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Observations, mainly of outbursts in dwarf novae, imply that the anomalous viscosity in
highly ionized accretion discs is magnetic in origin and requires that the plasma β ∼ 1.
Until now, most simulations of the magnetic dynamo in accretion discs have used a local
approximation (known as the shearing box). While these simulations demonstrate the
possibility of a self-sustaining dynamo, the magnetic activity generated in these models
saturates at β � 1. This long-standing discrepancy has previously been attributed to the
local approximation itself. There have been recent attempts at simulating magnetic activity
in global accretion discs with parameters relevant to the dwarf novae. These too find values
of β � 1. We speculate that the tension between these models and the observations may
be caused by numerical magnetic diffusivity. As a pedagogical example, we present exact
time-dependent solutions for the evolution of weak magnetic fields in an incompressible
fluid subject to linear shear and magnetic diffusivity. We find that the maximum factor
by which the initial magnetic energy can be increased depends on the magnetic Reynolds
number as R2/3

m . We estimate that current global numerical simulations of dwarf nova
discs have numerical magnetic Reynolds numbers around six orders of magnitude less
than the physical value found in dwarf nova discs of Rm ∼ 1010. We suggest that, given
the current limitations on computing power, expecting to be able to compute realistic
dynamo action in observable accretion discs using numerical MHD is, for the time being,
a step too far.

Key words: astrophysical plasmas

1. Introduction

Fluid-based magnetic dynamos can be thought of as coming in two flavours: small
scale and large scale. Both types can be found in different astrophysical contexts (see
the reviews by Brandenburg & Subramanian 2005; Rincon 2019; Schekochihin 2022).
Small-scale dynamos tend to produce magnetic fields that are correlated on the length

† Email address for correspondence: c.j.nixon@leeds.ac.uk

https://doi.org/10.1017/S002237782300140X Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2137-4146
https://orcid.org/0000-0001-9908-626X
https://orcid.org/0000-0002-1465-4780
mailto:c.j.nixon@leeds.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S002237782300140X&domain=pdf
https://doi.org/10.1017/S002237782300140X


2 C.J. Nixon, C.C.T. Pringle and J.E. Pringle

scale, l0, (or smaller) of the driving turbulence, such as is seen in models of the internal
dynamics of molecular clouds (e.g. Padoan et al. 2014; Federrath 2016) or in cosmological
simulations (e.g. Martin-Alvarez et al. 2021. Large-scale dynamos typically comprise
small-scale turbulence (scale l0) set within a large scale shear flow (scale L � l0) and show
large-scale spatial coherence. Obvious examples of these are the dynamo responsible for
the solar cycle and the dynamo thought to be responsible for driving the accretion flow
within accretion discs. In the former, the large-scale flow is the differential rotation of the
sun and the turbulence is driven by convective motions. In the latter, the large-scale flow
is the Keplerian differential flow of the disc and the small-scale turbulence is due to the
magneto-rotational instability (MRI; Brandenburg et al. 1995; Balbus & Hawley 1998),
perhaps enhanced by magnetic buoyancy (Tout & Pringle 1992; Johansen & Levin 2008).

Due to the complexity of the resulting dynamics, particularly in the nonlinear, turbulent
phase, it is routine to resort to numerical simulations to gain an understanding of the
flows generated from such dynamo action. For many years, it was not straightforward to
resolve the length scales associated with the growth of the MRI in global accretion disc
simulations, and it is therefore necessary to employ a local, or ‘shearing box’, approach to
study the dynamics in a simplified framework with less computational power required to
achieve high resolution. However, the shearing box approach does not reach the level of
dynamo activity that is required to explain the observations. King, Pringle & Livio (2007)
note that the shearing box approach necessarily restricts the available modes that can be
produced in the flow and, in particular, low-m modes (with m �= 0) are not captured (see
also, for example, the discussion by Parkin & Bicknell 2013). There also remain questions
regarding the convergence of such models when they are extended to very high resolution
(Bodo et al. 2014). We do not pursue such arguments here.

The discrepancy in the strength of the dynamo activity in shearing box models and
observed accretion discs motivates the development of global MHD models of accretion
discs. However, the computational demands of global models mean that the spatial
resolution, typically measured as a fraction of the local disc scale height or the wavelengths
of the fastest growing modes, may not be sufficient. In particular, insufficient resolution
may imply strong levels of numerical magnetic diffusivity compared with the physical
diffusivity expected in the simulated systems. If the numerical diffusivity is far greater
than the expected physical diffusivity, then it seems reasonable to expect that this will
have implications for the types (strengths and geometries) of fields that are produced in
the simulations compared with those produced in real systems (cf. Tobias & Cattaneo
2013).

In § 2, we briefly describe the relevant background to accretion disc physics and the
relevant observed properties of such discs. In § 3, we present what is known about the
properties of the disc dynamo as can be deduced from observations of the discs in dwarf
novae (a particularly well-studied subclass of cataclysmic variable stars in which a white
dwarf accretes from a companion star). The discs in the outburst state of these objects
are those for which we have the best understanding of the properties of the so-called
anomalous viscosity. In these objects, if this viscosity is magnetohydrodynamic in origin,
then the observations imply that the magnetic fields are strong (plasma β ∼ 1). In § 4,
we discuss the numerical simulations of the MHD properties of accretion discs. We note
that in the usual shearing box approximation, it has long been known that the predicted
magnetic field strengths are too low (β � 1) to satisfy the observations. It is possible
that here the problem lies with the shearing box approximation itself, although we must
remark that there is no evidence that this is the case. We therefore consider some recent
numerical simulations of global accretion discs, but we note that in these too, the field
strengths that are found are similarly small. In § 5, we speculate that for the global disc
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simulations, the numerical magnetic diffusivity may be too large to allow the required
growth of the field. To illustrate this, in § 6, we present calculations of the evolution of
magnetic fields embedded in a fluid subject to an inexorable shear. We vary the level of
diffusivity to illuminate the effect of it on the maximum magnetic field growth that is
achievable. We highlight the limitations if excessive diffusion is included either explicitly
or through numerical effects. Finally, we discuss our results in the context of some of the
global simulations presented in the literature and draw conclusions in § 7.

