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Abstract. We prove that almost all natural numbers satisfying certain necessary
congruence conditions can be written as the sum of two cubes of primes and two
cubes of P2-numbers, where, as usual, we call a natural number a P2-number when it
is a prime or the product of two primes. From this result we also deduce that every
sufficiently large integer can be written as the sum of eight cubes of P2-numbers.

1991 Mathematics Subject Classification. 11P05, 11P32, 11P55, 11N36.

1. Introduction. It is expected that sums of four cubes of primes represent all
sufficiently large integers that satisfy some condition arising naturally from an allied
congruence, while the corresponding statement for sums of three cubes of primes is
obviously false, because a trivial counting argument shows that for any given large
N, there are only O(N(log N)−3) natural numbers up to N that can be written in the
latter manner. The necessary condition for representing n as a sum of four cubes of
primes is that for each natural number q, there exists a solution of the congruence
n ≡ x3

1 + x3
2 + x3

3 + x3
4 (mod q) with each xj coprime to the modulus q. We write N for

the set of all the natural numbers n satisfying this condition. A modicum of elementary
calculations based on the Cauchy–Davenport theorem (see Lemma 8.7 of [5]) reveals
with little effort that N is the set of natural numbers n satisfying

n ≡ 0 (mod 2), n �≡ ±1, ±3 (mod 9) and n �≡ ±1 (mod 7).

Note that if a number n �∈ N can be written as a sum of four cubes of primes, then one
of the cubes in the representation must be that of 2, 3 or 7, and therefore, there are
at most O(N(log N)−3) natural numbers n ≤ N with n �∈ N that can be written in the
form under consideration.

Although it may be anticipated that all but finitely many numbers in N can
be written as the sum of four cubes of primes, we have hitherto been unable
to provide any non-trivial estimate even for the density of the exceptions to this
representation. However, Roth [8] could show that all natural numbers up to N with
o(N) possible exceptions can be written as the sum of three cubes of primes and one
cube of a natural number. A closer approximation to the Waring–Goldbach problem
was found by Brüdern [1] who applied a weighted sieve in combination with the
circle method and showed that all but o(N) numbers n ∈ N can be written in the
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form

n = p3
1 + p3

2 + p3
3 + x3, (1.1)

where p1, p2 and p3 are primes and x is a P4. Here we recall that a natural number is
called a Pr-number if it has at most r prime factors, counted with multiplicity. Kawada
[6] replaced P4 with P3 in the latter result, by altering the sieve procedure employed by
Brüdern [1], but it seems that the corresponding statement with a P2 is out of reach
of current technology. Thus, one may now ask if it is possible to replace P3 by P2 in
a similar statement, at the cost of allowing some of the primes to be P2-numbers, so
that one may establish that almost all numbers in N may be written as the sum of four
cubes of P2-numbers, a conclusion not available in the literature so far. This paper
gives an affirmative answer to this question.

THEOREM. Let E(N) be the number of n ∈ N not exceeding N that cannot be written
in the form

n = x3 + y3 + p3
1 + p3

2,

where p1 and p2 are primes and x and y are P2-numbers. Then, for N ≥ 2 and for any
given A > 0, one has

E(N) � N(log N)−A,

where the implicit constant depends on A.

As was already pointed out in the introduction of Brüdern [1], propositions of this
kind have close connections with representation by sums of eight cubes. For a large
natural number n, we put an = 1 or 2 according to n being even or odd and consider the
set Sn of the numbers of the form n − (anp1)3 − p3

2 − p3
3 − p3

4 with primes pj ≤ 1
3 n1/3.

Then, via a familiar argument and a careful examination of the congruence conditions,
we may deduce from Hua’s inequality (see Theorem 4 of [5]) that the cardinality of
Sn ∩ N is 
 n(log n)−C with some absolute constant C. Thus our theorem assures that
there is an element of Sn that can be written as the sum of two cubes of primes and
two cubes of P2-numbers, whence every large n may be written as

n = (anp1)3 + p3
2 + · · · + p3

6 + x3 + y3,

with primes pj and P2-numbers x and y. In particular, therefore, every sufficiently
large integer n can be written as the sum of eight cubes of P2-numbers, and this last
conclusion also appears to be new.

Throughout the paper, we use the lowercase letter p, with or without subscript, to
denote prime numbers, and the greatest common divisor of a and b is (a, b). Euler’s
totient function is ϕ(q), and we write e(α) = exp(2πiα). Euler’s constant is denoted
by γ .

