β′(s)

)
.

The function ϕ(s,θ) :R2 →R
3 given by

ϕ(s,θ) =
(

d(s,θ)
θ

)
d(s,θ) = x0 − R(θ)

(
β(s) + rJ β′(s)

)
(2.2)

parametrizes the c-obstacle boundary in terms of s and θ. The curves depicted on the
c-obstacle surfaces in Figure 2.3 are fixed-θ curves of the parametrization (2.2). ◦
The c-obstacle boundary, S , inherits smoothness properties from those of B and O.
When both bodies are smooth and convex, S forms a smooth (m − 1)-dimensional
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2.3 The C-Obstacle Normal 23

manifold in R
m. More generally, S is locally smooth at any configuration q ∈S at which

B(q) touches O at a single point, such that the two bodies possess smooth boundaries
at the contact point. When the two bodies are piecewise smooth, for instance when
B and O are polygons, S becomes piecewise smooth. In the latter case S consists of
smooth (m − 1)-dimensional “patches,” meeting along lower-dimensional manifolds.
For instance, when B is a convex polygon and O is a disc, S consists of surface patches
generated by an edge of B sliding on O, and surface patches generated by a vertex of B
sliding on O. Similar observations hold for the five-dimensional boundary of CO in the
3-D case.

Example – Smoothness of c-obstacle boundary: Consider the previous example of a
2-D convex object B and a disc finger O. Using the boundary parametrization of
Eq. (2.2), let us verify that the c-obstacle boundary forms a smooth surface in B’s
c-space. It suffices to show that the tangent vectors ∂

∂s
ϕ(s,θ) and ∂

∂θϕ(s,θ) are linearly
independent and thus span a well defined tangent plane at every point q =ϕ(s,θ) ∈S .
The tangent vector ∂

∂s
ϕ(s,θ) is given by

∂

∂s
ϕ(s,θ) =

(−R(θ)
(
β′(s) + rJ β′′(s)

)
0

)
=−(1 + rκB(s))

(
R(θ)β′(s)

0

)
,

where we used the fact that J β′′(s) is collinear with β′(s), and that κB(s) = β′(s)·J β′′(s)
is the curvature of B at β(s) (more details on curvature are provided in Section 2.4). The
tangent vector ∂

∂θϕ(s,θ) is given by

∂

∂θ
ϕ(s,θ) =

(
JR(θ)

(
β(s) + rJ β′(s)

)
1

)
=
(

JR(θ)β(s)
1

)
− r

(
R(θ)β′(s)

0

)
,

where we used the identities R′(θ) = − JR(θ) = − R(θ)J and J 2 = − I . Since
κB(s) > 0 for a convex object, ∂

∂s
ϕ(s,θ) and ∂

∂θϕ(s,θ) are linearly independent and
the c-obstacle boundary forms a smooth surface in c-space (see Figure 2.3). ◦

2.3 The C-Obstacle Normal

When a rigid object B is contacted by stationary rigid finger bodies O1, . . . ,Ok , the
object’s configuration q lies at the intersection of the finger c-obstacle boundaries. We
will see in Part II of the book that the free motions of B are determined in this case by
the first and second-order geometry of the c-obstacle boundaries – i.e., by their normals
and curvatures at q. This section derives a formula for the c-obstacle normal, while the
next section derives a formula for the c-obstacle curvature.

We shall assume that the object B touches a stationary body O at a single point,
such that the two bodies have locally smooth boundaries at the contact point. Under this
assumption, the c-obstacle boundary is locally smooth and has a well-defined normal.3

3 The c-obstacle normal is well defined even when one of the contacting bodies is non-smooth at the contact
point, provided that the other body has a smooth boundary at this point.
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24 Rigid-Body Configuration Space

In order to compute the c-obstacle normal, consider the following inter-body distance
function.

definition 2.6 (C-obstacle distance function) Let O be a stationary body in R
n,

and let dst(x,O) :Rn →R be the minimal distance of a point x from O: dst(x,O) =
miny∈O{‖x − y‖}. The c-obstacle function, o(q) :Rm →R, is the minimal distance
between B(q) and O:

o(q) = min
x∈B(q)

{dst(x,O)} ,

where B(q) is the set of points Rn occupied by B at a configuration q.

The c-obstacle distance function o(q) is identically zero in the interior of the c-obstacle
CO and is strictly positive outside CO. Hence CO={q ∈R

m : o(q) ≤ 0}. If o(q) would
have been differentiable at q ∈S , its gradient ∇o(q) would be collinear with the c-
obstacle outward normal at q. But o(q) is identically zero inside CO and monotoni-
cally increasing away from CO, implying that it is non-differentiable on the c-obstacle
boundary S. However, o(q) is Lipschitz continuous and can be analyzed with tools
that resemble the classical ones (Lipschitz continuity and other relevant aspects of
non-smooth analysis are reviewed in Appendix A). Lipschitz continuous functions are
piecewise smooth, and they possess a generalized gradient at points were the function
is non-differentiable. The generalized gradient of f at x, denoted ∂f (x), is the convex
combination of the gradients ∇f (y) at points y that approach x from all sides (see
Appendix A). In particular, ∂f (x) reduces to the usual gradient ∇f (x) at points where
f is differentiable.

