
2 Character Strings

The resolution of problems involving character strings (or simply strings) rapidly
became an important domain in the study of algorithms. These problems occur, of
course, in text processing, such as spell checking and the search for factors (sub-
strings) or for more general patterns. With the development of bioinformatics, new
problems arose in the alignment of DNA chains. This chapter presents a selection of
string-processing algorithms that we consider important.

A character string could be represented internally by a list of symbols, but, in
general, we use the Python native type str, which behaves essentially like a list. The
characters can be encoded with two bytes for a Unicode encoding, but are usually
encoded with only one byte, using the ASCII encoding: each integer between 0 and
127 corresponds to a distinct character, and the codes are organised in such a way that
the successive symbols ‘0’ to ‘9’, ‘a’ to ‘z’ and ‘A’ to ‘Z’ are consecutive. Thereby, if
a string s contains only capitals, we can recover the rank of the ith letter by computing
ord(s[i])-ord(’A’). Conversely, the j th capital letter of the alphabet numbered
from~0—is obtained with chr(j+ord(’A’)).

When we speak of a factor (or substring) of a string, we require the characters to
be consecutive, in contrast with the more general notion of a subsequence.

2.1 Anagrams

Definition
A word w is an anagram of a word v if a permutation of the letters transforming w
into v exists. Given a set of n words of length at most k, we would like to detect all
possible anagrams.

input: below the car is a rat drinking cider and bending its elbow while this thing
is an arc that can act like a cat which cried during the night caused by pain in its
bowel1

output: {bowel below elbow}, {arc car}, {night thing}, {cried cider}, {act cat}

1 Believe it or not: the authors did not consume cider in order to produce this sample input.
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Complexity
The proposed algorithm solves this problem in time O(nk log k) on average, and in
O(n2k log k) in the worst case, due to the use of a dictionary.

Algorithm
The idea is to compute a signature for each word, so that two words are anagrams of
each other if and only if they have the same signature. This signature is simply a new
string made up of the same letters sorted in lexicographical order.

The data structure used is a dictionary associating with each signature the list of
words with this signature.

def anagrams(S): # S is a set of strings
d = {} # maps s to list of words with signature s
for word in S: # group words according to the signature

s = ’’.join(sorted(word)) # calculate the signature
if s in d:

d[s].append(word) # append a word to an existing signature
else:

d[s] = [word] # add a new signature and its first word
# -- extract anagrams, ingoring anagram groups of size 1
return [d[s] for s in d if len(d[s]) > 1]

Problem
Anagram verifier [spoj:ANGRAM]

2.2 T9—Text on 9 Keys

input: 2665687
output: bonjour

Application
Mobile telephones with keys offer an interesting input mode, sometimes called T9.
The 26 letters of the alphabet are distributed over the keys 2 to 9, as in Figure 2.1.
To input a word, it suffices to input the corresponding sequence of digits. However, as
several words could begin with the same digits, a dictionary must be used to propose
the most probable word. At any moment, the telephone displays the prefix of the most
probable word corresponding to the sequence of digits entered.
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Definition
The first part of the problem instance is a dictionary, composed of pairs (m,w) where
m is a word over the alphabet of 26 lower-case letters, and w is a weight of the
importance of the word. The second part is a series of sequences of digits from 2
to 9. For each sequence s, the word in the dictionary of maximal weight is to be
displayed. A word m corresponds to s if s is a prefix of the sequence t obtained from
m by replacing each letter by the corresponding digit, according to the correspondence
table given in Figure 2.1. For example, ‘bonjour’ corresponds to 26, but also to 266
or 2665687.

WXYZ

ABC

2

7 8 9

0

1 3

4 5 6

* #

DEF

GHI JKL MNO

PQRS TUV

Figure 2.1 The keys of a mobile phone.

Algorithm
The complexity is O(nk) for the initialisation of the dictionary, and O(k) for each
request, where n is the number of words in the dictionary and k an upper bound on the
length of the words.

In a first phase, we compute for each prefix p of a word in the dictionary the
total weight of all the words with prefix p. This weight is stored in a dictionary
total_weight. In a second phase, we store in a dictionary prop[seq] the prefix to
be proposed for a given sequence seq. A scan over the keys in total_weight allows
the determination of the prefix with greatest weight.

A principal ingredient is the function code_word, which for a given word returns
the corresponding sequence of digits.

