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1. Introduction. Let us recall the notions of full embedding and universality of
categories we will be using throughout.

A full embedding is a functor F taking the objects of a source category A injectively
to objects of a target category B and the hom-sets HomA(a, b) bijectively to the hom-sets
HomB(F(a), F(b)). If A is a subcategory of B and the corresponding inclusion functor is a
full embedding then A is said to be a full subcategory of B. In this case we have
HomA(a,b) = HomB(a, b) for any a, b in A; that is to say, a full subcategory is
completely determined, within a given category, by specifying the class of its objects. A
category U is termed universal if an arbitrary category of algebras can be fully embedded
in U.

If the one-object categories (monoids) can be fully embedded into a category V (that
is, if an arbitrary monoid M is isomorphic to the endomorphism monoid of a suitable
object of V) then V is said to be monoid universal.

Let us note in passing that in a universal (concrete) category it is impossible to draw
any conclusions about the structure of an object from its monoid of endomorphisms.
From this point of view universality is rather a negative property.

The reader wishing to learn more about full embeddings and universal categories is
referred to the monograph [15].

We are going to study, from the universality point of view, some natural full
subcategories of the category B of (0, l)-lattices and (0, l)-homomorphisms (the latter are
supposed to preserve the universal bounds 0 and 1 of (0, l)-lattices).

Universality of B was established in [7]. Recently the universal subvarieties of B were
characterized as follows.

THEOREM 1.1 [5]. For an arbitrary variety V of (0-, \)-lattices the following are
equivalent:

(1) V is universal,
(2) V is monoid universal,
(3) V contains a non-trivial (0, l)-lattice with no prime ideal,
(4) V contains a simple (0, l)-lattice L with card(L) > 2.

Consequently, a variety V of (0, l)-lattices is not universal if and only if every non-trivial
(0, l)-lattice L in V has a prime ideal. •

Besides varieties, the classes SB consisting of all (0, l)-lattices L containing as a
(0, l)-sublattice a fixed (0, l)-lattice 5, as well as the classes BQ of all (0, l)-lattices with a
fixed quotient (0, l)-lattice Q, seem to be fairly natural and worth studying. The following
results have been obtained.

THEOREM 1.2 [1]. For every non-trivial lattice S the category SB is universal. •
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THEOREM 1.3 [13]. For a finitely generated lattice Q, the category B e is universal if
and only if Q has no prime ideal. •

In this paper we extend this line of study to the classes SBO = SB D BQ of all
(0, l)-lattices with a given (0, l)-sublattice S and quotient lattice Q. Our goal is to
establish the following result.

THEOREM 1.4. If S is finite or has a prime idea or if Q is finitely generated then SBQ is
universal if and only if there exists a (0, l)-homorphism from S to Q and no
(0, l)-homomorphism from Q to S.

As is the case with Theorem 1.2 and 1.3, the necessity of the condition in Theorem
1.4 is nearly obvious: the existence of a (0, l)-homomorphism / : Q—* S implies that there
is at most one object representing the trivial monoid (a rigid object).

The proof of Theorem 1.4 makes use of certain categories of hypergraphs and
categories of partial lattices. All the necessary data on these structures will be given in the
next section, preliminary to the actual proof carried out in the concluding section. The
proof will be accomplished by a sequence of full embeddings yielding a composite full
embedding of a special universal category of hypergraphs into 5BG.

The resulting full embedding will pass through an intermediate category of the form
Biext(5, Q, cp) where q>:S-*Q is a (0, l)-homomorphism, whose objects are all triples
( i ,L, a) where L is a (0, l)-lattice, i :S-»L is an injective (0, l)-homomorphism,
a.L—*Q is a surjective (0, l)-homomorphism with q> = a°i, and morphisms from
(i,L,a) to (i',L',o') are all (0, l)-homomorphisms f:L-*L' satisfying i'=f°i and
o= o' °f. In such a way, as a by-product of our proof we obtain a sufficient condition for
the universality of Biext(5, Q, cp).

2. Preliminaries. A partial lattice is a triple P = (P, J, M) where P is a poset, and J,
M are sets of finite subsets of P such that

if A e / then A has a join in P,
if A e M then A has a meet in P,
iix^y in P then {x,y}eJC\M.

A mapping f:P—>P' is a partial lattice homomorphism from V = (P,J,M) into
V' = (P',J',M') if for every A eJ (or A eM) we have f(A)eJ' (or f(A)eM') and
f(\/A) - \Jf{A) (or f{f\A) = /\f(A)), respectively. Every lattice L can be considered as
a partial lattice for which / = M is the set of all finite non-empty subsets of L.

A lattice L together with an inclusion / : P-» L is called a free completion of a partial
lattice P if/is a partial lattice homomorphism and for every partial lattice homomorphism
g:P-»L ' into a lattice L' there exists exactly one lattice homomorphism gu:L^>L' with
g = gn °f. (Then g* is called the free extension of g.) The lattice L is denoted by P # .