Let us compute the generalized gradient of o(q) and see how it determines the
c-obstacle normal. To emphasize that only q is a free variable in o(q), we write:

o(q) = min
b∈B

{
dst
(
Xb(q),O

)}
,

where Xb(q) is the rigid-body transformation specified in Definition 2.4. According to
Property (3) in Appendix A, o(q) is Lipschitz continuous when its constituent functions,
dst
(
Xb(q),O

)
for b ∈B, are Lipschitz continuous. The rigid-body transformation Xb(q)

is smooth and therefore Lipschitz continuous in q. The minimal distance function,
dst(x,O), is shown in Appendix A to be Lipschitz continuous in x. Since Lipschitz
continuity is preserved under function composition, the functions dst(Xb(q),O) are
Lipschitz continuous. Hence, o(q) is Lipschitz continuous and, therefore, possesses
a generalized gradient, ∂o(q), which determines the c-obstacle normal. As discussed
in Appendix A, ∂o(q) is the convex combination of the generalized gradient of the
functions dst

(
Xb(q),O

)
that attain the minimum distance at q. When B(q) touches O

at a single point, one obtains the following corollary.

corollary 2.3 Let B(q) contact a stationary body O at a single point b0 ∈B. Then
o(q) is attained by a single function, o(q) = dst(Xb0 (q),O), and the generalized gradi-
ent of o(q) is given by ∂o(q) = ∂dst(Xb0 (q),O).
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2.3 The C-Obstacle Normal 25

The computation of ∂o(q) thus reduces to the computation of ∂dst(Xb0 (q),O). The
function dst(Xb0 (q),O) is a composition of dst(x,O) with x(q) =Xb0 (q). The
generalized gradient of such a composition can be computed using a generalized
chain rule, described in Appendix A. It specifies that ∂dst

(
Xb0 (q),O

)= ∂dst(x0,O) ·
DXb0 (q), where x0 =Xb0 (q) is the position of the contact point b0 in the world frame
FW , and DXb0 (q) is the Jacobian matrix of Xb0 (q). The resulting formula for ∂o(q) is
as follows.

proposition 2.4 (generalized gradient of o(q)) The generalized gradient of o(q) at
q ∈S is a line segment based at q:

∂o(q) = s ·
(

n(x0)
R(θ)b0 × n(x0)

)
0 ≤ s ≤ 1, (2.3)

where n(x0) is the unit normal pointing out of O and into B at the contact point x0.

Proof: Based on the generalized chain rule:

∂o(q) = ∂dst
(
Xb0 (q),O

)= ∂dst(x0,O) · DXb0 (q). (2.4)

The Jacobian DXb0 (q) is given by (see Exercises): DXb0 (q) = [I − R(θ)b0×
]
.

As shown in Appendix A, the generalized gradient of dst(x0,O) is a line segment
based at x0:

∂dst(x0,O) = s · n(x0) 0 ≤ s ≤ 1,

where n(x0) is O’s outward unit normal at x0. Substituting for DXb0 (q) and ∂dst(x0,O)
in Eq. (2.4), then taking the transpose so that ∂o(q) would become a column vector,
gives Formula (2.3) for ∂o(q). �

The generalized gradient of o(q) forms a line segment based at q ∈S . This line segment
points outward with respect to CO, since o(q) increases away from CO. The c-obstacle
normal is simply the direction of this line segment, as summarized in the following
theorem, which uses the notation b instead of b0 and x instead of x0.

theorem 2.5 (c-obstacle normal) Let a freely moving rigid body B located at q contact
a stationary rigid body O. The c-obstacle outward normal at q ∈S , denoted η(q),
is given by

η(q) =DXT
b (q)n(x) =

(
n(x)

R(θ)b × n(x)

)
, (2.5)

where b is B’s contact point with O expressed in FB , x =Xb(q) is the contact point
expressed in FW , and n(x) is the unit contact normal at x, pointing outward with respect
to O at x.4

Proof: Consider a c-space path α(t) that lies in S , such that α(0) = q. Since B main-
tains continuous contact with O along α, o(α(t)) = 0 along this path. By the generalized
chain rule, d

dt
o(α(t)) = ∂o(α(t)) · d

dt
α(t) = 0 for t ∈R. Since d

dt

∣∣
t=0 α(t) is an arbitrary

4 In the 2-D case, Rb × n = (Rb)TJn, where J =
[

0 1
−1 0

]
.
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26 Rigid-Body Configuration Space

tangent vector to S at q, the line segment ∂o(q) is perpendicular to the tangent space
TqS. This line segment points outward with respect to CO. The vector η(q) specified in
Eq. (2.5), obtained by substituting s = 1 in ∂o(q), therefore forms the c-obstacle outward
normal at q. �

We will see in the next chapter that the c-obstacle normal η(q) can be interpreted as the
generalized force, or wrench, generated by a unit-magnitude normal force acting on B
at x. The vanishing of the product: ∂o(α(t)) · d

dt
α(t) = 0, reflects the physical fact that a

normal contact force does no work along any contact preserving motion of B as it slides
along the boundary of the stationary body O.