2. Outline of the proof. We use the same notation as in Brüdern [1] whenever
possible. Let A be the given positive number appearing in the statement of our theorem,
and fix another positive real number θ . Let N be a sufficiently large real number,
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and put

P = 2
3

N1/3, Q = P5/6, L = (log P)9A+250 and D = Pθ .

We denote by �(x) the number of prime factors of x counted with multiplicity and
by �(z) the product of all primes less than z; �(z) = ∏

p<z p.
Then we write R(n) for the number of representations of n in the form

n = x3 + y3 + p3
1 + p3

2, (2.1)

with integers x, y and primes p1, p2 satisfying

P < x, y ≤ 2P, (xy,�(D1/3)) = 1, �(y) ≤ 2, Q < p1, p2 ≤ 2Q. (2.2)

Also we write R′(n) for the number of representations of n in the same form (2.1) with
(2.2) and the additional condition that �(x) ≥ 3.

Before we can state the results we shall show on R(n) and R′(n), we require the
following notation and facts, which are mostly recalled from Brüdern [1]:

v(β) =
∫ 2P

P
e(βt3)dt, w(β,	) =

∫ 2	

	

e(βt3)
log t

dt,

J(n) =
∫ LP−3

−LP−3
v(β)w(β, P)w(β, Q)2e(−nβ)dβ,

S(q, a) =
q∑

r=1

e
(ar3

q

)
, S∗(q, a) =

q∑
r=1

(r,q)=1

e
(ar3

q

)
,

Td(q, n) =
q∑

a=1
(a,q)=1

S(q, ad3)S∗(q, a)3

qϕ(q)3
e
(
−an

q

)
.

An upper bound for Td(q, n) is needed later, and we begin by deriving such an
estimate when q is prime. Indeed, when p is a prime with p � m, it follows easily from
the definition that Td(p, n) = Td(p, nm3), so we have

Td(p, n) = (p − 1)−1
p−1∑
m=1

Td(p, nm3)

= p−1(p − 1)−4
p−1∑
a=1

S(p, ad3)S∗(p, a)3S∗(p,−an). (2.3)

By Lemma 4.3 of Vaughan [9], on noting that S∗(p, a) = S(p, a) − 1, we see that
whenever p � a, one has

S(p, ad3) � p1/2(p, d)1/2, S∗(p,−an) � p1/2(p, n)1/2

and S∗(p, a) � p1/2. Therefore it follows from (2.3) that

Td(p, n) � p−3/2(p, n)1/2(p, d)1/2. (2.4)
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Next, provided that p � a, Lemma 8.3 of Hua [5] asserts that S∗(pl, a) = 0 when p �= 3
and l ≥ 2 or when p = 3 and l ≥ 3, so under these circumstances, one has Td(pl, n) =
0. Moreover, one may straightforwardly confirm that Td(q, n) is multiplicative with
respect to q (see Chapters 2 and 4 of [9], for example). Thus we may deduce from (2.4)
that for any fixed ε > 0, one has

Td(q, n) � qε−3/2(q, n)1/2(q, d)1/2. (2.5)

Now we define

Sd(n) =
∞∑

q=1

Td(q, n) and S(n) = S1(n),

noting that the absolute convergence of Sd(n) is assured by (2.5). We recall from Roth
[8] that for n ≥ 3 one has

(log log n)−c � S(n) � (log log n)c, (2.6)

with some positive constant c, so that we can define

ωn(d) = Sd(n)
S(n)

and Wn(z) =
∏
p<z

(
1 − ωn(p)

p

)
.

As regards the function ωn(d), moreover, Brüdern [1, see, in particular, Lemma 5 and
the arguments on pp. 469–470] showed that

0 ≤ ωn(p) < p and ωn(p) = 1 + O(p−1/2), (2.7)

for all primes p and n ∈ N (see also the allied comments on pp. 15–16 of [6]). The latter
fact allows us to apply the linear sieve in the final section. In particular it follows that
the inequality

Wn(z) 
 (log z)−1 (2.8)

holds uniformly in z > 2 and n ∈ N .
Next we note, as is mentioned in Brüdern (see (3.8) of [1]), that one may easily

confirm that

n2/9(log n)−3 � J(n) � n2/9(log n)−3, (2.9)

for all n ∈ (N, 2N], by the routine endgame techniques in the Hardy–Littlewood
method.

We are now in a position to formulate the main results on R(n) and R′(n).