R. A. Dean has proved the following theorem.

THEOREM 2.1 [4]. Every partial lattice has a free completion which is uniquely
determined up to an isomorphism.

Let P = (P,J, M) be a partial lattice. A subset A c P is called J-ideal (or M-filter) if
the following hold:

if x eA and_y eP withy =s* (or y 3=JC) then y eA,
if B^A and B eJ (or B eM) then \/B eA (or /\BeA).
Denote by /(P) the set of all /-ideals, F(P) the set of all M-filters. Obviously, for

https://doi.org/10.1017/S0017089500008193 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008193


HOMOMORPHISMS OF (0,1)-LATTICES 161

every xeP, {yeP;y^x} is a /-ideal, {yeP;y^x} is a M-filter; they are called principal.
Ordered by inclusion, /(P) and F(P) are complete lattices. Denote by /0(P) (or F0(P)) the
sublattice of /(P) (or F(P)) generated by all principal /-ideals (or M-filters). Define
rP:V*^>Io(P), 4P:P#-»F0(P) such that for weP*, rP(w) = {x e P;x*£w in P # } ,
(7p(w) = {;te/);;t2*H'in P # } .

PROPOSITION 2.2 [4]. The mappings rv, qv are lattice homomorphisms. •

In what follows we shall omit the index P in rv and qv if a misunderstanding cannot
occur. The following theorem says, essentially, that the order in P # can be recursively
reduced to that of P.

THEOREM 2.3 [4]. If a,b e P # for some partial lattice P then a^b in P # if and only if
one of the following conditions holds:

(1) a = a0 v ax and at =£ b for every i e 2 = {0,1},
(2) a = a0 A a, and a, «= b for some i e 2,
(3) b = b0 v b\ and bt s= a for some i e 2,
(4) b = b0A bt and bt s* a for every i e 2,
(5) qf(a) and rP(b) have an element of P in common.
Consequently, every element a e P*\P is either meet or join irreducible. •

For a partial lattice P = (P, / ,M) define polynomials over P and the rank of a
polynomial as usual (see e.g. [3] or [6]):

(1) each element x e P is a polynomial over P and rank(x) = 1,
(2) if pu p2 are polynomials over P then/?! vp2, px A/?2 are polynomials over P and

rank(/?, v p2) = rank(/?! Ap2) = rank(p,) + rank(/?2) + 1.
For a polynomial p over P denote by v(p) the element of P # corresponding to p. We

say that p is a minimal polynomial if for every polynomial p' with u(p') = v(p) we have
rank(/7)«£rank(/?'). Following H. Lakser [14] we obtain:

LEMMA 2.4. If x e P* £y meet-irreducible then there exist a minimal polynomial p over
P with v{p) = x and a finite family {/?,; i e /} of minimal polynomials over P such that:

(a)v(p) = \/{v(Pi)}ieI}inP*;
(b) for every i e / either v(pi) is join-irreducible or rank(p,) = 1;
(c) for every i e I, v(Pi) £ VM/>/); J e A{i}} in P# ;
(d) for every i e I, if rank(/?,) > 1 then there exists no y e P with v(pj)^y *£ v(p) in

P# and if pi =piA A pi2 then v(pu) ^ v(p) for j e {1,2}.

Proof. If x is meet-irreducible in P # and p is a minimal polynomial with v(p) = x
then/? =pi Ap2 implies that either v(px) = x or u(/?2) = x; this contradicts the minimality
of p; thus /> =p! v/?2 or rank(p) = 1. Hence we easily obtain that there exists a finite
family of minimal polynomials {/>,•; i e / } satisfying (a) and (b). We prove (c) and (d).
Assume that (c) or (d) does not hold. We construct a polynomial p' such that
rank(/?')<rank(/j) and v(p') = v(p); it contradicts the minimality of rank of p. If (c) or
(d) does not hold, then there exists iel such that either \J{v(pj); jel\{i}} ^v(pi) or
rank(/j,)> 1 and there exists y eP with v{pi) =£.y =s v{p) or pt =piA Ap i 2 and u(p,,y) ==
v(p) for j e {1,2}. Let r be a "join" of {/?,;/ e /\{i}). In the first case we set p' = r, in
the second case p' = r v y, in the last case/?' = r v/?o. Clearly, rank(p') < rank(p), v(p') =
v(p). U
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The family {/?,; i e /} from Lemma 2.4 is called a normal decomposition of x. A dual
statement holds for join-irreducible elements. The following theorem generalizes
Whitman's result on semidistributivity of free lattices.

THEOREM 2.5. Ifu=xvy=xvz>xv(yAz) in P* for a partial lattice P and if
{Pi\i el} is a normal decomposition of u then there exists i e/such that rank(/?,) = 1 and
v(pt) £ x v (v A z).