Example: Consider the parametrization ϕ(s,θ) of the c-obstacle boundary S , obtained
in Eq. (2.2). We already verified that the tangent vectors ∂

∂s
ϕ(s,θ) and ∂

∂θϕ(s,θ) span
the tangent plane to S at q =ϕ(s,θ). The cross-product of the two tangent vectors
should therefore be collinear with η(q). A straightforward calculation gives

∂

∂s
ϕ(s,θ) × ∂

∂θ
ϕ(s,θ) =

( −JR(θ)β′(s)
(JR(θ)β′(s)) · JR(θ)β(s)

)
=
(

n(x)
(R(θ)b)TJn(x)

)
,

where b = β(s), and n(x) =−JR(θ)β′(s) (since JR(θ) =R(θ)J , and −J β′(s) is B’s
inward unit normal at b expressed in FB ). The c-obstacle normal computed from ϕ(s,θ)
thus matches formula (2.5) for η(q). ◦

2.4 The C-Obstacle Curvature

As mentioned in the previous section, when a rigid object B is held by stationary rigid
finger bodies O1, . . . ,Ok , the free motions of B are determined by the first- and second-
order geometry of the finger c-obstacles. The first-order geometry corresponds to the
c-obstacle normal; the second-order geometry corresponds to the c-obstacle curvature,
which is studied in this section.

We will develop the c-obstacle curvature formula for a freely moving 2-D object B
and a stationary 2-D body O. The 3-D version of the c-obstacle curvature formula is
summarized at the end of this section. In the 2-D case, the c-obstacle boundary forms
a surface in R

3. The curvature of this surface depends on the curvature of the contacting
bodies for which we need to introduce notation. First consider the stationary body O.
As before, n denotes the outward unit normal to O at the contact point x. Let x(t)
parametrize the boundary of O, such that x(0) = x and d

dt

∣∣
t=0 x(t) = ẋ. The curvature

of O at x, denoted κO(x), is the scalar measuring the change of the unit normal n(x)
along x(t):

d

dt

∣∣∣∣
t=0

n(x(t)) = κO(x)ẋ.

Note that the change in n(x) is tangent to O’s boundary at x, since ‖n(x)‖ = 1 along x(t).
The sign of κO(x) is positive when O is convex at x, negative when O is concave at
x and zero when O is flat at x. The radius of curvature of O at x, denoted rO(x), is
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the reciprocal of the curvature, rO(x) = 1/κO(x). The circle of curvature of O at x is
the circle of radius |rO(x)| tangent to O at x. It forms the boundary’s second-order
approximation at x. The curvature of B is similarly defined with respect to its body
frame FB . The curvature of B at a boundary point b is the signed scalar κB(b), and its
radius of curvature is rB(b) = 1/κB(b). In the following discussion, κB and κO will be
used for κB(b) and κO(x).

The curvature of the c-obstacle boundary is defined as follows. Denote by TqS
the tangent plane to the c-obstacle boundary S at q, and recall that η(q) denotes the
c-obstacle outward normal at q ∈S . Let η̂(q) = η(q)/‖η(q)‖ be the unit-magnitude
outward normal, and let q(t) be a c-space path that lies in S , such that q(0) = q and
d
dt

∣∣
t=0 q(t) = q̇. The curvature form of S at q, denoted κ(q,q̇), measures the change in

η̂(q) along tangent directions q̇ ∈ TqS:

κ(q,q̇) = q̇ · d

dt

∣∣∣∣
t=0
η̂(q(t)) = q̇ ·Dη̂(q)q̇ q̇ ∈ TqS . (2.6)

The curvature κ(q,q̇) is a quadratic form that acts on tangent vectors q̇ ∈ TqS.
Since TqS is a two-dimensional subspace of the ambient tangent space TqR

3, Dη̂(q)
acts as a 2×2 symmetric matrix on TqS . The eigenvalues and eigenvectors of Dη̂(q) are
the principal curvatures and principal directions of curvature of S at q. The principal
curvatures are analogous to the curvature of a planar curve. That is, the principal
curvatures can be used to construct a quadratic surface tangent to S at q, which forms
the second-order approximation of S at q.

We now turn to the task of computing the c-obstacle curvature. When the object B
moves along a c-space path q(t) that lies in S, it maintains continuous contact with the
stationary body O. Let x(t) be the contact point of B with O along q(t), expressed in the
world frame FW . Since η(q) =DXT

b (q)n(x) according to Theorem 2.5, the derivative of
η̂(q) along q(t) involves the contact point velocity, ẋ(t), along the c-space path q(t). The
contact point velocity depends on the curvatures of B and O, as stated in the following
proposition.

proposition 2.6 (contact point velocity) Let q(t) be a c-space path that lies in S,
and let x(t) be B’s contact point with O along q(t), expressed in the world frame FW .
The contact point velocity along q(t) is given by

ẋ(t) = κB
κB+κO

[
I −JR(θ)bc

]
q̇(t), (2.7)

where κB and κO are the curvatures of B and O at x(t), bc is B’s center of curvature
at x(t) expressed in FB , I is a 2 × 2 identity matrix and J =

[
0 1
−1 0

]
.