2. Accretion discs

The theory of accretion discs is set out by Shakura & Sunyaev (1973, see also Pringle
1981; Frank, King & Raine 2002). The basic disc flow, in cylindrical polar (R, φ, z)
coordinates, is in the azimuthal direction,

uφ =
√

GM/R, (2.1)

where M is the central gravitating mass. The disc thickness or scale height, H, in the
z-direction is given by

H/R ≈ cs/uφ, (2.2)

where cs is the local sound speed. For the usual thin disc approximation, we require that
H/R � 1. Thus, the azimuthal motion is supersonic, with Mach number ∼ R/H. Inflow
(i.e. accretion) through the disc requires the action of a so-called ‘anomalous viscosity’
which taps the azimuthal (Rφ) shear and transfers angular momentum outwards and
mass inwards. The viscosity is generally assumed to be caused by small-scale, l0 ≤ H,
magnetohydrodynamic turbulence within the disc, and it is the maintenance of this
turbulence that requires dynamo action. Shakura & Sunyaev (1973) introduced a parameter
α which is a dimensionless measure of the size of the anomalous viscosity – essentially
a dimensionless measure of the z-averaged Rφ-stress. Thus, the (z-averaged) effective
kinematic viscosity of the disc may be written as

ν ≈ αcsH ≈ αH2Ω, (2.3)

where
Ω = uφ/R =

√
GM/R3 (2.4)

is the angular velocity at radius R. For MHD turbulence, they note that

α ≈ 〈BRBφ〉/ρc2
s (2.5)

(in appropriate units), where ρ is the disc density. They also introduced physical arguments
as to why we might expect α ≤ 1 (see also the discussion by Martin et al. 2019). In terms
of α, the radial accretion flow velocity is

uR ∼ −α(H/R)cs (2.6)

(where the minus sign indicates inward flow) and is subsonic.

3. The disc dynamo – observable properties

The stars for which we have the most comprehensive understanding of the properties
(thermal, magnetic) of the dynamo fluid, and for which we have the best handle on
the global properties of the dynamo itself, are the subclass of the cataclysmic variable
stars, known as dwarf novae. The cataclysmic variables are binary stars, consisting of a
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low-mass, solar-type star which is losing its outer layers to its companion. The companion
is a more massive, but more compact star, approximately the size of the Earth, known
as a white dwarf (Warner 1995). Because of angular momentum considerations, the flow
takes the form of an accretion disc (see, for example, Pringle & Wade 1985). The dwarf
novae show two states: (i) a bright outburst state in which the mass accretion rate onto the
white dwarf is high and the disc is highly ionised, with low magnetic diffusivity; and (ii)
a dim quiescent state in which the accretion rate is low, the disc ionisation is low and the
magnetic diffusivity relatively high.

3.1. Hot, highly ionised discs
The evolution of the surface density of an accretion disc is described by a diffusion
equation, with the diffusion parameter proportional to the disc kinematic viscosity, ν,
that is, proportional to the Shakura–Sunyaev parameter α (see, for example, Lynden-Bell
& Pringle 1974; Pringle 1981). During the decay from a dwarf nova outburst, the mass
drains from the disc onto the central white dwarf. The time scale for this decay depends
directly on the value of α. The decay time scale of the outburst allows for a measurement
of α in the hot state from modelling the outburst light curve. The disc size is known
from the properties of the system and the disc temperature is obtained from the spectra.
A simple calculation by Bath & Pringle (1981) suggested that α ≈ 1. Since then, there
has been extensive and more detailed modelling of dwarf nova outburst behaviour, and
all models point to relatively large values of α. The models imply that α ≈ 0.2–0.3 (e.g.
Pringle, Verbunt & Wade 1986; Smak 1998, 1999; Buat-Ménard, Hameury & Lasota 2001;
Cannizzo 2001a,b; Schreiber, Hameury & Lasota 2003, 2004; Balman & Revnivtsev 2012;
Kotko & Lasota 2012; Coleman et al. 2016).

It should be noted that these measurements are in line with the values of α deduced
from time-dependent disc behaviour in other systems with highly ionised accretion discs,
for example, the soft X-ray transients and the Be stars (see the discussion by Martin et al.
2019).

If, as we assume here, the dominant stresses that give rise to α are magnetic, this implies
(see (2.5)) that the magnetic pressure in the disc is comparable to the gas pressure. Indeed,
formally, since for the MHD dynamo driven by (Rφ) shear we expect that 〈B2

φ〉 � 〈B2
R〉, it

is evident that we require 〈B2
φ〉/ρc2

s � 1. In other words, the observations seem to imply
that the β parameter of the disc plasma is such that β � 1.

From the observed disc properties, we may estimate the physical value of the magnetic
diffusivity, η, and hence the magnetic Reynolds number defined as

Rm = csH/η, (3.1)

at a typical point in the plane of a dwarf nova accretion disc in outburst.
We take the central star to have a mass M = 1M
 = 2 × 1033 g, and consider a typical

radius in the disc, R = 1010 cm. For a highly ionised disc, in the bright state of a dwarf
nova, we take a typical accretion rate of Ṁ = 1018 g s−1 and we take the dimensionless
viscosity parameter to be α = 0.3 in line with observations.