Proof. Assume that {/?,; i el} is a normal decomposition of u. We first consider the
case that rank(p,)>l and v(pt)^x v_y. According to Theorem 2.3. either w(p,-)^jc or
v(pi)^y, because an application of (2) or (5) in Theorem 2.3 contradicts (d) of Lemma
2.4. Analogously we obtain that either v{pt) «£ x or v(pt)=£ z and so u(p,) « * v (y A Z).
If for every /?,, i el we have u(p,) =sx v ( y A z ) then u = \J{v(pi); i e 1} ̂  x v (v A Z)
*s u. The proof is complete. •

For a lattice L, we say a set A c L has property (n), where n s* 2 is a natural number,
if the following holds: there exist x,v e L such that for every B c / 1 with |B| = n we have
V B = x, / \ B = y. If J4 has the property (n) then denote sup(^) by x, inf(A) by _y.

COROLLARY 2.6. Let V be a partial lattice. If A c P * is infinite with property (n), then
for a normal decomposition {p , ; ie /} of s\xp(A) there exists iel with rank(p,) = l and
a ^ v{pi) for every aeA. On the other hand for every i e I with rank(p,) > 1 we have
v(pi) =£ a for every aeA.

Proof. Let {p,; iel} be a normal decomposition of sup(.4) and assume that for
every i e I either rank(p,-) > 1 or v(pt) 5= a for every aeA. Let a0, au . .. , an be distinct
elements of A. For every j,ken + l, j^k set b = \J{ai;ien + \,i±j,k}, and by
property (n) and Theorem 2.5 we obtain b = (b v a;) A (b v a*) = sup(/4). Now by
induction we prove that a, = sup(.A) for every i en + 1—a contradiction. •

The dual statements of Theorem 2.5 and Corollary 2.6 are also true.
Denote by H{n) for ns=2 the category of all n-hypergraphs and their compatible

mappings: objects are pairs (X, E) where X is a set and £ is a set of subsets of X with
cardinality n; a mapping/:X —> Yis a compatible mapping from {X, E) into (Y, F) if for
every e e E we have f{e) e F. For two cardinals m & n 3= 2, n finite, denote by //(«, m)
the full subcategory of H(n) formed by all /j-hypergraphs (X, E) without isolated elements
(that is, for every xeXthere exists eeE withxee) such that for every eeE there exists
a set fl with e c B c j f , |fi| = w and every subset C c B with |C| = n belongs to E.

We first strengthen the results from [13] and [9], [10].

PROPOSITION 2.7. For all cardinals m ^ n ^ 2 , n finite, the category H(n,m) is
universal.

Proof. For an arbitrary cardinal m>2, the universality of H(2,m) has been proved
in [9] and [10]. For arbitrary cardinals m^n, n finite, n>2, define a functor
Q://(2, m)-*H(n,m) as follows: For (X, E) e H(2, m) define Q(X, E) = (X, E') where

E' = {BcX; \B\ = n, there exists a set Cwith BcCcX, \C\ = m

and {c, b} e E for every distinct c,b eC}\

for a compatible mapping / we set Q(/) =/. It is easy to verify that Q is a full
embedding. •
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If we combine Proposition 2.7 with results of [8] (see also [15]), we immediately obtain

COROLLARY 2.8. Let m^ns^2 be cardinals, n finite. For every set I there exist a
system R(I) = {{Xt, £,):/ el} of rigid hypergraphs in H{n,m) and a universal full
subcategory U of H{n,m) such that there are no compatible mappings between distinct
members of R{I) or between members of R(I) and objects of U. •

For a fixed system R = {{X,, £ , ) ; i e /} of hypergraphs in H(n,m) and for every
n-hypergraph {X,E)eH{n,m), denote by R(A\ £) the w-hypergraph {XR, £R), where
XR is a disjoint union of X and all X( with i e I, and £ R is a disjoint union of
corresponding sets E and all £, with i e /.

For an n-hypergraph (X, E) define a partial lattice PL(A", E) = {P,J, M) where
P = X U {0,1} (we assume that 0,1 $ X), where 0 is the smallest element of P, 1 is the
largest element of P, the elements of X are incomparable and

J = M = EU{{p,i};peP,ie{0,l}}U{0,l}.

Let A(Ar, E) be a free completion of PL(A\ E). For a compatible mapping f:{X, £)-»
(A"', £') denote by PL(/) the partial lattice homomorphism from PL(A\ E) into
A(X',E') such that PL(f)(x)=f(x) for every xeX, PL(/)(0) = 0, PL(/)(l) = 1. It is
easy to verify that PL(/) is a partial lattice homomorphism; denote by A(/) the free
extension of PL(/). Then A is a functor and the following holds.