To improve readability, the implementation below is in O(nk2).
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t9 = "22233344455566677778889999"
# abcdefghijklmnopqrstuvwxyz mapping on the phone

def letter_to_digit(x):
assert ’a’ <= x <= ’z’
return t9[ord(x) - ord(’a’)]

def code_word(word):
return ’’.join(map(letter_to_digit, word))

def predictive_text(dic):
# total_weight[p] = total weight of words having prefix p
total_weight = {}
for word, weight in dic:

prefix = ""
for x in word:

prefix += x
if prefix in total_weight:

total_weight[prefix] += weight
else:

total_weight[prefix] = weight
# prop[s] = prefix to display for s
prop = {}
for prefix in total_weight:

code = code_word(prefix)
if (code not in prop

or total_weight[prop[code]] < total_weight[prefix]):
prop[code] = prefix

return prop

def propose(prop, seq):
if seq in prop:

return prop[seq]
return None

Problem
T9 [poj:1451]
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2.3 Spell Checking with a Lexicographic Tree

Application
How should the words of a dictionary be stored in order to implement a spell checker?
For a given word, we would like to quickly find a dictionary word close to it in the
sense of the Levenshtein edit distance, see Section 3.2 on page 63. If we store the
dictionary words in a hash table, then we lose all proximity information between
words. It is better to store them in a lexicographic tree, also known as a prefix tree
or a trie (pronounced like ‘try’).

Definition
A trie is a tree that stores a set of words. The edges of a node towards its children are
labelled by distinct letters. Each word in the dictionary then corresponds to a path from
the root to a node in the tree. The nodes are marked to distinguish those corresponding
to words in the dictionary from those that are only strict prefixes of such words, see
Figure 2.2.

Spell Checking
With such a structure, it is easy to find a dictionary word that is at a distance dist from
a given word, for the Levenshtein edit distance defined in Section 3.2 on page 63. It
suffices to simulate the edit operations at each node, and invoke recursive calls to the
search with the parameter dist - 1.
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Figure 2.2 A lexicographic tree for the words as, port, pore, pré, près, prêt (but without the
accents). In this figure, the label of each edge is indicated in the node of the child. The circles
with solid boundaries mark the nodes that correspond to words in the dictionary. On the right,
we show a Patricia trie for the same dictionary.
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from string import ascii_letters # in Python 2 one would import letters

class TrieNode:
def __init__(self): # each node will have

self.is_word = False # 52 children -
self.s = {c: None for c in ascii_letters} # most will remain empty

def add(T, w, i=0): # Add a word to the trie
if T is None:

T = TrieNode()
if i == len(w):

T.is_word = True
else:

T.s[w[i]] = add(T.s[w[i]], w, i + 1)
return T

def Trie(S): # Build the trie for the words in the dictionary S
T = None
for w in S:

T = add(T, w)
return T

def spell_check(T, w): # Spell check a word against the trie
assert T is not None
dist = 0
while True:

u = search(T, dist, w)
if u is not None: # Match at distance dist

return u
dist += 1 # No match - try increasing the distance

def search(T, dist, w, i=0):
if i == len(w):

if T is not None and T.is_word and dist == 0:
return ""

else:
return None

if T is None:
return None

f = search(T.s[w[i]], dist, w, i + 1) # matching
if f is not None:

return w[i] + f
if dist == 0:

return None
for c in ascii_letters:

f = search(T.s[c], dist - 1, w, i) # insertion
if f is not None:

return c + f
f = search(T.s[c], dist - 1, w, i + 1) # substitution
if f is not None:

return c + f
return search(T, dist - 1, w, i + 1) # deletion
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Variant
A more complex structure exists that merges nodes as long as they have a single child.
A node is thus labelled with a word, rather than by a simple letter, see Figure 2.2. This
structure, optimal in memory and in traversal time, is known as a Patricia trie (see
Morrison, 1968).

Problem
Spell checker [icpcarchive:3872]

2.4 Searching for Patterns

input: lalopalalali lala
output ^

Definition
Given a string s of length n and a pattern t of length m, we want to find the first index
i such that t is a factor of s at the position i. The response should be −1 if t is not a
factor of s.

Complexity
O(n+m) (see Knuth et al., 1977).

