Bull. Aust. Math. Soc. **94** (2016), 48–**53** doi:10.1017/S0004972715001355

GROUPS OF INFINITE RANK WITH NORMALITY CONDITIONS ON SUBGROUPS WITH SMALL NORMAL CLOSURE

ANNA VALENTINA DE LUCA[™] and GIOVANNA DI GRAZIA

(Received 7 September 2015; accepted 17 September 2015; first published online 11 November 2015)

Abstract

Groups of infinite rank in which every subgroup is either normal or contranormal are characterised in terms of their subgroups of infinite rank.

2010 *Mathematics subject classification*: primary 20E15; secondary 20F19. *Keywords and phrases*: infinite rank, contranormal subgroup, locally graded group.

1. Introduction

A group *G* is said to have *finite (Prüfer) rank r* if every finitely generated subgroup of *G* can be generated by at most *r* elements, and *r* is the least positive integer with this property; if such an *r* does not exist, we will say that the group *G* has *infinite rank*. The investigation of the influence on a (generalised) soluble group of the behaviour of its subgroups of infinite rank has been developed in a series of recent papers (see, for instance, [2–5, 7, 8]). The aim of this paper is to provide some new contributions to this topic, by considering groups *G* in which every subgroup of infinite rank is either normal or contranormal. A subgroup *H* of *G* is said to be *contranormal* in *G* if it is not contained in a proper normal subgroup of *G*, that is, if $H^G = G$ (see, for instance, [13]). Groups satisfying this property will be called \mathcal{AN}_{∞} -groups, in analogy with the symbol \mathcal{AN} used to denote the class of groups in which every nonnormal subgroup is contranormal. The structure of \mathcal{AN} -groups has been studied in [14].

We will work within the universe of strongly locally graded groups, a class of generalised soluble groups that can be defined as follows. Recall that a group *G* is *locally graded* if every finitely generated nontrivial subgroup of *G* contains a proper subgroup of finite index. Let \mathfrak{D} be the class of all periodic locally graded groups, and let $\overline{\mathfrak{D}}$ be the closure of \mathfrak{D} by the operators $\mathbf{\hat{P}}$, $\mathbf{\hat{P}}$, \mathbf{R} , \mathbf{L} (we use the first chapter of the monograph [12] as a general reference for definitions and properties of closure operations on group classes). It is easy to prove that any $\overline{\mathfrak{D}}$ -group is locally graded, any

^{© 2015} Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

locally (soluble-by-finite) group is a $\overline{\mathfrak{D}}$ -group and the class $\overline{\mathfrak{D}}$ is closed with respect to forming subgroups. Moreover, Černikov proved that every $\overline{\mathfrak{D}}$ -group of finite rank contains a locally soluble subgroup of finite index. Obviously, all residually finite groups belong to $\overline{\mathfrak{D}}$, and hence the consideration of any free nonabelian group shows that the class $\overline{\mathfrak{D}}$ is not closed with respect to homomorphic images. For this reason, it is better in some cases to replace $\overline{\mathfrak{D}}$ -groups by *strongly locally graded groups*, that is, groups in which every section belongs to $\overline{\mathfrak{D}}$. The class of strongly locally graded groups has been introduced in [5]. Most of our notation is standard and can be found in [11].

2. \mathcal{AN}_{∞} -groups

As in many problems concerning groups of infinite rank, the existence of a proper normal subgroup of infinite rank plays a crucial role. Recall that a group G is said to be a *Dedekind group* if all its subgroups are normal.

LEMMA 2.1. Let G be a strongly locally graded \mathcal{AN}_{∞} -group and let N be a proper normal subgroup of infinite rank of G. Then every subgroup of N is normal in G.

PROOF. Every subgroup of infinite rank of *N* is normal in *G* so, in particular, *N* is a Dedekind group (see [8, Theorem C]). Let *L* be a subgroup of finite rank of *N*. Since *N* is nilpotent, it contains a direct product $A_1 \times A_2$ such that both the subgroups A_1 and A_2 have infinite rank and $L \cap (A_1 \times A_2) = \{1\}$ (see [10]). Clearly the subgroups A_1 and A_2 are normal in *G*. Hence the subgroups of infinite rank LA_1 and LA_2 are normal in *G*.

Our next lemma shows, in particular, that any strongly locally graded group of infinite rank whose proper normal subgroups have finite rank must admit a simple homomorphic image of infinite rank.

LEMMA 2.2. Let G be a strongly locally graded group. Then every proper normal subgroup of G has finite rank if and only if the subgroup generated by all proper normal subgroups of G has finite rank.

PROOF. Suppose that *G* has infinite rank but all its proper normal subgroups have finite rank. Clearly *G* is perfect and so it is not locally nilpotent, by [1, Lemma 2.3]. Hence *G* contains a proper normal subgroup *N* such that G/N is a simple group of infinite rank (see [5, Lemma 2.4]). Therefore *N* has finite rank. Let *H* be any proper normal subgroup of *G*. Since *H* has finite rank, *HN* also has finite rank and so it is a proper subgroup of *G*. Then HN = N and it follows that $H \le N$ so that *N* is the subgroup generated by all proper normal subgroups of *G*.