PROPOSITION 2.9 [13]. If n is finite and m > 3n — 3 then A is an embedding of H(n, m)
into L such that any non-constant lattice homomorphism f: A{X, £) —* A(X', E') with
(X, E), {X', E') e H(n, m) has the form f = Ag for a compatible mapping g: (X, £ ) - *
(A", £ ' ) and moreover, f preserves 0 and 1. •

We state several properties of A. For an independent set Z (that is, no A e £ satisfies
A c Z) in (X, E) e H(n, m) write

Fz = {u e A(A", £);• there exist finite sets Z' cZ,X' c A(X, E) such that
for every x eX' there exists y eX\Z with x>y and u 3= f\(Z' U A")}-

Since A1 is a set of doubly irreducible elements, A(A\ E)\{X\Z) is a (0, l)-sublattice of

PROPOSITION 2.10 [13]. / / n is finite and m^n^2 then for every (X,E)e H(n,m) we
have

(a) if x v y = x v z < 1 {or x A y = x A Z > 0) in A(A\ £) then x v y = x v (y A Z) {or
xAy=xA{y vz));

(b) for every independent set Z of {X,E), Fz is a prime filter of A{X, E)\{X\Z);
(c) if A c A(Ar, £) is finite and \/A = 1 {or /\A = 0) then there exists B e E such that

for every b e B there exists a eA with a^b {or b^a). •

3. Universality of biextensions. Let (p = S—*Q be a (0, l)-homorphism under
certain conditions on (0, l)-lattices 5 and Q, for any finite n > 1 and any regular cardinal
m >max{X0, \S\, \Q\} we construct a full embedding of H{n,m) into SBO or
Biext(S,0,<p). v.

Write / = (S\{0,1}) U (Q\lm(q>)) U {0,1}. Select /„e / and set / ' = A{/0}. For i e /
define l{i),u{i) as follows: if ieS\{0,1} then l{i) = {(p{i),0), u{i) = i; otherwise /(/) =
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0,0), M(J) = ( / , 1 ) . By Corollary 2.8 there exists a family of rigid n-hypergraphs
R = {(Xh Ej); i e / '} in H(n, m) and a universal full subcategory U of H(n,m) such that
there exist no compatible mappings between distinct members of R or between members
of R and objects in U. For (X,E)e H(n,m) define two partial lattices V(X,E) =
(P(X,E),J0,M0) and Q(*, E) = (Q(X, E),JU Mx) (for simplicity we set (Xio, Eit) =
(X, £)) such that: P(X, E) is a poset on the set (Q X {0,1}) U (5\{0,1}) U XR where the
union is disjoint and the ordering is the smallest one satisfying

(a) x^y for x,y eS whenever x ^y in 5;
(b) (x, i) «s (yj) for x,y e Q, i,j e {0,1} whenever x =£>» in Q and i =Sy;
(c) (q>(x),0)^x ^(cp(x), 1) for every x eS\{0,1};
(d) for every i el, y eXt we have l(i)^y =£u(i).
Note that l(i), u(i)eP(X,E) for every iel, and Q(X,E) is the subposet of

P(X, E) on {(0,0), (1,1)} U (S\{0,1}) U XR.
In addition to all comparable pairs of P(X, E) let Jo consist of all members of ER and

all pairs {x,y} e P(X, E) such that either both x and y are in Q X {0}, or both x and _y are
in 5, or at least one of x,y is in g x {1}. Let Mo consist of all comparable pairs of
P(X, E), of all members of EK, and all pairs {x,y} € P{X, E) such that either both x and
y are in Q x {1}, or both x and y are in 5, or at least one of x,y is in Q x {0}. Set

h = {A eJ0;A <= Q(X, £)} , A*! = {Ax eM0;A<= Q(X,

Finally, define mappings:

V(X,E)-P(X,E)^Q(X,E) by v(A->£)(x) = x for every * £ ( ? ( * , £ ) , vix,E)(x,i) =
(i, i) for every x e Q, i e {0,1}.

) by ^ , £ ) ( A : ) = X for every J C G S \ { 0 , 1 } , I(X,E)(0) = (0,0),

£)-» G by o(X,E){x, i) = x for every x e 0 , / e {0,1}, o(x<E)(x) = (p(j:)
for every x e 5 \ {0,1}, a(x E){x) = y for every x e X,,, iel where y eQ is determined by
the equation l(i) = (y, 0).

Then we have:

LEMMA 3.1. For every (X,E)eH(n,m), F(X,E) and Q(X,E) are partial lattices
and v:V(X,E)^>Q(X,E), i:S^>V(X,E), o:V(X,E)^>Q are partial lattice
homomorphisms.

Proof. By a direct inspection. •

Write <&(X,E) = V(X,E)*, W(Z, E) = Q(X, E)u, and let vf^ :<&(*, E)^
^(X,E), i*XE):S^><l>(X,E), o*x,E):®(X,E)-+Q be the free extensions of v(A->£),
1(A-,£)>

 a nd O(X,EY In t n e following, if misunderstanding cannot occur, we will omit the
index (X, E). We have:

LEMMA 3.2.(a) For every xeQ, {o*Y\x) = {y e <&(*, E); (x, 0)*£y*z (x, 1)}.
(b) ( v V ( 0 , 0 ) = Q x {0} and (v#)-x(l, 1) = Q x {1).
(c) For every x e XR, (v#) 1(x) = {x}.