Naive Algorithm
This consists of testing all possible alignments of t under s and for each alignment i

verifying character by character if t corresponds to s[i..i + m − 1]. The complexity
is O(nm) in the worst case. The following example illustrates the comparisons
performed by the algorithm for an example. Each line corresponds to a choice of
i, and indicates the characters of the ‘pattern motif’ that match, or an × for a
difference.

l a l o p a l a l a l i

0 l a l ×
1 ×
2 l ×
3 ×
4 ×
5 ×
6 l a l a

Observe that after handling a few i, we already know about a good portion of the
string s. We could use this information to skip the comparison of t[0] with s[i] in
the above example. This observation is extended to a study of the boundaries of the
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2.5 Maximal Boundaries—Knuth–Morris–Pratt 49

strings, leading to the optimal Knuth–Morris–Pratt algorithm, described in the next
section.

2.5 Maximal Boundaries—Knuth–Morris–Pratt

entrée: abracadabra
sortie: abra abra

An important classic problem on character strings is the detection of occurrences
of a pattern t in a string s. The Knuth–Morris–Pratt algorithm solves this problem
in optimal linear time O(|t | + |s|) (see Knuth et al., 1977). The essential ingredient
of this algorithm is the search for the boundaries of a string, which is the subject of
this section. At first sight this problem seems to be totally artificial and without any
applications. However, do not be fooled—this problem is at the heart of several classic
problems concerning character strings, and we will present a few of these. We begin
by introducing a few formal notions. Note that in what follows, the terms ‘word’ and
‘character string’ are used interchangeably.

Definition
The boundary of a word w is a word that is at the same time a strict prefix and a strict
suffix of w, where by strict we mean that the length of the boundary must be strictly
less than the length of w. The maximal boundary of w is its longest boundary, and
is denoted β(w). For example, abaababaa has for boundaries abaa, a and the empty
word ε, hence β(abaababaa) = abaa. See Figure 2.3 for an illustration.

a b a a b a b a a

a b a a b a b a a

w:

w:

maximal boundary

Figure 2.3 Intuitively, the maximal boundary represents the longest overlap of a word with
itself: take two copies of the word w one over the other, and slide the second to the right until
the letters of the two words coincide. The portion of w corresponding to this overlap is then its
maximal boundary.

Given a string w = w0 · · ·wn−1, we would like to compute its maximal boundary.
As we will see further on, this problem is recursive in nature, and hence the solution
is based on the computation of the maximal boundaries of each of its prefixes. As a
boundary is completely described by its length, we will in fact compute the lengths of
the maximal boundaries. We thus seek to efficiently construct the sequence of lengths
fi = |β(w0 · · ·wi)| for i = 0, . . . ,n− 1, see Figure 2.4.
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ba
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b a a

a b
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w: a b a a b a b a a

0 1 2 3 4 5 6 7 8indices:

f0=0

f1=0

f2=1

f3=1

f4=2

f5=3

f6=2

f7=3

f8=4

Figure 2.4 The array f of boundary lengths illustrated with an example. For a given string w, fi

is the largest value k such that the suffix wi−k+1 . . . wi is equal to the prefix w0 . . . wk−1.

Key Observation
The relation of being a boundary is transitive: if v is a boundary of a boundary b of
u, then v is also a boundary of u. Moreover, if v is a boundary of u shorter than β(u),
then v is a boundary of β(u), see Figure 2.5. Hence, the iterated application of β to
a word w generates all the boundaries of w. For example, with w = abaababa, we
have β(w) = aba, then β(β(w)) = a and finally β(β(β(w))) = ε. This will prove very
useful for our algorithm.

ux u x

β(u) ? β(u) x

β(ux) v x v x

Figure 2.5 Visual explanation of the proof: every boundary of uwi can be written vwi where v is
a boundary of u, hence knowing the lengths of the boundaries of u allows the identification of
the longest boundary of uwi .

Algorithm and Proof
Suppose that we know the maximal boundaries for the first i prefixes of w, i.e. up to
the prefix u = w0 · · ·wi−1, for 1 ≤ i < n. Consider the next prefix uwi : if its maximal
boundary is not the empty word, then it is of the form vwi where v is a boundary
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of u. Thus, to find the longest boundary of uwi it suffices to verify whether for each
boundary v of u in order of decreasing length, the word vwi is a boundary of uwi , see
Figure 2.5. We already know that vwi is a suffix of uwi and that v is a prefix of u,
hence it suffices to compare the two letters wk =? wi where k = |v|: indeed, wk is the
letter following the prefix v in uwi . How can we iterate over the boundaries v of u in
order of decreasing size? We simply successively apply the function β to the word u,
until we hit the empty word. Note that to perform this test, we only need to know the
lengths of the boundaries v of u, which have been stored in the array f .