The proof of the proposition appears in the chapter’s appendix. The object’s cen-
ter of curvature, bc, is the center of B’s circle of curvature at x. The denominator,
κB + κO, is positive semi-definite. For instance, when a concave body O touches
a convex object B at x, rB ≤ |rO|; otherwise the two bodies would interpenetrate. In this
case, |κO| ≤ κB and, indeed, κB + κO ≥ 0. The quantity κB + κO is strictly positive
when the bodies’ second-order approximations maintain point contact at x. Since we
assume a single point contact, we may as well assume that κB + κO > 0.
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Figure 2.4 (a) The contacting bodies are replaced by their circles of curvature at x. (b) The
B-circle executes a contact preserving motion along the boundary of the stationary disc O.

Geometric interpretation of the contact point velocity formula: Let Xbc (q) be the
position of B’s center of curvature at x, expressed in the world frame FW . Then Xbc (q) =
R(θ)bc + d . Assuming that bc is held fixed on B, Ẋbc = [I −JR(θ)bc

]
q̇. Eq. (2.7)

can thus be written as ẋ = κB
κB+κO Ẋbc . In order to justify this formula, replace

the object B by its circle of curvature at x, and assume that O is a stationary
disc (Figure 2.4(a)). As the B-circle executes a contact preserving motion along O
(Figure 2.4(b)), the B-circle’s center, Xbc , moves along a circular arc of radius |rB+rO|.
The circles’ contact point, x, moves along a concentric circular arc of radius |rO| during
this motion. Since x and Xbc lie on a common radius vector emanating from O’s center,
the two points move with identical angular velocities about O’s center. Moreover,
the two points move in the same direction when rB ≥ 0. Assuming this case, let φ̇
be the common angular velocity of the two points (Figure 2.4(b)). Then ẋ = |rO|φ̇
while Ẋbc = |rB + rO|φ̇. Equating φ̇ in both expressions gives ẋ = |rO |

|rB+rO | Ẋbc . Finally,
rO

rB+rO
= κB
κB+κO , giving the contact point velocity formula of Eq. (2.7). ◦

Based on the contact point velocity formula, the c-obstacle curvature form is as follows.

theorem 2.7 (c-obstacle curvature form in 2-D) Let CO be a c-obstacle associated
with 2-D bodies B and O. The curvature form of the c-obstacle boundary at q ∈
S is given by

κ(q,q̇) = 1
‖η(q)‖ · 1

κB+κO q̇T

×
[

κBκOI −κBκOJRbc

−κBκO(JRbc)T (κORb − n(x))T (κBRb + n(x))

]
q̇ q̇ ∈ TqS,

where η(q) is the c-obstacle outward normal at q, κB and κO are the curvatures of B
and O at the contact point x =Xb(q), n(x) is B’s inward unit normal at x, and bc is B’s
center of curvature at x expressed in FB ; I is a 2×2 identity matrix and J =

[
0 1

−1 0

]
.

The proof of the theorem appears in the chapter’s appendix. The key step in the proof
is based on the contact point velocity formula. Consider a c-space path q(t) that lies
in S, such that q(0) = q and d

dt

∣∣
t=0 q(t) = q̇. According to Theorem 2.5, the c-obstacle
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is convex at q
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is concave at q
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q

Figure 2.5 The c-obstacle slice is (a) convex when B and O are convex at x, and (b) concave
when one of the two bodies is concave at x.

normal is given by η(q) =DXT
b (q)n(x), where n(x) is B’s inward unit normal at x. The

curvature of S along q̇ is determined by the derivative:

d

dt

∣∣∣∣
t=0

η(q(t)) =DXT
b (q)

d

dt

∣∣∣∣
t=0

n(x(t)) +
(

d

dt

∣∣∣∣
t=0

DXT
b (q(t))

)
n(x). (2.8)

Since B maintains continuous contact with the stationary body O along q(t), the contact
point x(t) moves along O’s boundary during this motion. Hence d

dt

∣∣
t=0 n(x(t)) = κOẋ

in the first summand of Eq. (2.8). Substituting ẋ = κB
κB+κO [I −JRbc]q̇ according to

Formula (2.7), then substituting the Jacobian formula DXb = [I −JRb] (see Exercises),
gives

DXT
b (q)

d

dt

∣∣∣∣
t=0

n(x(t)) = κBκO
κB+κO

[
I

(−JRb)T

]
[I −JRbc] q̇

= κBκO
κB+κO

[
I −JRbc

(−JRb)T b · bc

]
q̇,

where we used the identities RT R = I and JT J = I . The remainder of the proof appears
in the chapter’s appendix.

Curvature of c-obstacle slices: Consider the curvature of the fixed-θ slices of the
c-obstacle boundary S , denoted S|θ . Each slice S|θ is a planar curve embedded in
a fixed-θ plane in c-space R3. The vector tangent to S|θ at q = (d,θ) is q̇ = (ḋ,0), such
that ḋ is orthogonal to n(x). This tangent vector corresponds to instantaneous translation
of B along the tangent to O’s boundary at x. Based on Theorem 2.7, the c-obstacle
curvature along q̇ = (ḋ,0) is given by

κ
(
q,(ḋ,0)

)= κBκO
κB + κO

‖ḋ‖2.