Proof. We prove by induction over the rank of polynomials that for every
polynomial p over V(X, E) there exists x(p) e Q with (x(p), 0) *£ v(p) =s (x(p), 1), thus
obtaining (a). If rank(p) = 1 then by a direct inspection we obtain the required statement.
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Assume that rank(p)>l. If p =plAp2 then x(p)=x(px) Ax(p2); if p=p^v p2 then
x{p) = Jc(pi) v x{p2); because rank(pi), rank(p2) < rank(p) the proof of (a) is complete.

We prove (b). Write r' = rQ(x,Ey First we prove that for every polynomial p over
V{X,E) and for every x e Q(X, £)\{1,1)} we have x e r' ° v*(u(p)) if and only if
v(p)^x. If v(p) 3=* then obviously, x e r'vu(x) c r' ° v*(u(p)). We show the converse
implication by induction over the rank of polynomials over V(X, E). If rank(p) = 1 then
r' o v*(u(p)) = {y e Q(X,E);y ^v(p)} and the statement is true. Assume that
rank(p)>l. If p=P\Ap2 then r a n k ^ ) , rank(p2) < rank(p) and by the induction
hypothesis we obtain the statement. Assume that p=pxv p2. Then by Proposition 2.2, x
belongs to the smallest 7,-ideal containing r' ° v#(u(p,)) Ur'« v*(u(p2)). Since every
y eQ(X,E) is either join-irreducible or lies in 5, direct inspection of Jx shows that there
exist Ai<=Q{X,E) with A,,c r' ° v#(u(p,)) for ie{l,2} such that x « V(^i U-42),
/4i U /42 e 7i. Since rank(p,) < rank(p) for i e {1, 2} we obtain by the induction hypothesis
that dj ̂ v(pi) for all a,e^4,, i e{ l ,2} and hence x^v(p); thus the statement is true.
Secondly we show that r' ° v#(u(p)) = Q(X, E) if and only if v(p) e Q x {1}. Since
(rT'CGO*. £)) = {1, lJweobtainthatCv*)"^!, l) = Qx {l}.Obviously,ifu(/?) eQx{l}
then r' ° v#(u(p)) = Q(X, E). We show the converse implication by induction over the
rank of polynomials. If rank(/?) = 1 then obviously v(p)eQ x {1}. Assume that
rank(p)>l. If p=p^ Ap2 then r a n k ^ ) , rank(/?2),<rank(/?) and r' ° v*(u(pt)) = r' °
v#(u(/?2)) = (3(Ar, £). By the induction hypothesis u(pi), v(p2)e Q x {1}; hence also
i>(p) e Q x {1}. If p =piv p2 then by Proposition 2.2 Qpf, £) is the smallest /rideal
containing r' ° v#(u(p1)) Ur '« v#(u(p2)). Hence there exist At c r' ° v#(u(p,)), / e {1, 2}
such that >!1U/42e/i and \/(A1UA2) = (l,l) in Q(Ar,£). By direct inspection either
Ai\JA2eJ0 and V ^ i U ^ e Q x f l } in P(X,£) or ( l , l ) e ^ i U ^ 2 . Thus, by the
induction hypothesis and by the first part of the proof, we obtain v(p)^x eQ x {1}.

Now by (a) we obtain the required statement. The proof that (v*)"1^, 0) =
Q x {0} is dual.

Finally, we prove (c). Assume the contrary; then there exists y comparable with x
such that v#(x) = v*(y). Further there exists A e £R with x e A. Set A' = (A \ {x}) U {y}.
Assume for example that y >x. By Proposition 2.10 we obtain f\qP(X E)(A ) $ Q x {0}
but /\v*{A') = f\v*(A) = (0,0>—a contradiction to (b). If y <x then \/A e S U (Q x {1})
but \ M ' d° e s n o t n a v e t m s property by the first part of the proof of (b) and by
Proposition 2.10. •

LEMMA 3.3. A J0-ideal A belongs to I0(V(X, E)) if and only if one of the following
conditions holds:

(a) A is the principal ideal generated by (x,l) for some x e Q;
(b) A = A i U A2 where Aiis the principal ideal generated by (x, 0) for some x e Q and

A2 E XR is a finite set such that for every i el, if XjCiA^fb then l(i) «(x, 0);
(c) A =Ai UA2 UA3 where Ax is the principal ideal generated by some x e S\{0,1},

A2 is the principal ideal generated by (y, 0) for some y eQ with tp(x) ̂ y, A3c.XR is a
finite set such that for every i e I if A3 D Xt =£ 0 then l(i) *£ (y, 0) and u(i) ^ JC.

Proof. Clearly, A is always an ideal and since it is a finite join of principal ideals it
belongs to I0(V(X, E)). By a direct inspection we obtain that /-ideals satisfying (a), (b),
and (c) are closed under meets and joins in I(P(X, E)); thus, they form /0(P(Ar, E)). •
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LEMMA 3.4. Let A^Q>(X,E) be a set of cardinality m with property (n) and
inf(A) = (x, 0) for some xeQ. Then A c Xh i e / with l(i) = (x, 0).