We evaluate Ω0 as

Ω0 =
(

GM
R3

)1/2

= 1.2 × 10−2 radian s−1. (3.2)

For the magnetic diffusivity, we assume the usual Spitzer value of η = 3.5 ×
1012 T−3/2 cm2 s−1 (Spitzer 1962; Potter & Balbus 2014). From Frank et al. (2002), we
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find that the temperature in the plane of the disc is Tc = 7.1 × 104 K. Thus, we have
that η = 1.9 × 105 cm2 s−1. Similarly, we find that the disc scale height is given by
H = 3.8 × 108 cm, so that the disc opening angle is H/R = 0.038.

From these, we are able to estimate a typical magnetic Reynolds number as

Rm = 9.1 × 109. (3.3)

In summary, we note that, in these discs, whatever the origin of the turbulent behaviour
within the disc that gives rise to the observed effective viscosity, whether it is purely
hydrodynamic or (as is generally believed) magnetohydrodynamic, the mechanism that
produces it is able to drive the fluid motions only up to, or close to, the sound speed. The
fact that α is always found to be close to this limit (for these discs) implies that whatever
instability might give rise to the driving mechanism for the turbulence, the turbulent
velocities grow until they become trans-sonic.

Thus, in agreement with the original conjecture of Shakura & Sunyaev (1973),
saturation of the turbulence is achieved once the motions become trans-sonic. This must
be the result of the fact that once the motions approach the sound speed, the nature of the
turbulence changes in a fundamental fashion. In line with the ideas of Shakura & Sunyaev
(1973, 1976), it is evident that the change in the nature of the turbulence might occur for
one, or both, of two physical reasons. First, in the case of hydrodynamic turbulence, as the
turbulence becomes trans-sonic, shocks begin to dominate the dissipative process. Second,
in the case of MHD turbulence, once the Alfvén speed approaches the sound speed (i.e.
once β ≈ 1), not only do the turbulent velocities become trans-sonic, but, in addition,
the time scale for the Parker instability (leading to loss of magnetic flux from the disc)
becomes comparable with the shearing time scale (growth time scale for magnetic flux)
≈ 1/Ω (cf. Tout & Pringle 1992).

The corollary of this basic finding is that numerical simulations of disc turbulence (for
highly ionised discs) which do not find that the strength of the turbulence grows until
limited by the sound speed (and which therefore do not find the large values of α implied
by the observational data) cannot provide an adequate description of observed accretion
disc dynamos. It seems likely that such models must be missing some fundamental physics
(King et al. 2007).

3.2. Cool discs
The value of α in the low state dwarf nova accretion disc is difficult to determine, as the
disc in that state shows little in the way of time evolution, and what time evolution there is
appears to be dominated by the continued addition of mass to the disc from the companion
star. In addition, estimates of α in the quiescent disc require modelling of the complete
outburst cycle. However, all models of dwarf nova outburst cycles seem to require that in
the quiescent disc, the value of α is less than that found in the outburst disc by at least
a factor of ≈10 (Meyer & Meyer-Hofmeister 1983; Pringle et al. 1986; Cannizzo 1993,
2001b; Coleman et al. 2016).

These findings are in line with the idea (suggested for the dwarf novae quiescent discs
by Gammie & Menou 1998) that the driving force for MHD disc turbulence, namely the
MRI, is suppressed once the magnetic diffusivity becomes too large. A number of (local,
shearing box) simulations suggest that the MRI becomes inoperative once Rm � 103–104

(Hawley, Gammie & Balbus 1996; Stone et al. 1996; Fleming, Stone & Hawley 2000;
Davis, Stone & Pessah 2010). These results strengthen the argument that the anomalous
viscosity (at least in dwarf novae) is an MHD effect (Martin et al. 2019).
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4. The disc dynamo – numerical simulations
4.1. Local simulations – the shearing box

Most simulations of disc dynamos make use of the shearing box approximation (Hawley,
Gammie & Balbus 1995). Here the computational domain is a Cartesian box of size ∼H �
R co-moving with the fluid at some fixed radius, R0, where the angular velocity is Ω0.
Thus, (R, φ, z) → (x = R − R0, y = φ − Ω0t, z). The base flow in the box is a linear shear
uy = U′x, where in a Keplerian disc, U′ = 3

2Ω0 and the box rotates with angular velocity
Ω0. In the simulations, the disc may, or may not, be stratified in the z−direction.

Typically, the simulations start with a small initial field. For example, Brandenburg et al.
(1995) and Hawley et al. (1996) take an initial poloidal field, with zero net flux, of the form
Bz ∝ sin kx. The early results are summarised in a review by Balbus & Hawley (1998).
The most important finding was that with small initial seed fields, a steady, turbulent
MHD disc dynamo could occur. However, for seed fields which had no externally imposed
net field (i.e. for those simulations relevant to astrophysical discs), the magnitude of the
Rφ magnetic stress was around α ∼ 0.01, approximately an order of magnitude smaller
than that required by observations. Balbus & Hawley (1998) conceded that while the
dynamo saturation with α ≈ 1 postulated by Shakura & Sunyaev (1973) was an attractive
physical possibility, this was not what was found in the simulations. They concluded,
‘It appears likely, therefore, that there is a dynamo regime that is characterised by
unstable growth continuously balancing dissipation scale losses. This leads to subthermal
magnetic fields and a dimensionless stress tensor of order α ≈ 0.01. Whether there
are other modes of dynamo operation that arise naturally in accretion disks – at
different magnetic Prandtl numbers, for example – is a fascinating and completely open
question.’