The following result will be often used in our proofs.

LEMMA 2.3. Let G be a group containing an abelian subgroup A of infinite rank and let H be a subgroup of G such that H^G has finite rank. Then there exists a subgroup B of A such that B has infinite rank and $H^G B$ is a proper subgroup of G.

50

PROOF. Since H^G is a proper subgroup of *G*, we can take an element $x \in G \setminus H^G$. Then *A* contains a direct product $B \times C$ such that the subgroups *B* and *C* both have infinite rank and $BC \cap H^G(x) = \{1\}$. Now

$$H^{G}B \cap H^{G}\langle x \rangle = H^{G}(B \cap H^{G}\langle x \rangle) = H^{G},$$

so $x \notin H^G B$, and hence $H^G B$ is a proper subgroup of G.

PROPOSITION 2.4. Let G be a strongly locally graded \mathcal{AN}_{∞} -group. If G contains a proper normal subgroup of infinite rank, then G is an \mathcal{AN} -group.

PROOF. Let *N* be a proper normal subgroup of infinite rank of *G*. By Lemma 2.1, every subgroup of *N* is normal in *G* and so *N* is a Dedekind group. Let *H* be any subgroup of finite rank of *G* which is not contranormal, so that H^G is a proper normal subgroup of *G*. If H^G has infinite rank, then every subgroup of H^G is normal in *G* (by Lemma 2.1) and so *H* is normal in *G*. Suppose now that H^G has finite rank. Since *N* is a Dedekind group, it contains an abelian subgroup *A* of infinite rank. By Lemma 2.3, there exists $B \le A$ of infinite rank such that $H^G B$ is a proper normal subgroup of *G*. Therefore *H* is normal in *G* (by Lemma 2.1) and *G* is an \mathcal{AN} -group.

It is now easy to prove the main result of this section.

THEOREM 2.5. Let G be a locally soluble AN_{∞} -group. Then G is an AN-group.

PROOF. Since G is locally soluble, G contains a proper normal subgroup of infinite rank. Therefore G is an \mathcal{AN} -group, by Proposition 2.4.

3. SC_{∞} -groups

In this section we will consider groups G in which every subgroup of infinite rank is either subnormal or contranormal. Groups satisfying this property will be called SC_{∞} groups, in analogy with the symbol SC used to denote the class of groups in which every nonsubnormal subgroup is contranormal. This class is a natural extension of the class of \mathcal{AN} -groups, where the normality is replaced by subnormality. The structure of SC-groups has been studied in [6]. We need the following elementary property.

LEMMA 3.1. Let G be a locally (soluble-by-finite) SC_{∞} -group and let K be a proper subnormal subgroup of infinite rank of G. Then every subgroup of infinite rank of K is subnormal in G.

In particular, it follows that every proper subnormal subgroup of infinite rank of a SC_{∞} -group is soluble (see [9, Theorem 2]).

THEOREM 3.2. Let G be a torsion-free locally (soluble-by-finite) SC_{∞} -group. If G contains a proper normal subgroup of infinite rank, then G is an SC-group.

[3]

PROOF. Let *N* be a proper normal subgroup of *G* of infinite rank. Then *N* is soluble, by Lemma 3.1. Let *H* be any subgroup of *G* of finite rank such that *H* is not contranormal in *G*. Then H^G is a proper normal subgroup of *G*. Clearly, there exists a proper subnormal subgroup *K* of *G*, of infinite rank, which contains *H*. In fact, if H^G has infinite rank, we can put $K = H^G$; if H^G has finite rank, since *N* contains an abelian subgroup *A* of infinite rank, by Lemma 2.3 there exists $B \le A$ of infinite rank such that $H^G B$ is a proper subnormal subgroup of *G* and in this case we can chose $K = H^G B$. By Lemma 3.1, all subgroups of infinite rank of *K* are subnormal in *G* and hence *K* is nilpotent (by [9, Theorem 3]), so that *H* is subnormal in *G*.

Recall that the *periodic radical* of a group G is the largest periodic normal subgroup of G. Moreover, G is a *Baer group* if all its cyclic subgroups are subnormal. The following lemma will be used to prove the last theorem of the paper.

LEMMA 3.3. Let G be a locally (soluble-by-finite) SC_{∞} -group containing a proper normal subgroup N of infinite rank. If the periodic radical of G has infinite rank, then every subgroup of N is subnormal in G.

PROOF. By Lemma 3.1, every subgroup of infinite rank of N is subnormal in G. So N is soluble and, in particular, a Baer group (see [9, Theorem 2]). Let H be any subgroup of finite rank of N. We can suppose that the largest periodic subgroup K of N has finite rank (otherwise H is subnormal in G, by [9, Theorem 5]). Denote by T the periodic radical of G and consider the subgroup NT. If NT is a proper normal subgroup of G, then all subgroups of infinite rank of NT are subnormal in G and, since T has infinite rank, H is subnormal in NT (by [9, Theorem 5]), and so it is subnormal in G.