Let A c Q>(X, E) be a set of cardinality m with property (n) and sup(/l) = (1,1). Then
AcXv

Proof. Assume that \A\ = m, A has property (n) and inf(A) = (x, 0) for some x e Q.
Write r = rv(x,E), q = qv(x,Ey By Lemma 3.3, for every a eA we have xaeQ, so that
r(a) C\Q X {0} is the principal ideal generated by (xa, 0). Obviously, xa ^x. Since m is a
regular infinite cardinal with m>\Q\ we obtain that there exists A'cA with |i4'| = m
such that xa =xb for every pair of a, b eA'. Since f\r{B) is the principal ideal generated
by x for every B^A' with \B\ = n, we have xa=x for every aeA'. Denote by
Yx = \J{Xr, l(i) = (x,0)}. For aeA, if r(a) contains an element 2eF(A r ,£ ) \ (y i U
(g x {0}) then q(a) is contained in a principal filter generated by some yeS with
q>(y)=x, because for every uer{a), veq(a) we have v^u. Since /\q(B) is the
principal filter generated by (x, 0), this is possible for at most n - 1 elements of A, since
A has property («). Thus for all but n — 1 elements r(a) is a principal ideal generated by
some zaeXh where sup(,4) = u(i) and (x,0) = l(i) (by Corollary 2.6 r(sup(>t)) #
r(inf(y4))). If ^(a) is a proper subset of the principal filter generated by za then,
moreover, it is contained in the principal filter generated by «(/); thus, at most n — 1
elements of A have this property. Hence, for all but finitely many aeA, the ideal r(a) is
the principal ideal generated by za and similarly q{a) is the principal filter generated by za\
thus a = za. Hence sup(/4) = «(/) and, by Proposition 2.10, we conclude that there exists
i e I with /(/) = (x, 0) and A s X,. The second statement is proved dually. •

LEMMA 3.5. Let Z c l be an independent set in (X,E). Then there exists a surjective
(0, \)-homomorphism from W{X, E)\{X\Z) into S.

Proof. Set XZ = XK\Z. For every iel, the (ordinary) sublattice (Xt) of
generated by Xt is isomorphic to A(Xh £,). Denote by M = (MP,/, M) the partial lattice
where MP is the subposet of W{X,E) on the set U {(*,-) ; ie /}. Clearly S\{0,1}, Xh

{(0,0), (1,1)} cMP. Set

/ = M = {{(x,y); either x,y e {Xt)
for some i e / , or x,y e S, or x and _y are comparable in MP}.

By a direct inspection we obtain that 6 :M-» V(Ar, £) is a free completion, where 0 is the
inclusion. Write

P = {p; p is a polynomial over M with u(p) £ Xz}.

By Proposition 2.10, for every iel we have the prime filter î  = FznA-. in A(XhE)\XZ.
Define a function/:P-»5 by induction, as follows.

If p e P with rank 1 then for v(p) e S set f(v(p)) = v(p), for v(p) e \{Xt, £,), i e /
set /(u(p)) = l whenever v(p)eFj and W(/) = (JC,1) for some * e ( ) , f(v(p)) = u(i)
whenever v(p) e î  and «(/) e 5, f(v(p)) = 0 whenever u(p) $ i .̂

It p=p^vp2eP then for / e {1,2}, i e / such that u(py) eXt (1 Xz define u(py) = 1
whenever w( j )eQx{l} , v(pj) = u(i) whenever u(i)eS and set f(v(p)) =/(u(Pi)) v
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lfp=p1Ap2eP then f(v(p)) =f(v(pl)) A/(u(p2)) whenever pup2 e P, f(v(p)) =
0 whenever pt $ P or p2 $ P.

We shall prove that for pu p2eP with v(pt) = v{p2) we have f{v{px)) =f{v(p2));
this shows that f:xV{X, E)\XZ^>S is a surjective (0, l)-homomorphism. Define a
quasi-ordering on the set of all pairs of polynomials from P such that {pi,p2} ^ {r,, r2} if

) , rank(p2)} <max{rank(r!), rank(r2)}

or if

max{rank(p!), rank(p2)} = max{rank(r]), rank(r2)}

and

min{rank(/?i), rank(p2)} =£ min^ankfo), rank(r2)}.

We prove that f(y(px)) ^f(v(p2)) whenever w(pi)=su(p2) in M#. Assume the contrary
and let {p\,p2} be a least pair of lattice polynomials in P such that v(p,) *s i/(p2) and
f(v(P\))^f(v(P2))- By Theorem 2.3, v(pi)^s^v(p2) for some J e * ( I , £). If seXz
then f(v(pi)) = 0*zf(v(p2)). If 5 is a lattice polynomial from P then by the induction
hypothesis either rank(p,) = l or rank(/>2) = 1 or f(v(pl))^f(v(s))^f(v(p2)). If
rank(p!) = l then f(v(p1))^f(v(p2)) implies rank(/72)>l. If p2 = p2,i A/>2 2 then
rank(p2i), rank(p22)<rank(p2) and v(px)^v(p21), v(p22), and by induction we have
f(v(pi))^f(v(p2)). If p2 = p2,i vp2,2) then by Proposition 2.2 and the special form of M
either u(pO < v(p2i) for some i e {1, 2} or there exist At c MP with v(a,) « u(p2,), for
every a.-e/l,-, i e{ l ,2} and such that AxUA2eJ with V(^i U/t2)S:i '(Pi)- Since
rank(p2,) < rank(p2) we conclude by the induction hypothesis that/(u(p1))«/(v(p2)).
Therefore f(v(pi))^f(v(p2)) whenever v(pl)^v(p2). If rank(p2) = 1 the proof is
analogous; hence /(u(/?i)) =f(v(p2)) if v(px) = v(p2). U.