Illustration
We use a window that exposes a letter wi of the first copy of w and a letter wk of the
second copy. Three cases must be considered:

1. If the two characters are equal, then we know that w0 · · ·wk is the longest bound-
ary of w0 · · ·wi , and set fi = k + 1, since |w0 · · ·wk| = k + 1. The win-
dow is then shifted one step to the right in order to process the next prefix, see
Figure 2.6; this corresponds to an increment of both i and k.

2. If not, in the case wk �= wi and k > 0, we move on to the next smaller boundary
β(w0 . . . wk−1), of size fk−1. This boils down to shifting to the right the second
copy of w, until its contents coincide with the first along the whole of the left part
of the window, see Figure 2.6.

3. The final case corresponds to k = 0 and w0 �= wi . At this point, we know that the
maximal boundary of w0 . . . wi is the empty word. We thus set fi = 0.

a b a a b a b a a

a b a a b a b a a

a b a a b a b a a

a b a a b a b a a

a b a a b a b a a

a b a a b a b a a

i

k

Figure 2.6 An example of the execution of the Knuth–Morris–Pratt algorithm. When the
window reveals two identical characters, we set fi = k + 1 and shift to the right, which comes
down to incrementing i and k. However, when the window exposes two different characters,
the bottom word must be shifted to the right, so that its prefix determined by the window is of
length fk−1.
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Code
All these cases can be captured in just a few lines of code. An outer while loop looks
for the boundary of a suitable prefix (case 2 above). We exit this loop for one of
two reasons. First, if k = 0 (no non-empty boundary was found), then only a single
character remains to test: wk =? wi . If yes, then fi = 1 (case 1); if not, fk = 0
(case 3). Second, we exit because a non-empty boundary is found where wk = wi and
fi = k + 1: we increment k and then assign k to fi . We thus ensure that at each start
of the loop for, the value of k corresponds to the length of the longest boundary of the
preceding prefix.

def maximum_border_length(w):
n = len(w)
f = [0] * n # init f[0] = 0
k = 0 # current longest border length
for i in range(1, n): # compute f[i]

while w[k] != w[i] and k > 0:
k = f[k - 1] # mismatch: try the next border

if w[k] == w[i]: # last characters match
k += 1 # we can increment the border length

f[i] = k # we found the maximal border of w[:i + 1]
return f

Complexity
This algorithm consists of a while loop nested in a for loop, which suggests a
quadratic complexity. However, the behaviour of the algorithm should be considered
using the example illustrated above. For each comparison wk =? wi in the algorithm,
either the word on the bottom is shifted to the right or the window is shifted to the
right. Each of these movements can only be executed at most |w| times, which shows
the linear complexity in |w|: we speak of amortised complexity, as the long iterations
are on average compensated by other shorter iterations.

Application: Find the Longest Boundary Palindrome
input: lilipolilil
output: lil lil

A word x = x0x1 · · · xn−1 is a palindrome if x = ←−
x , where ←−x = xn−1 · · · x1x0.

Given a word x, we look for the longest palindrome u such that x can be written in
the form x = uvu for a word v. This problem comes down to seeking the longest
boundary of x

←−
x .

Application: Find a Pattern t in the String s

input: fragil supercalifragilisticexpialidocious
output: ^

The most important application of the maximal boundary algorithm is the search for
the first occurrence of a pattern t within a string s whose length is greater than |t |. The
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naive approach consists of testing all the possible positions of t with respect to s. More
precisely, for each position i = 0 . . . n − m in s we test if the substring s[i : i + m]
is equal to t . This equality test involves comparing for every j = 0 . . . m − 1 the
character s[i + j ] with t[j ]. These two nested loops have complexity O(nm).

The Knuth–Morris–Pratt algorithm selects a letter # occurring neither in t nor in s

and we consider the lengths fi of the maximal boundaries of the prefixes of w = t#s.
Note that these boundaries can never be longer than t , due to the character #, hence
fi ≤ |t |. However, if ever fi = |t |, then we have found an occurrence of t in s. In
the positive case, the answer to the problem is the index i − 2|t |: the length of t is
subtracted twice from i, once to arrive at the start of the boundary and another time
to obtain the index in s rather than in w, see Figure 2.7. Note that this algorithm
is a bit different from the classic presentation of the Knuth–Morris–Pratt algorithm,
composed of a pre-computation of the array f of boundaries of t followed by a very
similar portion seeking the maximal alignments of t with the prefixes of s.