The coefficient preceding ‖ḋ‖2 is the curvature of the c-obstacle slice S|θ at q. Its
reciprocal is the slice’s radius of curvature at q:(

κBκO
κB + κO

)−1

= rB + rO,

where rB and rO are the radii of curvature of B and O at x. We see that the radius of
curvature of S|θ is the algebraic sum of the contacting bodies’ radii of curvature. In
particular, S|θ is convex at q when the bodies are convex at x (Figure 2.5(a)), while
S|θ is concave at q when one of the two bodies is concave at x (Figure 2.5(b)). ◦
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C-obstacle curvature in 3-D: The c-obstacle curvature in the 3-D case depends on the
same geometric data as in the 2-D case, with the bodies’ surface curvatures replacing
the curvatures κB and κO. Let S be the five-dimensional boundary of CO, let q ∈S ,
and let x = X(q,b) be B’s contact point with O. We assume that S is locally smooth at
q, and denote by TqS the five-dimensional tangent space of S at q. Let q(t) be a c-space
path that lies in S, such that q(0) = q and d

dt

∣∣
t=0 q(t) = q̇. The curvature form of S at q

is given by κ(q,q̇) = q̇ · d
dt

∣∣
t=0 η̂(q(t)), where q̇ ∈ TqS and η̂(q(t)) is the unit outward

normal to S along q(t). The surface curvatures of B and O at x are determined by the
linear maps LB and LO. These linear maps act on the tangent plane of the respective
surface to yield the change in the surface normal along a given tangent direction. The
curvature form of S at q is given by (see Bibliographical Notes):

κ
(
q,q̇
)= 1

‖η(q)‖ q̇T

([
I −[Rb×]
O [n(x)×]

]T [
LB [LB + LO]−1 LO −LO [LB + LO]−1

− [LB + LO]−1 LO − [LB + LO]−1

]
[

I −[Rb×]
O [n(x)×]

]
+
[

O O

O −([Rb×]T [n(x)×]
)
s

])
q̇ q̇ ∈ TqS,

where η(q) is the c-obstacle outward normal at q ∈S , n(x) is O’s outward unit normal
at x, I is a 3 × 3 identity matrix, O is a 3 × 3 matrix of zeroes and (A)s = 1

2 (AT + A).
Two comments are in order here. First, LO + LB ≥ 0, otherwise the two bodies would
interpenetrate at the contact. In particular, LO + LB > 0 in the generic case where
the second-order approximations to the contacting surfaces of B and O maintain point
contact at x. Second, the tangent vector q̇ = (Rb × n(x),n(x)) ∈ TqS is an eigenvector
with zero eigenvalue of the matrix associated with the curvature form. This tangent
vector corresponds to instantaneous rotation of B about its contact normal with O.
Hence, the c-obstacle CO always possesses zero curvature along instantaneous rotation
of B about its contact normal with O.

Bibliographical Notes

The notion of configuration space originated during a collaboration between two MIT
doctoral students, assigned to develop one of the first robotic assembly stations [1–3].
While discussing the automation of the peg-in-a-hole insertion task, they observed that
the best insertion approach would be to slide the peg along the horizontal surface at
an oblique angle rather than at the vertical angle required for insertion (Figure 2.6).
Once the oblique peg wedges itself into the hole, a rotational motion aligns the peg
with the hole while completing the insertion task. This approach makes perfect sense
when the c-obstacles induced by the hole’s two sides are considered. The θ slice of the
c-obstacles at a vertical angle contains only a thin segment of collision-free configu-
rations (Figure 2.6(a)). In contrast, the θ slice of the c-obstacles at any oblique angle
contains a full notch of collision-free configurations (Figure 2.6(b)). This observation
led to the formulation of c-space as a framework for planning the motions of bodies
in contact, a framework that has served virtually all motion planning algorithms. Some
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Figure 2.6 (a) At a vertical angle the peg’s c-space contains only a thin segment of free
configurations inside the hole. (b) At an oblique angle the peg’s c-space contains a full notch
of free configurations inside the hole.

recommended texts on robot motion planning are by Canny [4], Latombe [5], Lavalle [6]
and, most recently, Lynch and Park [7].

The formulas for the c-obstacle normal and the c-obstacle curvature form are based on
Rimon and Burdick [8, 9]. These papers contain the detailed derivation of the c-obstacle
curvature form associated with 3-D bodies, which has been summarized here without
any formal derivation. The contact point velocity formula of Proposition 2.6, which
plays an important role in the derivation of the c-obstacle curvature form was derived
by Montana [10].

Appendix: Details of Proofs

This appendix contains a derivation of the c-obstacle curvature formula in the 2-D case.
We begin with the contact point velocity formula.