In the 25 years or so since then, there have been many shearing box simulations of
the accretion disc dynamo, using a variety of codes both grid-based and spectral, and a
variety of physical parameters, with steadily increasing sophistication and resolution. The
net result has been a much deeper understanding of the inner workings of the shearing box
dynamo process, but the conclusions are unchanged. The simulations that assume zero
externally imposed net magnetic flux typically find values of α at most around α ≈ 0.01
and often less. For example, Fromang et al. (2007) using both grid-based and spectral
codes obtained α ≈ 0.001 in their best resolved simulations, Heinemann & Papaloizou
(2009) use a spectral code and find α ≈ 0.005, Davis et al. (2010) using a grid-based code
find α ≈ 0.01, Salvesen et al. (2016) using a grid-based code find α ≈ 0.01, Walker, Lesur
& Boldyrev (2016) using a spectral code find that with no net imposed flux dynamo, the
activity decays, so that α = 0, and Mamatsashvili et al. (2020) using a spectral code find
α ≈ 0.006–0.01. It is clear that such low values are not in agreement with observations.
However, there is a discussion of this tension by Shi, Stone & Huang (2016) who present
grid-based shearing box simulations. There they find that higher values (α ≈ 0.1) can
be obtained in an unstratified shearing box with an unusually large height-to-width ratio.
Whether these larger values of alpha in tall, unstratified boxes carries over to the more
realistic stratified case has been questioned (e.g. Ryan et al. 2017).

In summary, while such numerical simulations have successfully demonstrated the
existence of a self-sustaining disc dynamo, they have not been able to produce magnetic
fields of sufficient magnitude to agree with the observational data. Typically, they produce
values of α ≈ 0.01 or less, much smaller than the values of α ≈ 0.2–0.3 required to
account for the observational data. So far, there is no explanation of why the value of
α ≈ 0.01 emerges from the majority of the shearing box dynamo simulations. A physical
understanding of what gives rise to the saturation of the dynamo process in numerical
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simulations would be of great value in understanding this difference between simulated
and observed accretion discs.

4.2. Global simulations
King et al. (2007) drew attention to the discrepancy between the magnitudes of the
disc magnetic fields that are required by observations and those that can be achieved
in numerical, shearing box simulations. They discussed various reasons as to why the
numerical simulations at that time might be inadequate. They noted that the shearing
box approximation limits azimuthal structures to azimuthal wavenumbers m = 0 or m �
R/H � 1, and suggested that this might play a role in suppressing large-scale azimuthal
fields. For example, Tout & Pringle (1992) note that in their semi-analytic dynamo model,
which produces fields with β ∼ 1, magnetic buoyancy plays an important role in the
conversion of toroidal field to poloidal and acts at toroidal wavelengths λφ � H. Thus,
it may be that it is the localisation of dynamo activity in the shearing box approximation
that is responsible for the small values of α that are obtained in such simulations. We
therefore need to consider global simulations.

We consider two recent global, grid-based, numerical simulations presented by Pjanka
& Stone (2020) and Oyang, Jiang & Blaes (2021), which are specifically designed
to simulate the accretion discs in cataclysmic variables. Our main interest here is the
numerical diffusivity present in such simulations. In both of these simulations, material is
introduced at the outer edge of the disc (to model the stream of material from the low mass
star) and is taken to contain small loops (size ∼H) of magnetic flux, of magnitude β � 1
which can then initialise dynamo action. This seems reasonable, since the low mass star
is sun-like and so presumably has surface magnetic fields (Livio & Pringle 1994). Oyang
et al. (2021) also experiment with initially introducing small loops of flux at all radii in
the disc.

The disc thicknesses in dwarf novae are typically such that H/R ≈ 0.02–0.05 (see, for
example, Frank et al. 2002). The thinner disc in the simulations of Pjanka & Stone (2020)
has H/R = 0.1 and for that disc, they find in the body of the disc that α ≈ 0.003. The disc
of Oyang et al. (2021) has H/R = 0.044 and they find values of α ≈ 0.01. Thus, neither
of these global disc dynamo simulations is capable of accounting for the observed values
of α.

5. What is missing?

We have seen that the shearing box approach does not seem able to produce a saturation
level to dynamo action which involves strong enough magnetic fields to agree with
the observational constraints. We have noted that one possibility for this might be that
the shearing box approximation itself is too small scale (particularly in the azimuthal
direction) to be able to provide an accurate description of dynamo activity in a global
accretion disc.

However, we have also noted that those global disc simulations presented so far are also
unable to produce the necessary saturation level to explain the observed dynamo action.
We speculate here that in the global models, this might come about for a different reason.
The dominant physical process by which shear energy is converted into magnetic energy
in an accretion disc is by the Rφ shear acting on the radial BR field and converting it to
an azimuthal field, Bφ . It is this process that ultimately drives the dynamo. If that physical
process is artificially restricted, for example, by too high a magnetic diffusivity, then the
saturation level of dynamo activity might also be restricted. (We thank one of the referees
for pointing out that this consideration may also be an issue for shearing box simulations.)
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Numerical simulations are, of course, an approximation to reality. One way in which
numerical simulations differ from reality is the inescapable inclusion of numerical
dissipation, e.g. numerical viscosity and numerical magnetic diffusivity that are present
in all numerical calculations (either explicitly as additional terms in the equations of
motion or implicitly through e.g. truncation error at the grid scale). Because of these
effects, it is not possible to provide a solution to the equations of inviscid hydrodynamics
with a numerical approach, as the calculation will necessarily involve some level of
numerical viscosity. Similarly, it is not possible to solve the equations of ideal MHD
with a numerical approach, as the calculation will necessarily involve numerical magnetic
diffusivity. However, it seems to be typical to ‘solve the equations of ideal MHD’ with
a numerical code without providing discussion on, or estimates of, the magnitude of
these numerical effects (see, for example, Pjanka & Stone 2020; Oyang et al. 2021).
(Note that, in contrast, e.g. Fromang et al. (2007), Walker et al. (2016), Gogichaishvili
et al. (2017) and Mamatsashvili et al. (2020) use spectral codes in which they explicitly
include viscosity and magnetic diffusivity of sufficient magnitude that their effects can
be resolved numerically. However, such spectral codes are not readily applicable to global
disc simulations. See also, e.g. Fromang et al. (2007) for the use of explicit dissipation
in non-spectral approaches.) It is of course possible to make estimates of the numerical
viscosity and magnetic diffusivity. The magnitudes of these depend typically on the sizes
of the grid cells, the time steps, and the orders of the numerical code in both space and
time (see, for example, Rembiasz et al. 2017). However, it is rare that sufficient information
is presented for such estimates to be made by the reader.