Set ^'(X,E) = (iu,6(X,E), o*). For a compatible mapping /:(AT, E)^ (X', E')
denote b y / ' the mapping f':P(X, E)—*P(X', E') which is the extension of / by the
identity. Obviously / ' is a partial lattice homomorphism. Denote by <P'f the free
extension off and set <&/ = <&'/. Then we obtain:

PROPOSITION 3.6. <&' is an embedding from H(n, m) into Biext(5, Q, <p) and thus O is
an embedding from H{n,m) into SBQ.

Proof. Obviously, for every (X, E)eH(n,m), i*:S—> <t>(X, E) is an injective
homomorphism and o*:Q>(X,E)-*Q is a surjective homomorphism with a * ° i # = <p;
thus (iu,0>(X,E),o*) is an object of Biext(S, Q, q>). For every compatible mapping
/ : (X, £)-» (X1, E') the following diagram commutes:

Consequently, Vf:(i*,<b(X,E),o*)-*((i')*, Q(X',E% {o')*) >s a morphism of
Biext(5,G,<P)- •
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LEMMA 3.7. Let M be a lattice, and let (X, E) e H(n, m). Then every homomorphism
f: <b{X, £ ) - • M with f(x, 0) =f(x, 1) for some xeQ satisfies / ( v , 0) = / ( y , 1) for every
y eQ, and thus f(x) = / ( y ) for every x,y e $>(X, E) with o(x) = o{y).

Proof. Observe that in <&{X,E) for every x e Q we have (x, 1) v (1, 0) = (1,1),
(x, 0) A (0,1) = (0,0), (x, 0) v (0,1) = (x, 1), (x, 1) A (1,0) = (x, 0). •

LEMMA 3.8. / / (X, E), (X1, E') eUandf: <&(X, £)-> <&(X', E') is a homomorphism
with f(x, 0) =tf(x, 1) for every x e L then there exists a compatible mapping g: (X, E)—*
(X',E') with<&g=f.

Proof. For every x eX0 there exists Dx c Xo with \Dx\=m such that B e Eo for every
B^DX with \B\ = n. Then Dx has property (n) in ®(X,E) and inf(D,) = (0,0),
sup(Z)J = (0,1). Hence /(£>,) has property (n), and inf(/(D,))=/(0,0) = (0,0). By
Lemma 3.4 we conclude that f(Dx) c X'o and sup(/(D,)) = (0,1). Thus f(X0) c Xo.
Analogously we obtain that f{X^) c X[ and /(1,0) = (1,0). Thus f(Q x {0}) c Q x {0}
and, if we apply Lemma 3.4 for every (X,, Ei), i e /, we conclude that f(Xj) c X] where
u(j) =f(u(i)). By the properties of R (see Corollary 2.8 and Proposition 2.9), we obtain
that f(x, i) = (x, i) for every xeQ and i e / , f{y)=y for every y eS, f(z) = z for every
zeXi with iel' and there exists a compatible mapping g: (Xla, E,a) —*• (X',o, E',B) defined
by g(z) =f(z) for every z e X,a. Since f(x) = <frg(x) for every x e P(X, E) and P(X, E)
generates <P(X, E) we have <bg —f. •

If we summarize results in Lemmas 3.7 and 3.8 we obtain:

COROLLARY 3.9. / / there is no (0, \)-homomorphism of Q into <b(X, E) for any
(X,E)eU, then SBQ is universal. If for every (X,E)eU and for every (0,1)-
homomorphism f: Q—*<S?(X, E) we have either iu ¥=f ° ou ° i* or an + a# °f' ° on then
Biext(5, Q,q>) is universal.

LEMMA 3.10. If there exists a (0, \)-sublattice Qo of Q such that every quotient of Qo

has at most n - 1 doubly irreducible elements and there exists no (0, l)-homomorphism
from Qo to S then for every (X, E)e U there exists no (0, l)-homomorphism from Q to

, E).

Proof. Assume that there exists a (0, l)-homomorphism f'Q—><t>(X,E). Consider
g = v# °f o 6:Q0-*Q(X, E)u where 6:Q0^>Q is the inclusion. By the assumption,
Im(g) has at most n -1 doubly irreducible elements, and thus Im(g) n XR is an
independent set and according to Lemma 3.5 there exists a (0, l)-homomorphism from Qa

to 5—a contradiction. •

LEMMA 3.11. / / there exists a simple (0,l)-sublattice QQ of Q which is not a
(0, l)-sublattice of S, then for every (X, E)e U there exists no (0, \)-homomorphism from
Q to <D(Z, E).