Proposition 2.6 Let q(t) be a c-space path that lies in S, and let x(t) be B’s contact
point with O along q(t), expressed in the world frame FW . The contact point velocity
along q(t) is given by

ẋ(t) = κB
κB+κO

[
I −JR(θ)bc

]
q̇(t), (2.9)

where κB and κO are the curvatures of B and O at x(t), bc is B’s center of curvature
at x(t) expressed in FB , I is a 2 × 2 identity matrix, and J =

[
0 1
−1 0

]
.
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Proof: When the object B moves along a c-space path q(t) = (d(t),θ(t)) which lies
in S , the contact point position is given by

x(t) =X(q(t),b(t)) =R(θ(t))b(t) + d(t).

Taking the time derivative of both sides: ẋ =DXb(q)q̇ + R(θ)ḃ. In order to obtain an
expression for ẋ as a function of q̇, we need a second equation relating (ẋ,ḃ) to q̇. Since
B maintains continuous contact with O along q(t), O’s outward unit normal at x, n(x),
must match B’s inward unit normal at x. Denote by n̄(b) the outward unit normal of B
at b, expressed in FB . Then −R(θ)n̄(b) is the direction of B’s inward unit normal at
x in the world frame FW , and, therefore, n(x(t)) =−R(θ(t))n̄(b(t)) along q(t). Taking
the time derivative of both sides gives

d
dt

n(x(t)) = JR(θ)n̄(b)θ̇ − R(θ) d
dt

n̄(b(t)),

where we used the formula Ṙ(θ) =−JR(θ)θ̇. The curvature of B satisfies the relation
d
dt

n̄(b(t)) = κBḃ. The curvature of O satisfies the relation d
dt

n(x(t)) = κOẋ. Therefore,

κOẋ = JR(θ)n̄(b)θ̇ − κBR(θ)ḃ.

Substituting R(θ)ḃ = ẋ − DXb(q)q̇ in the latter equation gives

(κB + κO)ẋ = κBDXb(q)q̇ + JR(θ)n̄(b)θ̇ q̇ = (ḋ, θ̇).

Substituting DXb(q)q̇ = ḋ −JRbθ̇, then pulling κB as a common factor gives

(κB + κO)ẋ = κB
{
ḋ −JR

(
b − rBn̄(b)

)
θ̇
}

rB = 1/κB.

The term b − rBn̄(b) is the position of B’s center of curvature in FB : bc = b − rBn̄(b).
This gives ẋ = κB

κB+κO
[
I −JR(θ)bc

]
q̇, where q̇ = (ḋ, θ̇). �

The following theorem specifies the c-obstacle curvature formula in the 2-D case.

Theorem 2.7 Let CO be a c-obstacle associated with 2-D bodies B and O. The curva-
ture form of the c-obstacle boundary at q ∈S is given by

κ(q,q̇) = 1
‖η(q)‖ · 1

κB+κO q̇T

[
κBκOI −κBκOJRbc

−κBκO(JRbc)T (κORb − n(x))T (κBRb + n(x))

]
q̇

q̇ ∈ TqS,

where η(q) is the c-obstacle outward normal at q, κB and κO are the curvatures of B
and O at the contact point x =Xb(q), n(x) is B’s inward unit normal at x, and bc is B’s
center of curvature at x expressed in FB ; I is a 2×2 identity matrix and J =

[
0 1

−1 0

]
.

Proof: Let q(t) be a c-space curve that lies in S , such that q(0) = q and d
dt

∣∣
t=0 q(t) =

q̇. Based on the definition of κ(q,q̇), we have to compute the derivative:

d

dt

∣∣∣∣
t=0

η̂(q(t)) = d

dt

∣∣∣∣
t=0

1
‖η(q(t))‖η(q(t)) = 1

‖η(q)‖
[
I − η̂(q)η̂(q)T

] d

dt

∣∣∣∣
t=0

η(q(t)).
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Since
[
I − η̂(q)η̂(q)T

]
q̇ = q̇ on TqS, the curvature form can be equivalently written as

κ(q,q̇) = 1

‖η(q)‖ q̇ · d

dt

∣∣∣∣
t=0

η(q(t)) q̇ ∈ TqS.

The c-obstacle outward normal is given by η(q) =DXT
b (q)n(x), where DXb(q) =

[I −JRb] and n(x) is O’s outward unit normal at x (Theorem 2.5). Thus, we have to
compute the derivative:

d

dt

∣∣∣∣
t=0

η(q(t)) =DXT
b (q)

d

dt

∣∣∣∣
t=0

n(x(t)) +
(

d

dt

∣∣∣∣
t=0

DXT
b (q(t))

)
n(x).

Since B maintains continuous contact with the stationary body O along q(t), the contact
point x(t) moves along O’s boundary. Hence d

dt

∣∣
t=0 n(x(t)) = κOẋ in the first sum-

mand. Substituting ẋ = κB
κB+κO [I −JRbc]q̇ according to Proposition 2.6 gives

DXT
b (q)

d

dt

∣∣∣∣
t=0

n(x(t)) = κBκO
κB+κO

[
I

(−JRb)T

]
[I −JRbc] q̇

= κBκO
κB+κO

[
I −JRbc

(−JRb)T b · bc

]
q̇,

where we used the identities RT R = I and J T J = I . In the second summand, d
dt

∣∣
t=0

DXT
b (q) = [O −J d

dt

∣∣
t=0 (Rb)

]T
, where O is a 2 × 2 matrix of zeroes. Since B main-

tains continuous contact with O along q(t), the contact point satisfies the equation:
x(t) =R(θ(t))b(t) + d(t). Taking the time derivative of both sides: ẋ = d

dt
(Rb) + ḋ.