As an illustrative example, we consider the evolution of a loop of magnetic flux of size
≈H in the numerical codes employed in these global simulations. The simple question
we ask is: what is the maximum possible flux amplification that can be achieved in these
codes, ignoring any instabilities (such as MRI, buoyancy etc.) which might limit the effect?
Ideally, one would make use of the detailed code quantities, together with formulae for
numerical magnetic diffusivity, ηN , such as those proposed by Rembiasz et al. (2017).
However, not enough information is provided in these papers to undertake such an analysis.
For this reason, we shall content ourselves with the following approximation.

For the loop we are considering, the distance in the azimuthal direction over which
the radial component of B reverses is ≈H. After a time t, the angle an initially radial
field makes with the azimuthal direction is ≈ (U′t)−1. If the radial grid cell has size ΔR,
then after a time tmax, where U′tmax = H/(2ΔR), the grid cell should, in principle, contain
magnetic fluxes of opposing signs. We may assume that at this point, numerical magnetic
diffusivity ensures that this does not happen. We also note that at that time, the initial
magnetic field has been amplified by a factor of ≈U′tmax. Thus, as a first approximation,
we may assume that in an Eulerian numerical code, the maximum amplification of the
field energy is given approximately by

EB(tmax)/EB(0) = (B(tmax)/B0)
2 ≈

(
H

2ΔR

)2

. (5.1)

The codes used by Pjanka & Stone (2020) and Oyang et al. (2021) respectively employ
adaptive mesh refinement (AMR) and static mesh refinement (SMR), and thus have
variable cell size. Pjanka & Stone (2020), for the thinner disc case (which has disc
thickness closer to that required for modelling dwarf nova discs), take H = 0.1R, the
initial cells have ΔR/R = 0.1 and there are up to five levels of cell refinement. Thus,
in principle, ΔR might be reduced by a factor of up to 32. In their model, this would
imply ΔR/R ≈ 0.003. From this, we deduce that the maximum achievable enhancement
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of magnetic field energy is ≈162. Oyang et al. (2021) use up to 256 cells logarithmically
spaced between the inner radius r = 1 and the outer radius r = 23.4. This gives a smallest
radial cell size of ΔR/R ≈ 0.012, to be compared with the disc scale height H/R = 0.044.
Thus, here the maximum field energy enhancement is by a factor of ≈4.

To relate these numbers to the actual numerical viscosities present in the codes, we now
present a formal computation of the evolution of such field loops in a simple linear shear
flow.

6. Formal computation of loop evolution

To illustrate the effect of magnetic diffusivity on magnetic field amplification,
we consider a simple two-dimensional flow with differing initial magnetic field
configurations. We have noted that the fundamental mechanism by which magnetic energy
is increased, by tapping the energy available in the background Rφ-shear flow, is the
conversion (stretching) of the radial magnetic field to form an azimuthal field. Pjanka &
Stone (2020) and Oyang et al. (2021) used small loops of magnetic flux to seed the radial
field. Alternatively, one may think of the effect of the MRI on an initially azimuthal field
as producing radial undulations of the field, which can be thought of as loops of flux in
the Rφ-plane. Such loops would then be stretched by the underlying Rφ-shear flow.

To contrast with the usual shearing box nomenclature (in which rotation, i.e. coriolis
forces, are included), we shall consider two dimensions, but take the x-coordinate to
correspond to the ‘azimuthal’ direction and the y-coordinate to the ‘radial’ direction. Thus,
in the xy-plane, we assume an inexorable linear shear flow of the form u = (U′y, 0) with U′

a constant. First we consider the simple case where the initial field has only a component
in the y-direction. We then consider the evolution of initial magnetic field loops. The exact
general solution for arbitrary initial conditions can be found in Appendix A.

6.1. Straight (radial) field lines
We take an initial magnetic field, at time t = 0, of the form B = B0(0, cos(kx)). This can
be thought of as an approximation to a magnetic loop of size l = π/k in a shearing (but
not rotating) box of size ∼l. We assume the fluid to be incompressible and to obey the
standard MHD equations with a magnetic diffusivity η.

In this case, we can define the magnetic flux function A(x, y, t) such that (Davidson
2001; Yeates & Hornig 2011)

B =
(

∂A
∂y

,−∂A
∂x

)
, (6.1)

which, in this case, obeys the equation

∂A
∂t

+ U′y
∂A
∂x

= η∇2A. (6.2)

The flux function is such that the magnetic field lines are given by A = const.
At time t = 0, we have that

A(x, y, t = 0) = −k−1B0 sin(kx). (6.3)

If we have ideal MHD, so that η = 0, we expect the field lines to be simply advected by
the shear flow, so that

A(x, y, t) = −k−1B0 sin k(x − U′ty). (6.4)

In this case, the magnetic field grows indefinitely in a linear fashion, viz.

B = B0(U′t, 1) cos k(x − U′ty). (6.5)
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(a) (b)

FIGURE 1. Evolution of the magnetic energy, scaled to the initial value, with time for several
values of the magnetic Reynolds number, Rm, for the case of initial radial field lines (6.10).
(a) Values of 0.1 ≤ Rm ≤ 10 with the magnetic energy on a linear scale. (b) Values of Rm up to
107 with the magnetic energy on a log scale. For small Rm, the energy decays rapidly, while for
large Rm, the field initially decays before exhibiting growth and final decay.