Suppose that G = NT. Clearly, K is a periodic normal subgroup of G and hence it is contained in T. On the other hand, $T \cap N$ is contained in K, so $T \cap N = K$. Hence

$$\frac{N}{T \cap N} \simeq \frac{NT}{T} = \frac{G}{T}$$

is a torsion-free group and so T is the set of all elements of finite order of G.

Now G/T has infinite rank and all its subgroups of infinite rank are subnormal, so (by [9, Theorem 3]) it is nilpotent. Hence HT is a proper subnormal subgroup of G. By Lemma 3.1, every subgroup of infinite rank of HT is subnormal, but T has infinite rank and so H is subnormal in HT, by [9, Theorem 5]. Therefore H is subnormal in G.

THEOREM 3.4. Let G be a locally (soluble-by-finite) SC_{∞} -group containing a proper normal subgroup of infinite rank. If the periodic radical of G has infinite rank, then G is an SC-group.

PROOF. Let *H* be any subgroup of *G* of finite rank which is not contranormal in *G*. Then H^G is a proper normal subgroup of *G*. If H^G has infinite rank, then *H* is subnormal in *G* by Lemma 3.3. Suppose now that H^G has finite rank. If *N* is a proper normal

subgroup of *G* of infinite rank, then *N* is soluble (by Lemma 3.1), and so it contains an abelian subgroup *A* of infinite rank. By Lemma 2.3, there exists $B \le A$ of infinite rank such that $H^G B$ is a proper subgroup of *G*. Therefore $H^G B$ is subnormal in *G* and, by Lemma 3.1, all its subgroups of infinite rank are subnormal in *G*, so that *H* is subnormal in *G*, by Lemma 3.3. This completes the proof of the theorem.

The hypotheses of Theorems 3.2 and 3.4 cannot be weakened. Kurdachenko and Smith have proved the existence of a metabelian locally nilpotent group of infinite rank such that the largest periodic subgroup has finite rank and all subgroups of infinite rank are subnormal, but there exists a nonsubnormal subgroup of finite rank (see [9, Theorem 4]). Obviously, this subgroup cannot even be contranormal.

References

- M. De Falco, F. de Giovanni and C. Musella, 'Groups with finitely many conjugacy classes of non-normal subgroups of infinite rank', *Collog. Math.* 131 (2013), 233–239.
- [2] M. De Falco, F. de Giovanni and C. Musella, 'Groups whose proper subgroups of infinite rank have a transitive normality relation', *Mediterr. J. Math.* 10 (2013), 1999–2006.
- [3] M. De Falco, F. de Giovanni, C. Musella and Y. P. Sysak, 'Groups of infinite rank in which normality is a transitive relation', *Glasg. Math. J.* 56 (2014), 387–393.
- [4] M. De Falco, F. de Giovanni, C. Musella and Y. P. Sysak, 'On metahamiltonian groups of infinite rank', J. Algebra 407 (2014), 135–148.
- [5] M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi, 'Groups with restrictions on subgroups of infinite rank', *Rev. Mat. Iberoam.* 30(2) (2014), 535–548.
- [6] M. De Falco, L. A. Kurdachenko and I. Ya. Subbotin, 'Groups with only abnormal and subnormal subgroups', *Atti Semin. Mat. Fis. Univ. Modena* 46 (1998), 435–442.
- [7] M. R. Dixon, M. J. Evans and H. Smith, 'Locally (soluble-by-finite) groups with all proper nonnilpotent subgroups of finite rank', J. Pure Appl. Algebra 135 (1999), 33–43.
- [8] M. J. Evans and Y. Kim, 'On groups in which every subgroup of infinite rank is subnormal of bounded defect', *Comm. Algebra* 32 (2004), 2547–2557.
- [9] L. A. Kurdachenko and H. Smith, 'Groups in which all subgroups of infinite rank are subnormal', *Glasg. Math. J.* 46 (2004), 83–89.
- [10] A. I. Malcev, 'On some classes of infinite soluble groups', *Mat. Sbornik N. S.* 28 (1951), 567–588;
 Amer. Math. Soc. Transl. Ser. 2 (1956), 1–21.
- [11] D. J. S. Robinson, A Course in the Theory of Groups (Springer, New York, 1996).
- [12] D. J. S. Robinson, *Finiteness Conditions and Generalized Soluble Group* (Springer, New York– Berlin, 1972).
- J. S. Rose, 'Finite soluble groups with pronormal system normalizers', *Proc. Lond. Math. Soc.* (3) 17 (1967), 447–469.
- [14] I. Ya. Subbotin, 'Groups with alternatively normal subgroups', Russian Math. 36 (1992), 87–89.

ANNA VALENTINA DE LUCA, Dipartimento di Matematica e Applicazioni,

Università di Napoli Federico II,

Complesso Universitario Monte S. Angelo,

Via Cintia, I 80126 Napoli, Italy

e-mail: annavalentina.deluca@unina.it

GIOVANNA DI GRAZIA, Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I 80126 Napoli, Italy e-mail: giovanna.digrazia@unina.it