Substituting ẋ = κB
κB+κO [I −JRbc]q̇ according to Proposition 2.6 gives

d

dt
(Rb) = κB

κB+κO [I −JRbc] q̇ − ḋ = −1
κB+κO [κOI κBJRbc] q̇ q̇ = (ḋ, θ̇).

The second summand thus has the form:(
d
dt

∣∣∣
t=0

DXT
b

(q(t))
)
n(x) = 1

κB+κO

[
O

nT (x)J [κOI κBJRbc] q̇

]
= 1
κB+κO

[
O �0

κOnT (x)J −κBnT (x)Rbc

]
q̇,

where we used the identity J 2 =−I . Substituting for the two summands in the derivative
d
dt

∣∣
t=0 η(q(t)) gives

d

dt

∣∣∣∣
t=0

η(q(t)) = 1
κB+κO

[
O �0

κOnT (x)J −κBnT (x)Rbc

]
q̇

+ κBκO
κB+κO

[
I −JRbc

(−JRb)T b · bc

]
q̇

= 1
κB+κO

[
κBκOI −κBκOJRbc

κOnT (x)J + κBκO(−JRb)T −κBnT (x)Rbc + κBκOb · bc

]
q̇.
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The expression on the lower left simplifies as follows. Denote by n̄(b) the outward unit
normal to B at b, expressed in FB . Then n(x) =−R(θ)n̄(b), and, therefore,

κOnT (x)J + κBκO(−JRb)T = κBκO
(−rBn̄(b) + b)T RT J = κBκO(−JRbc)T,

where bc = b − rBn̄(b) is B’s center of curvature at x. The expression on the lower
right simplifies as follows:

−κBnT(x)Rbc+κBκOb·bc = (κORb−n(x))T(κBRbc) = (κORb−n(x))T(κBRb+n(x)),

where we substituted κBRbc = κBR(b − rBn̄(b)) = κBRb + n(x). Substituting the sim-
plified terms in the derivative d

dt

∣∣
t=0 η(q(t)) gives

d

dt

∣∣∣∣
t=0

η(q(t) = 1
κB+κO

[
κBκOI −κBκOJRbc

−κBκO(JRbc)T (κORb − n(x))T (κBRb + n(x))

]
q̇.

(2.10)
Pre-multiplying both sides of Eq. (2.10) by 1/‖η(q)‖ and by the row vector q̇ gives the
c-obstacle curvature form. �

Exercises

Section 2.1

Exercise 2.1: Justify the definition of SO(3) by the conditions RT R = I and det(R) = 1.

Solution: Write R = [c1 c2 c3]. The condition RT R = I ensures that ‖ci‖ = 1 while ci ·
cj = 0 for 1 ≤ i,j ≤ 3, implying that the columns of R describe an orthonormal triplet.
The condition det[c1 c2 c3] = 1 is equivalent to the condition (c1 × c2) · c3 = 1, implying
that the columns of R form a right-handed triplet. ◦
Exercise 2.2: The matrix group SO(3) forms a three-dimensional manifold topolog-
ically equivalent to the projective space RP 3. The points of RP 3 correspond to lines
passing through the origin in R

4. Explain why RP 3 is topologically equivalent to
a three-dimensional unit ball centered at the origin of R3, with antipodal points on its
bounding sphere identified.

Solution: The collection of lines passing through the origin in R
4 can be identified

with antipodal pairs of points on the unit three-dimensional sphere, S3, embedded in
R

4.5 The latter set can be identified with unique points on the upper hemisphere of
S3, together with antipodal pairs of points on the “equator” of S3, which is the unit
sphere S2. The upper hemisphere with its equator S2 is topologically equivalent to the
unit three-dimensional ball embedded in R

3, with antipodal points on its bounding unit
sphere identified. Note that Rodrigues’ formula parametrizes SO(3) in terms of a radius
π ball and its bounding sphere. ◦

5 When one uses quaternions, the global parametrization of SO(3) is in terms of S3 embedded in R
4.
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Exercise 2.3: When the matrix group SO(3) is viewed as a manifold, it contains two
classes of loops: those that can be contracted to a point and those that cannot be con-
tracted to a point within SO(3) (such a manifold is not simply connected). Identify the
non-shrinkable loops in SO(3), using the topological model obtained in the previous
exercise.

Solution: Rodrigues’ formula parametrizes SO(3) in terms of a radius π ball with
identified antipodal points on its bounding sphere. Consider a loop that starts at the
origin, moves to the radius-π sphere, and then wraps through the antipodal point back
to the origin. An attempt to contract this loop within the radius π ball would break it. ◦
Exercise 2.4: Verify that R(θ) in Rodrigues’ formula satisfies the conditions RT R = I

and det(R) = 1.

Exercise 2.5: Using Rodrigues’ formula, verify that θ= (θ1,θ2,θ3) ∈R
3 is an eigen-

vector of R(θ) ∈ SO(3), and v·(R(θ)v) = cos(‖θ‖) for any unit vector v ∈R
3 orthogonal

to θ.