For non-ideal MHD, with magnetic diffusivity η > 0, we can see that the solution is
separable, and of the form

A = f (t) sin k(x − U′ty). (6.6)

Substituting this into (6.2), we find that

df
dt

= −ηfk2[1 + (U′)2t2]. (6.7)

Thus, we have that

A(x, y, t) = −k−1B0 sin[k(x − U′ty)] exp
{−ηk2 [

t + 1
3(U

′)2t3]} , (6.8)

and, therefore, that

B = B0(U′t, 1) cos[k(x − U′ty)] exp
{−R−1

m

[
U′t + 1

3(U
′t)3]} , (6.9)

where Rm = U′/(k2η) is the relevant magnetic Reynolds number.
Thus, the spatially averaged (e.g. over a box of size −l ≤ x, y ≤ l) value of the magnetic

energy (EB) is of the form (cf. Pringle, McMillan & Teaca 2017)

EB(t)/EB(0) = [1 + (U′t)2] exp
{−2R−1

m

[
U′t + 1

3(U
′t)3]} . (6.10)

We plot this in figure 1 for various values of Rm. From this, we can see that the evolution
is as follows.

(i) Initially, the magnetic field energy starts to decay at a rate of 2U′/Rm due to
magnetic diffusivity. This initial decay phase is brief.

(ii) Provided that Rm is large enough, the shear is strong enough to provide an
enhancement of the magnetic field strength. For large Rm, field growth occurs after
a time U′t ≈ R−1

m . In this phase, the magnetic energy grows linearly and this is a
direct consequence of the shear.
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FIGURE 2. The maximum growth factor of the magnetic field energy plotted as a function of
the magnetic Reynolds number, Rm, for the case of initial radial field lines (i.e. the maximum
value attained from (6.10)). The red-dashed line indicates the prediction appropriate to the limit
of large Rm, which is accurate for Rm � 10. For Rm � 3.8, the magnetic energy never grows
back above the original value.

(iii) Eventually, the shear decreases the spatial length scale of the magnetic field
sufficiently that diffusivity wins, and, as is well known, the field ultimately decays
(cf. Weiss 1966; Moffatt 1978). The exponential decay is quicker than the simple
exp(−ηk2t), which is what happens if there is no shear, because the combination of
shear and diffusivity hastens the process.

The maximum possible enhancement of the magnetic field energy, EB(tmax)/EB(0),
depends on Rm. We plot this in figure 2. For Rm � 1, the maximum enhancement occurs
when U′t ≈ R1/3

m , and is equal to EB(tmax)/EB(0) ≈ (Rm/e)2/3.
In figure 3, we plot the geometric evolution of the magnetic field lines at different times

as an illustration; note that the value of Rm does not affect the geometry and only affects
the field strength in this case. Panels (a)–(d) correspond to times of U′t = 0, 0.1, 1, 10,
respectively.

6.2. Loops of magnetic field
We now explore the behaviour of loops of magnetic flux. To stay with one Fourier mode
in each direction, we take

A(x, y, t = 0) = sin kxx sin kyy. (6.11)

In the region 0 ≤ kxx, kyy ≤ π, the magnetic field takes the form of loops around the
point (π/2,π/2) with the field pointing in the anti-clockwise direction. The rest of space
is populated with similar rectangular tiles containing loops of magnetic field of alternating
chirality.

We note that we may rewrite the flux function as

A(x, y, t = 0) = 1
2 [cos(kxx − kyy) − cos(kxx + kyy)]. (6.12)

Thus, with zero diffusivity, we have simple advection of the field by the shear so that

A(x, y, t) = 1
2 [cos(kxx − U′tkxy − kyy) − cos(kxx − U′tkxy + kyy)]. (6.13)
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(a) (b)

(c) (d)

FIGURE 3. Evolution of the magnetic field lines from an initially linear radial (y-direction)
configuration. Time increases as U′t is: (a) 0; (b) 0.1; (c) 1 and (d) 10. The colour bar denotes
the value of A, with lines of constant A delineating the field lines. For clarity, we also plot
five field lines, which at U′t = 0 correspond to A = −k−1B0 sin(kγ ) with k = π, B0 = 1, and
γ = −2/3, −1/3, 0, 1/3, 2/3 (the solid black lines represent those field lines with A ≥ 0 and the
dashed lines represent those with A < 0). In subsequent panels, only these field lines are plotted,
with the apparent number increased due to stretching of the field lines in the x-direction. This
figure illustrates the conversion of radial field (y-direction) into azimuthal field (x-direction). The
strength of the field varies in time and the evolution of the strength depends on Rm (see figure 1).
Here we have plotted the case where η → 0 (corresponding to Rm → ∞) and, as such, the range
of values for A remains fixed (cf. (6.4)).

Because we have have a combination of two Fourier modes, for η > 0, we now look for
solutions of the form

A(x, y, t) = 1
2 [f1(t) cos(kxx − U′tkxy − kyy) − f2(t) cos(kxx − U′tkxy + kyy)], (6.14)

which, as before, can be substituted into the evolution equation (6.2) and solved for f1(t)
and f2(t). Using the initial conditions that at t = 0, f1(0) = f2(0) = 1, we have

f1(t) = exp
{−η

[
(k2

x + k2
y)t + kxkyU′t2 + 1

3 k2
x(U

′)2t3]} , (6.15)

and

f2(t) = exp
{−η

[
(k2

x + k2
y)t − kxkyU′t2 + 1

3 k2
x(U

′)2t3]} . (6.16)
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(a) (b)

FIGURE 4. Evolution of the magnetic energy, scaled to the initial value, with time for several
values of the magnetic Reynolds number, Rm, for the case of initial loops of magnetic field (6.18).
(a) Values of 0.1 ≤ Rm ≤ 32 with the magnetic energy on a linear scale. (b) Values of Rm up
to 107 with the magnetic energy on a log scale. For small Rm, the energy decays rapidly, while
for large Rm, the field initially decays before exhibiting growth and final decay. The behaviour
is similar, particularly at large Rm � 1, with larger Rm � 14.7 required to exhibit field energy
growth.