LEMMA 1. Provided that θ < 1/3 and that N is sufficiently large, the inequality

R(n) > S(n)J(n)Wn(D1/3)
2eγ

3

(
1 + log

(3
θ

− 1
))(

log 2 − 10−4)
holds for all but O(N(log N)−A) values of n ∈ N ∩ (N, 2N].
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LEMMA 2. Provided that θ < 1/3 and that N is sufficiently large, the inequality

R′(n) < S(n)J(n)Wn(D1/3)
2eγ

3

( 3
θeγ

+ 10−4 − 1 − log
(3
θ

− 1
))

holds for all but O(N(log N)−A) values of n ∈ N ∩ (N, 2N].

We shall prove these lemmata in the final section, based on the work of Brüdern
[1]. Here, we close this section by observing that our theorem follows immediately from
these lemmata. We take θ = 30/91 for instance and confirm the numerical estimates(

1 + log
(

3
θ

− 1
))

(log 2 − 10−4) > 2.14

and

3
θeγ

+ 10−4 − 1 − log
(

3
θ

− 1
)

< 2.02.

Then, from Lemmata 1 and 2 and the lower bounds recorded in (2.6), (2.8) and (2.9),
we may deduce that for all but O(N(log N)−A) values of n ∈ N ∩ (N, 2N], one has
R(n) > R′(n), which obviously means that n can be written in the form (2.1) with
P2-numbers x, y and primes p1, p2. Hence we have

E(2N) − E(N) � N(log N)−A,

for every large N, and by summing up the last inequality for appropriate dyadic values
of N, we may establish our theorem. Thus, the remaining part of the paper is devoted
to the proofs of the above lemmata.

3. Preliminaries. In this section, we quote a couple of results from previous work.
Still following Brüdern [1], we introduce the exponential sums

fd(α) =
∑

P/d<x≤2P/d

e(d3x3α), h(α) =
∑

Q<p≤2Q

e(p3α),

when d is a natural number, and define the major and minor arcs, M and m, as follows:

M(q, a) = {α ∈ [0, 1); |α − a/q| ≤ LP−3}, M =
⋃
q≤L

q⋃
a=0

(a,q)=1

M(q, a),

m = [0, 1) \ M.

Further, when X is a finite set of integers, we write

g(α;X ) =
∑
x∈X

e(x3α).

We first quote a result on the minor-arc contribution from Brüdern [1], in the
following form.

LEMMA 3. Let ηd be complex numbers with |ηd | ≤ 1 andX be a set of natural numbers
belonging to (P, 2P], and suppose that θ < 1/3. Then, in the notation introduced above,
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one has ∣∣∣ ∑
d≤D

ηd

∫
m

fd(α)g(α;X )h(α)2e(−nα)dα

∣∣∣ ≤ P−1Q2(log P)−6,

for all but O(N(log N)−A) values of n ∈ (N, 2N].

Proof. The conclusion of the lemma follows immediately from the inequality

∑
N<n≤2N

∣∣∣∣∣
∑
d≤D

ηd

∫
m

fd(α)g(α;X )h(α)2e(−nα)dα

∣∣∣∣∣
2

� PQ4(log P)−A−12,

but this estimate is given by Lemma 4 of Brüdern [1]. In fact, in the latter lemma of
[1], the last inequality is established with taking X to be the set of all primes in (P, 2P],
and one may notice that the proof is valid for any set X of integers contained in (P, 2P]
without any alteration. Thus we obtain the desired conclusion.

Next, for each natural number r, we write

Pr(X, z) = {x ∈ �; X < x ≤ 2X, (x,�(z)) = 1, �(x) = r }
and define the functions Cr(u) for u > 0 inductively on r by

C1(u) =
{

1 (u ≥ 1),

0 (u < 1),
Cr(u) =

∫ max{u,r}

r

Cr−1(t − 1)
t − 1

dt (r ≥ 2).

Note in particular that C2(u) = log(u − 1) for u ≥ 2 and that Cr(u) = 0 for 0 < u < r.
Then, the behaviour of g(α;Pr(X, z)) on the major arcs M may be described by the
following lemma.

LEMMA 4. Suppose that z ≤ X ≤ P, log z 
 log P, and that α = a/q + β with
coprime integers q and a satisfying 1 ≤ q ≤ L and a real number β satisfying |β| ≤ LP−3.
Then for each natural number r, one has

g(α;Pr(X, z)) = ϕ(q)−1S∗(q, a)wr(β; X, z) + O(XL−5),

where the function wr(β; X, z) satisfies the formula

wr(β; X, z) = Cr

( log X
log z

)
w(β; X) + O(X(log X)−2), (3.1)

and, in particular, one has w1(β; X, z) = w(β; X).