Exercise 2.6: Show that Rodrigues’ formula gives the 2 × 2 orientation matrices when
θ̂= (0,0,1).

Exercise 2.7*: Verify that the rigid-body transformation, X(q,b) =R(θ)b + d, is the
general form of distance and orientation preserving embedding of a rigid body B in R

3.

Solution: This basic property is discussed in geometry texts, such as Rees’ Notes on
Geometry [11]. ◦

Section 2.2

Exercise 2.8: Explain the characterization of the c-obstacle boundary specified in
Lemma 2.2.

Exercise 2.9: Prove that when B and O are path-connected bodies, the c-obstacle CO is
also path connected.

Solution: A graphical proof of this property appears in Latombe [5](Proposition 2.6).

Exercise 2.10: A real-valued function forms a convex function when its epigraph (the
set of points on or above the graph of the function) forms a convex set. Prove that each
θ-slice of the c-obstacle associated with a convex object B and a convex stationary body
O is convex, based on the fact that dst(x,O) is a convex function when O is convex.

Exercise 2.11: Let B be a 2-D smooth convex body and O a stationary disc of radius r

and center x0. Prove that the boundary of CO is parametrized by the formula: ϕ(s,θ) =
(d(s,θ),θ), where d(s,θ) = x0 − R(θ)

(
β(s) + rJ β′(s)

)
.

Solution: Let θ0 be a particular orientation of B. When B traces O’s perimeter at a fixed
orientation θ0, the curve traced by B’s contact point in FW is x(s) =R(θ0)b(s) + d(s)
for s ∈R. The c-obstacle boundary is the curve traced by B’s origin during this motion:
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d(s) = x(s) − R(θ0)b(s). Since the contact normals of O and B are collinear at x(s),
O’s center point satisfies the equation, x0 = x(s) + rR(θ0)J β′(s), since J β′(s) points
into O. Substituting for x(s) in the expression for d(s) gives d(s) = x0−rR(θ0)J β′(s)−
R(θ0)b(s) = x0 − R(θ0)

(
b(s) + rJ β′(s)

)
. ◦

Exercise 2.12: Show that the boundary of the c-obstacle CO associated with 2-D smooth
convex bodies B and O forms a single smooth surface in B’s c-space.

Exercise 2.13: When B is a polygon and O a stationary disc, the boundary of CO
forms a piecewise smooth surface in B’s c-space. What types of two-dimensional
patches form the c-obstacle boundary? Write the (s,θ) parametrization of the patch
generated by an edge of B.

Solution: There are two types of smooth patches on the c-obstacle surface. An edge
patch, generated by an edge of B sliding on O, and a vertex patch, generated by a vertex
of B sliding on O. Let O have a radius r and center x0. Consider now an edge of B
having endpoints b1 and b2 and length L. Let v = (b2 − b1)/L be the edge’s direction.
Then β(s) = b1 +sv for 0 ≤ s ≤ L parametrizes the edge in FB . Since the edge can touch
O from the outside at any orientation θ, the parameter θ varies freely in R. Following
the solution approach of Exercise 2.11, d(s,θ) = x0 −R(θ)(b1 +sv+rJ v) for 0 ≤ s ≤ L

and θ ∈R. Note that d(s,θ) is linear in s, implying that the patch ϕ(s,θ) = (d(s,θ),θ)
forms a ruled surface in this case. ◦
Exercise 2.14*: Use the fact that Lipschitz continuous functions are piecewise smooth
to conclude that the c-obstacle boundary is a piecewise smooth surface.

Section 2.3

Exercise 2.15: Verify the formula for the 3-D Jacobian of the rigid-body transformation,
DXb(q) = d

dq
Xb(q), which appears in the proof of Proposition 2.4. Obtain the 2-D

Jacobian as a special case of the 3-D formula.

Exercise 2.16: Consider the c-obstacle normal, η(q), at a configuration q at which FB ’s
origin lies along the contact normal. Verify that the tangent plane to the c-obstacle
boundary, TqS , is vertical in this case, implying that instantaneous rotations of B about
FB ’s origin are tangent to S at q.

Section 2.4

Exercise 2.17: Prove that each fixed-θ slice of the c-obstacle boundary, S|θ , is convex
at q = (d,θ) when the contacting bodies are convex at x (Figure 2.5(a)).

Solution: Since rB(x) ≥ 0 and rO(x) ≥ 0 for convex bodies, rB(x)+rO(x) ≥ 0, implying
that S|θ is convex at q = (d,θ). ◦
Exercise 2.18: Prove that each fixed-θ slice of the c-obstacle boundary, S|θ , is concave
at q = (d,θ) when one of the contacting bodies is concave at x (Figure 2.5(b)).
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Solution: Suppose that the stationary body O is concave while the moving body B is
convex at the contact point x. Then rB(x) ≥ 0 while rO(x) < 0. Since |rO(x)| >rB(x)
(otherwise the bodies would interpenetrate), rB(x) + rO(x) < 0, implying that S|θ is
concave at q = (d,θ). ◦
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