a b a a # a b a b a a b a a

0 0 1 1 0 1 2 3 2 3 4 2 3 4

t#s:

f:

a b a a

a b a a

Figure 2.7 An execution of the maximal boundary search algorithm. Each occurrence of t in s

corresponds to a boundary of length |t | in the array f of lengths of maximal boundaries.

def knuth_morris_pratt(s, t):
sep = ’\x00’ # special unused character
assert sep not in t and sep not in s
f = maximum_border_length(t + sep + s)
n = len(t)
for i, fi in enumerate(f):

if fi == n: # found a border of the length of t
return i - 2 * n # beginning of the border in s

return -1

Method Provided by the Language Python
Note that the language Python provides an integrated method find, allowing the
search of a pattern t in a string s, simply with the expression s.find(t). A second
optional parameter permits the search to be started at a certain index in s. This func-
tionality will be useful in the problem of the determination of the period of a word,
presented below.
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Note
All standard libraries of common programming languages propose a function that
looks for a pattern needle in a string haystack. However, the function provided by
Java 10 has worst-case complexity �(nm), which is astonishingly expensive. We
invite the reader to measure, for their favourite language, the execution time as a
function of n of the search for the pattern anb in the string a2n, and protest if it is not
linear.

Application: Determine the Largest Integer Power of a Word
input: blablabla
output: (bla)^{3}

Given a word x, we would like to identify the largest integer k such that x can be
written as zk for a word z. If k > 1, then we say that x is not primitive.

We can use our Swiss army knife of the computation of boundaries to solve this
problem: if x can be written as y�, then all the yp for p = 0, . . . ,�− 1 are boundaries
of x. It remains to prove that y�−1 is the maximal boundary of x. So, if n is the length
of u and if n − fn divides n, the word is not primitive and the largest value of k we
seek is n/(n− fn), see Figure 2.8.

u a b a a b a a b a

β(u) a b a a b a
n − n

a b a a b a

Figure 2.8 Knowing the maximal boundary of a periodic word allows the determination of its
smallest period, here aba.

Proof
Suppose that w = zk for k maximal and β(w) can be written as zk−1q where qb = z

for a certain non-empty b. First, note that z = qb = bq (see Figure 2.9), hence
|b| ≤ |q|, otherwise zk−1b would be a larger boundary of w. Hence, b is a boundary of
z and bz = zb = bqb. Thus, bw = wb, meaning that at the same time b is a boundary
of w and w is a boundary of bw. We now prove the key observation: as long as b� is
smaller that w, then b� is a boundary of w. We already know this is true for � = 1,
and if it is true for b�, then bb� is a boundary of bw = wb; hence b�+1 and w are
boundaries of bw. This means that either b�+1 is a boundary of w, or w is a boundary
of b�+1. Let L be the largest integer for which bL is a boundary of w: then w = bLr =
rbL for a word r strictly smaller than b. If r is non-empty, then we have found a
boundary larger than the maximal boundary zk−1q, a contradiction. Hence, r is empty
and since |b| < |z|, the factorisation bL is suitable for L > k, again a contradiction.
See Figure 2.9
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def powerstring_by_border(u):
f = maximum_border_length(u)
n = len(u)
if n % (n - f[-1]) == 0: # does the alignment shift divide n ?

return n // (n - f[-1]) # we found a power decomposition
return 1

w

z

z

z

z

z

z

z

z

z

q b

q

q

Figure 2.9 If w = z4 = z3qb and we suppose that the maximal boundary of w is z3q, then the
boundary property allows us to see that z = bq = qb.

Note that a shorter implementation exists using the substring search function inte-
grated with Python, see Figure 2.10.

def powerstring_by_find(u):
return len(x) // (x + x).find(x, 1)

a b a a b a a b a a b a a b a a b a

a b a a b a a b a

Figure 2.10 Detection of the first non-trivial position of x in xx allows the identification of its
smallest period, here 3.

Application: Conjugate of a Word
input: sweetsour soursweet
output: sweet|sour sour|sweet

Another classic problem consists in detecting whether two words x and y are
conjugate, i.e. if they can be written as x = uv and y = vu for words u and v. In
the affirmative case, we would like to find the decomposition of x and y minimising
the length of u. This boils down to simply looking for the first occurrence of y in the
word xx.