Proof. This lemma may be deduced routinely from the Siegel–Walfisz theorem,
and for the details, refer to the proof of Lemma 7.15 of Hua [5] for r = 1 and that of
Lemma 2.2 of Brüdern and Kawada [2] for r ≥ 2. �

4. Application of the linear sieve. In order to prove Lemma 1, we apply the linear
sieve in the manner explained in Section 2 of Brüdern [1]. In the first phase of the
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proof, we put

Y = {y ∈ �; P < y ≤ 2P, (y,�(D1/3)) = 1, �(y) ≤ 2 },

write Rd(n) for the number of the representations of n in the form n = x3 + y3 + p3
1 + p3

2,
subject to

P < x ≤ 2P, x ≡ 0 (mod d), y ∈ Y, Q < p1, p2 ≤ 2Q,

and investigate the latter quantity via the Hardy–Littlewood method for natural
numbers d ≤ D and n ∈ (N, 2N]. To this end, we recall the notation introduced in
the preamble to Lemma 3 and define

Rd(n;B) =
∫
B

fd(α)g(α;Y)h(α)2e(−nα)dα,

so that we have

Rd(n) = Rd(n; [0, 1)) = Rd(n; M) + Rd(n; m). (4.1)

The major arc contribution Rd(n; M) may be evaluated by the standard strategy.
When α satisfies the conditions in the statement of Lemma 4, Theorem 4.1 of Vaughan
[9] yields the formula

fd(α) = (qd)−1S(q, ad3)v(β) + O(L).

Besides this formula, we apply Lemma 4 to

g(α;Y) =
2∑

r=1

g(α;Pr(P, D1/3)) and h(α) = g(α;P1(Q, Q)),

and then a straightforward argument reveals that

Rd(n; M) = d−1J1(n)
∑
q≤L

Td(q, n) + O(d−1P−1Q2L−1), (4.2)

for d ≤ D, where

J1(n) =
∫ LP3

−LP−3
v(β)(w(β; P) + w2(β; P, D1/3))w(β; Q)2e(−nβ)dβ.

By using (3.1), the well-known inequality v(β) � P(1 + P3|β|)−1 and the trivial bound
w(β; X) � X/ log X for X ≥ 2 and also by recalling (2.9), we see here that

J1(n) =
(

1 + log
(3
θ

− 1
))

J(n) + O
(∫ LP−3

0

P2Q2(log P)−4

1 + P3β
dβ

)

=
(

1 + log
(3
θ

− 1
)

+ O
( log L

log P

))
J(n), (4.3)

for N < n ≤ 2N.
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Also, by appealing to (2.5), we observe that

Sd(n) −
∑
q≤L

Td(q, n) �
∑
q>L

q−4/3(q, nd) � τ (nd)L−1/3,

where τ (m) denotes the divisor function. Combining this estimate with (2.9), (4.2) and
(4.3), we deduce from (4.1) that one has

Rd(n) = ωn(d)
d

S(n)J1(n) + Rd(n; m) + O
(τ (n)τ (d)Q2

dPL1/3

)
, (4.4)

for d ≤ D and N < n ≤ 2N.
By (4.4) and (2.7), we may apply the linear sieve to estimate R(n) for n ∈ N and

actually obtain the lower bound

R(n) > S(n)J1(n)Wn(D1/3)
(2eγ

3
log 2 + O((log L)−3/10)

)
+

∑
d≤D

ηdRd(n; m) + O(τ (n)P−1Q2L−1/3(log D)2), (4.5)

with suitable sieving weights ηd satisfying |ηd | ≤ 1 (see, for example, Theorem 9 of [7]
or Corollary 1.1 of [3, Section 4.4.1]).

The well-known estimate
∑

n≤2N τ (n) � N log N implies that for all n ∈ (N, 2N]
with O(N(log N)−A) possible exceptions, one has τ (n) ≤ (log N)A+1, in which case the
last term on the right-hand side of (4.5) is O(P−1Q2L−2/9). We also know, by Lemma
3, that the second term on the right-hand side of (4.5) is O(P−1Q2(log P)−6) for all but
O(N(log N)−A) values of n ∈ (N, 2N], provided that θ < 1/3. Hence, Lemma 1 is now
immediate from (4.5), in view of (2.6), (2.8), (2.9) and (4.3).