Proof. Assume that there exists a (0, l)-homomorphism f:Q-+<t>(X, E). Consider
g = v# °f°6:Q0^>Q(X,E)* where 0:Qo^>Q is the inclusion. If I m ^ n A ' R is an
independent set then there exists a (0, l)-homomorphism from Qo to 5—a contradiction.
Thus there exists A c Im(g) D XR with A e ER. By Proposition 3.2(c) A c Im(/ ° 6) and
hence f\A e lm(/ ° 0 )n Q x {0}. Since Qo is simple and v # (g x {0}) = (0,0) we
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conclude that /\A = (0,0) and AeE0. Then \J(A) = (0,1) e Im(/ ° 0) but v*(l , l) =
v*(0,1)—a contradiction to the simplicity of Qo. •

THEOREM 3.12. Let S,Q be (0, \)-lattices and let (p:S-+Q be a (0, l)-homomorphism.
If there exists a (0, l)-sublattice Qo of Q which has no (0, \)-homomorphisms into S and
either there exists finite n such that every quotient of Qo has at most n doubly irreducible
elements or Qo is simple, then SBG and Biext(5, Q, q>) are universal. In particular, if Q
has a finitely generated (0, \)-sublattice without any (0, l)-homomorphisms into S then SBQ

and Biext(5, Q, (p) are universal. Biext(5, Q, q)) is also universal whenever q> is not
one-to-one.

Proof The first statement follows from Proposition 3.6, Corollary 3.9 and Lemmas
3.10 and 3.11. Since a doubly irreducible element has to belong to every set of generators,
we obtain that if Qo has n generators then it has at most n doubly irreducible elements.
Moreover, if QQ has n generators then every quotient of Qo has also n generators; thus we
obtain the second statement. The last statement immediately follows from Corollary 3.9
because if f:Q—*<fr(X,E) is a (0, l)-homomorphism then f°o*>°L**=f°(p and
therefore / ° CT# ° i* is not one-to-one, so that no morphism / of Biext(5, Q, q>) can
factorize through o#. •

COROLLARY 3.13. Let S,Q be (0,l)-lattices, and let <p:S^>Q be a (0,1)-
homomorphism. If S is finite or has a prime ideal, or if Q is finitely generated, then the
following conditions are equivalent:

(a) there exists no (0, \)-homomorphism from Q to S;
(b) SBQ contains a rigid lattice and S and Q are non-isomorphic;
(c) SBQ contains an arbitrarily large rigid lattice;
(d) for every monoid M the class SBG contains a proper class C of non-isomorphic

lattices such that End(N) is isomorphic to M for every N eC;
(e) SBQ is universal.

Proof. If 5 is finite and there exists no (0, l)-homomorphism from Q to 5 then from
the equational compactness [16] of 5 there exists a finitely generated (0, l)-sublattice Qo

of Q without any (0, l)-homomorphisms from Qo to 5. If S has a prime ideal then Q has a
(0, l)-homomorphism to 5 if and only if Q has a prime ideal. If Q has no prime ideal then
by the equational compactness of the two-element lattice [16] there exists a finitely
generated (0, l)-sublattice Qo of Q without any prime ideals. Thus if one of the conditions
holds then by Theorem 3.12 5BQ is universal. Thus (a)=>(e). The implications
(e) ̂  (d) ̂ > (c) => (b) are proved in [15] (note that SBG for 5 = Q fails to satisfy (c)). We
prove (b)^(a). If there exists a (0, l)-homomorphism/:Q—*S, then every lattice M in
SBQ has an endomorphism i* °f ° on, so only Q can be a rigid lattice in SBQ. In this case
5 and Q are isomorphic since i* is one-to-one. • .

Thus Theorem 1.4 is proved. The following corollary generalizes Theorem 1.3 and
thus it gives a solution of the problem given in [13].

COROLLARY 3.14. For a lattice Q, the following conditions are equivalent:
(a) Q has no (0, l)-homomorphism into a free (0, l)-lattice;
(b) Q has no prime ideal;
(c) BQ contains a rigid lattice;
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(d) B Q contains an arbitrarily large rigid lattice;
(e) for every monoid M the class B o contains a proper class C of non-isomorphic

lattices such that End(N) is isomorphic to M for every N e C;
(f) B Q is universal.

Proof. Obviously (a) and (b) are equivalent (a two-element lattice is a free
(0, l)-lattice over the empty set). The equivalence of the other conditions follows from
Corollary 3.13 applied in the case of a two-element lattice S. •

It is well known that any (0, l)-lattice 5 is a (0, l)-sublattice of a simple lattice Q of a
cardinality greater than that of S. Thus Theorem 3.12, when applied to 5 and Q, provides
also an alternative proof of Theorem 1.2.
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