Putting this all together, we have

A(x, y, t) = [sin kx(x − U′ty) sin kyy cosh(ηkxkyU′t2)

− cos kx(x − U′ty) cos kyy sinh(ηkxkyU′t2)]

× exp
{−η

[
(k2

x + k2
y)t + 1

3 k2
x(U

′)2t3]} . (6.17)

In this case, the evolution of the spatially averaged magnetic field energy (e.g. over a
box of size −π ≤ kxx, kyy ≤ π) is

EB(t)
EB(0)

= [k2
x + (ky + kxU′t)2]f 2

1 (t) + [k2
x + (ky − kxU′t)2]f 2

2 (t)
2[k2

x + k2
y ]

. (6.18)

As before, we define the magnetic Reynolds number as Rm = U′/(k2
xη), but here, a

secondary number (ky/kx) is required to define the flow. For illustration, we make the
following figures with ky/kx = 1. First we plot the evolution of the magnetic energy (6.18)
in figure 4. The result is similar to that for an initial straight field. For small Rm, the field
energy decays rapidly. For large Rm, there is a period of significant growth of the field
energy before the field later decays. For loops, the critical Rm at which the field exhibits
any growth is significantly larger than for the straight field lines, requiring Rm � 14.7 for
loops rather than just Rm � 3.8 for lines.

In figure 5, we plot the maximum growth of the magnetic energy against Rm. In this
figure, the black solid line corresponds to maximum growth from initial field loops, while
the red-dashed lines are for the case of field lines plotted in figure 2. Here we can see that
the maximum growth is weaker for loops of field compared to field lines for the same value
of Rm. However, we can also see that both cases exhibit the same functional dependence of
the maximum growth rate on Rm; for field loops with kx = ky = 1, the maximum growth
in magnetic energy is EB(tmax)/EB(0) ≈ (1/2)(Rm/e)2/3. This is to be expected as at late
times, where the maximum is reached for large Rm, the initial field loops have already been
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FIGURE 5. The maximum growth factor of the magnetic field energy plotted as a function of the
magnetic Reynolds number, Rm, for the case of initial loops of magnetic field (i.e. the maximum
value attained from (6.18)). The red-dashed line shows the solution presented in figure 2 for the
case of initial radial field lines. Here, for Rm � 14.7, the magnetic energy never grows back
above the original value, which contrasts with the value of Rm � 3.8 in the initial radial field
line case.

sheared out into lines of field. To illustrate this, we plot the magnetic field lines resulting
from the initial loops of field in figure 6. This figure again shows the conversion of radial
to azimuthal field, and that for U′t � 1, the field structure is similar to the case with initial
lines of field as the loops become strongly stretched in the x-direction.

7. Discussion and conclusions

It has long been known that shearing box numerical simulations of the dynamo
dynamics to be found in accretion discs do not provide an explanation of the observational
data. In particular, for the highly ionised discs in outbursting dwarf novae, the
dimensionless viscosity parameter exceeds that obtained in numerical simulations by more
than an order of magnitude (King et al. 2007; Martin et al. 2019). We note that in the
spectral code implementation of the shearing box, the magnetic diffusivity is controlled
and magnetic Reynolds numbers in the range 104–105 can be achieved (Fromang et al.
2007; Walker et al. 2016; Mamatsashvili et al. 2020). As we have seen, the physical value
of the magnetic Reynolds number in the observed dwarf nova discs is ∼1010. Thus, while
the lack of agreement between the shearing box simulations and the observational data
may yet be due to a discrepancy in magnetic diffusivity, it may also be due to the shearing
box approximation itself. If so, then the next step is to undertake global disc simulations.

Such simulations have been recently presented by Pjanka & Stone (2020) and Oyang
et al. (2021). However, of necessity, the numerical methods used by Pjanka & Stone (2020)
and Oyang et al. (2021) have intrinsic numerical magnetic diffusivities. We estimate (§ 5)
that the maximum factor by which the field strength of a small magnetic loop can be
enhanced in these codes is ∼ 16, which corresponds to a factor of 162 in the magnetic field
energy. From § 6, we see that EB(tmax)/EB(0) ≈ (Rm/e)2/3, suggesting that growth of the
magnetic field energy by a factor of 162 would correspond to a magnetic Reynolds number
of Rm ∼ 104 (for Pjanka & Stone (2020), and less for Oyang et al. 2021). This implies that
the numerical magnetic diffusivities, ηN , of these codes, compared to the values physically
expected in such discs, η, are too high by factors of at least six orders of magnitude.