We turn to the proof of Lemma 2. We define the set

X = {x ∈ �; P < x ≤ 2P, (x,�(D1/3)) = 1, �(x) ≥ 3 }

and write R′′(n) for the number of representations of n in the form

n = x3 + y3 + p3
1 + p3

2, (4.6)

subject to

x ∈ X , P < y ≤ 2P, (y,�(D1/3)) = 1, Q < p1, p2 ≤ 2Q.

We note that R′(n) is then the number of representations counted by R′′(n) that satisfy
the additional condition �(y) ≤ 2, so that trivially one has

R′(n) ≤ R′′(n). (4.7)

We may obtain an upper bound for R′′(n) by applying the linear sieve in a manner
similar to our argument on R(n) above.

Now, let R′′
d(n) be the number of representations of n in the form (4.6) subject to

x ∈ X , P < y ≤ 2P, y ≡ 0 (mod d), Q < p1, p2 ≤ 2Q.
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In order to apply the circle method to R′′
d(n) as before, we notice that

g(α;X ) =
∑
r≥3

g(α;Pr(P, D1/3)),

where the sum on the right-hand side is practically finite because Pr(P, D1/3) is empty
if Dr/3 > 2P. Thus we can grasp the behaviour of g(α;X ) on M by Lemma 4. Then,
substituting g(α;X ) for g(α;Y) in our previous argument leading to (4.4), we obtain a
formula for R′′

d(n) similar to (4.4) in which J1(n) and Rd(n; m) are replaced respectively
by

J2(n) =
∫ LP3

−LP−3
v(β)

∑
r≥3

wr(β; P, D1/3)w(β; Q)2e(−nβ)dβ

and

R′′
d(n; m) =

∫
m

fd(α)g(α;X )h(α)2e(−nα)dα.

As in (4.3), we derive by (3.1) that for N < n ≤ 2N one has

J2(n) =
(∑

r≥3

Cr(3/θ ) + O((log L)/(log P))
)

J(n). (4.8)

By virtue of (2.7), the formula for R′′
d(n) corresponding to (4.4) allows us to apply

the linear sieve to estimate R′′(n) for n ∈ N , and consequently we obtain the inequality

R′′(n) < S(n)J2(n)Wn(D1/3)
(2eγ

3
+ O((log L)−3/10)

)
+

∑
d≤D

η′
dR′′

d(n; m) + O(τ (n)P−1Q2L−1/3(log D)2), (4.9)

with suitable sieving weights η′
d satisfying |η′

d | ≤ 1 (see Theorem 9 of [7] or Corollary
1.1 of [3, Section 4.4.1]). As in the final phase of the proof of Lemma 1 above, we find
that the second and third terms on the right-hand side of (4.9) are O(P−1Q2(log P)−6)
for all n ∈ (N, 2N] with O(N(log N)−A) possible exceptions, provided that θ < 1/3, by
Lemma 3 and plain examination of the divisor function. Hence, in view of (2.6), (2.8),
(2.9) and (4.8), Lemma 2 would follow immediately from (4.9) if we could show for
θ < 1/3 that

∑
r≥3

Cr(3/θ ) <
3

θeγ
+ 10−4 − 1 − log

(3
θ

− 1
)
. (4.10)

Estimates useful to confirming (4.10) are found in Grupp and Richert [4]. We first
remark that the functions Ir(u) in [4] and our functions Cr(u) defined in the preamble
to Lemma 4 satisfy the relation uIr(u) = Cr(u) for u ≥ 1. Then, for the functions

f (u) = 2eγ
∑
k≥1

I2k(u) and F(u) = 2eγ
∑
k≥1

I2k−1(u),
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Grupp and Richert [4] showed the inequalities

f (u) < 1 and F(u) < 1 + 2eγ �(u + 1)−1,

where �(u) is the gamma function (see p. 212 of [4]). Therefore we have

∑
r≥1

Cr(u) = f (u) + F(u)
2eγ

u < e−γ u + �(u)−1,

from which we can easily derive (4.10), by substituting u = 3/θ , noting that �(u) ≥
40320 for u ≥ 9 and recalling that C1(u) = 1 and C2(u) = log(u − 1) for u ≥ 2. Now we
complete the proof of Lemma 2, as well as that of the theorem.
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Ann. Scient. École. Norm. Sup. 28(4) (1995), 461–476.
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