Pjanka & Stone (2020) provide a brief, preliminary discussion of the difficulty of
accessing the physical parameter space using current numerical techniques, limited
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(a) (b)

(c) (d)

FIGURE 6. Evolution of the magnetic field lines from initial loops of magnetic field with
kx = ky = π. Time increases as U′t is: (a) 0; (b) 0.1; (c) 1 and (d) 10. The colour bar
denotes the value of A, with lines of constant A delineating the field lines. The regions
with A > 0 (yellow) correspond to regions where the magnetic field lines are oriented in
the counterclockwise direction, while for regions with A < 0 (blue), the magnetic field lines
are oriented with the opposite chirality. For clarity, we also plot field lines corresponding to
A = −3/4, −1/2, −1/4, 1/4, 1/2, 3/4 (the solid black lines represent those field lines with
A ≥ 0 and the dashed lines represent those with A < 0) with the exception of panel (d) where
only field lines with A = −1/2 and 1/2 are plotted for clarity. The strength of the field varies in
time and the evolution of the strength depends on Rm (see figure 4). Here we have plotted the
case where η → 0 (corresponding to Rm → ∞) and, as such, the range of values for A remains
fixed (cf. (6.4)). As with the initial linear field case (see figure 3), the field lines are stretched due
to the shear. As time proceeds, the solution for initial loops of field takes on a similar geometry
to the case with initial lines of field for U′t � 1.

by current numerical processing power. They conclude that, nevertheless, ‘the global
structure and behavior of these models should be reflected properly’. This is hard to
square with the large discrepancy between the models and the reality of the fundamental
measured disc parameter, α. In contrast, Oyang et al. (2021) note that the size of viscosity
produced by MHD processes in their simulation is too small to be able to account for the
superhump phenomenon that they are investigating. It is only once they artificially increase
the viscosity by approximately an order of magnitude that they are able to account for the
phenomenon.
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Furthermore, the fact that the observed values of the viscosity parameter imply values of
the plasma parameter β ∼ 1 means that magnetic buoyancy effects may play a far greater
role than is found in the simulations (Tout & Pringle 1992). Balbus & Hawley (1998)
noted that the simulations vastly overestimate the scale at which resistive losses occur.
We agree with this assessment. In view of all this, we suggest that the large discrepancy
mentioned above may well imply that the nature of the dynamos found in the simulations
is fundamentally different from that which occurs in real accretion discs.

We have speculated that in the global numerical simulations, it may be the large
numerical diffusivities in those simulations that present the problem. If that is the case, it
will be important to discover how close the numerical magnetic Reynolds number needs
to be to the physical value of Rm ≈ 1010 in order that global disc dynamo simulations
can achieve the required values of β ∼ 1. Given the current limitations on computing
power, it may be that expecting to be able to compute realistic dynamo action in observable
accretion discs using numerical MHD codes is, for the time being, a step too far.
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Appendix A. Solution for arbitrary initial field structure

As in the main text, we are considering a flow in the xy-plane with an inexorable
linear shear flow of the form u = (U′y, 0), with U′ a constant. We assume the fluid to
be incompressible and to obey the standard MHD equations with a magnetic diffusivity η,
so that the evolution equation for the magnetic flux function A(x, y, t) is

∂A
∂t

+ U′y
∂A
∂x

= η∇2A. (A1)

We consider the evolution of A on the domain Lx × Ly. At time t = 0, the flux function
A(x, y, 0) can be expanded as a Fourier series in the form

A(x, y, 0) =
∑

n

∑
k

an,k exp(iαny) exp(iβkx), (A2)

where α = 2π/Ly and β = 2π/Lx.
At later times we expect the form of A to be

A(x, y, t) =
∑

n

∑
k

an,k(t) exp(iαny) exp(iβk[x − U′ty]). (A3)
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Substituting this into (A1), and using the fact that the modes evolve independently, we
find that this can be satisfied provided that the coefficients an,k(t) obey the equations

dan,k

dt
= −η[(αn − βkU′t)2 + β2k2]an,k. (A4)

Thus, we find that
an,k(t) = cn,k exp τn,k(t) (A5)

where, for k �= 0, we have

τn,k(t) = η

[
1

3βkU′ (αn − βkU′t)3 − β2k2t
]

, (A6)

and cn,k are constants.
For the k = 0 mode (for which the contribution to B is independent of x), we find that

an,0 = cn,0 exp[−ηα2n2t]. (A7)

Note that, in general, the cn,k can take any values, provided that cn,k = c∗
−n,−k, where the

∗ denotes the complex conjugate.
The full solution for A(x, y, t) is therefore

A(x, y, t) =
∑

n

∑
k

cn,k exp(−τn,k(t)) exp(iαny) exp(iβk[x − U′ty]), (A8)

where

τn,k(t) =

⎧⎪⎨
⎪⎩

ηα2n2t if k = 0,

η

[
1

3βkU′ (αn − βkU′t)3 − β2k2t
]

if k �= 0.
(A9)

Thus, for the particular case A(x, y, t = 0) = sin(βx), we take the non-zero values of
cn,k to be

cn,k =

⎧⎪⎨
⎪⎩

−(1/2)i n = 0, k = 1,

(1/2)i n = 0, k = −1,

0 otherwise.

(A10)

And for the case A(x, y, t = 0) = sin(βx) sin(αy), we take

cn,k =

⎧⎪⎨
⎪⎩

−(1/4) exp[−τn,k(0)] (n, k) = ±(1, 1),

(1/4) exp[−τn,k(0)] (n, k) = ±(1,−1),

0 otherwise.

(A11)

The magnetic field is B = (∂yA,−∂xA). Thus,

B =
∑

n

∑
k

(iαn − βkU′t,−iβk)cn,k exp(iαny) exp(iβk[x − U′ty]) exp[τn,k(t)]. (A12)

Then with the spatially averaged magnetic energy defined to be

〈B(t)2〉 =
∫ 2π/α

0

∫ 2π/β

0
|B(t)|2 dx dy, (A13)
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we can use Parseval’s theorem to deduce that

〈B(t)2〉
〈B(0)2〉 =

∑
n

∑
k

[(αn + βkU′t)2 + β2k2]|cn,k|2 exp[2τn,k(t)]

∑
n

∑
k

[(α2n2 + β2k2]|cn,k|2 exp[2τn,k(0)]
. (A14)
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