Problems
Find the maximal product of string prefixes [codility:carbo2013]
A Needle in the Haystack [spoj:NHAY]
Power strings [kattis:powerstrings]
Period [spoj:PERIOD]
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2.6 Pattern Matching—Rabin–Karp

Complexity
The expected time is O(n+m), but the worst case complexity is O(nm).

Algorithm
The Rabin–Karp algorithm 1987 is based on a completely different idea from
Knuth–Morris–Pratt. To find a pattern t in a large string s, we slide a window of
length len(t) over s and verify if the content of this window is equal to t . Since a
character-by-character test is very costly, we instead maintain a hash value for the
contents of the current window and compare it to the hash value of the search string t.
If ever the hash values coincide, we proceed to the expensive character-by-character
test, see Figure 2.11. To obtain an interesting complexity, it is necessary to efficiently
update the hash value as the window shifts. We thus use what is known as a rolling
hash function.

If the hash function, with values in {0,1, . . . ,p − 1}, is well-chosen, we would
expect a collision—i.e. when two distinct strings u,v with the same size, selected
uniformly, give the same hash value—to occur with probability on the order of 1/p.
In this case, the mean complexity of the algorithm is O(n + m + m/p). Our imple-
mentation uses p on the order of 256, hence in practice the complexity is O(n + m),
but in the worst case, it is O(nm).

Figure 2.11 The idea of the Rabin–Karp algorithm is to first compare the hash values between t

and a window on s before performing a costly character-by-character comparison.

Rolling Hash Function
Our hash function first transforms an m-character string into m integers x0, . . . ,xm−1,
corresponding to their ASCII codes, lying between 0 and 127. The value of the hash
function is then the multilinear expression

h(x0, . . . ,xm−1) = (x0 · 128m−1 + x1 · 128m−2 + · · · + xm−2 · 128+ xm−1) mod p

where all of the operations are performed modulo a large prime number p. In practice,
care should be taken so that all of the values calculated can be manipulated on a
64-bit machine, where a machine word (CPU register) contains signed integer values
between −263 and 263− 1. The largest intermediate value calculated by the algorithm
is 128 · (p−1) = 27 · (p−1), hence for our implementation we have chosen p < 256.

The polynomial form of this hash function allows us to calculate in constant time
the value of h(x1, . . . ,xm) in terms of x0,xm and h(x0, . . . ,xm−1): removing the first
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character amounts to subtracting the first term, shifting the characters to the left
corresponds to a multiplication by 128 and modifying the last character is done by
adding a term. Consequently, shifting the window on s, updating the hash value and
comparing it with that of t takes constant time.

Note in the code below the addition of the value DOMAIN * PRIME (which is of
course 0 mod p) to ensure that the calculations remain in the non-negative integers.
This is not strictly necessary in Python but is required in languages such as C++, where
the calculation of modulo can return a negative number.

PRIME = 72057594037927931 # < 2^{56}
DOMAIN = 128

def roll_hash(old_val, out_digit, in_digit, last_pos):
val = (old_val - out_digit * last_pos + DOMAIN * PRIME) % PRIME
val = (val * DOMAIN) % PRIME
return (val + in_digit) % PRIME

The implementation of the algorithm begins with a function to compare character-
by-character factors of length k in s at the position i and in t at the position j .

def matches(s, t, i, j, k):
# tests if s[i:i + k] equals t[j:j + k]
for d in range(k):

if s[i + d] != t[j + d]:
return False

return True

Next, the implementation of the Rabin–Karp algorithm itself begins with the com-
putation of the hash values of t and of the first window on s, followed by a loop over
all the factors of s, until a match is found.

def rabin_karp_matching(s, t):
hash_s = 0
hash_t = 0
len_s = len(s)
len_t = len(t)
last_pos = pow(DOMAIN, len_t - 1) % PRIME
if len_s < len_t: # substring too long

return -1
for i in range(len_t): # preprocessing

hash_s = (DOMAIN * hash_s + ord(s[i])) % PRIME
hash_t = (DOMAIN * hash_t + ord(t[i])) % PRIME

for i in range(len_s - len_t + 1):
if hash_s == hash_t: # hashes match

# check character by character
if matches(s, t, i, 0, len_t):

return i
if i < len_s - len_t:

# shift window and calculate new hash on s
hash_s = roll_hash(hash_s, ord(s[i]), ord(s[i + len_t]),

last_pos)
return -1 # no match
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This algorithm is less efficient than that of Knuth–Morris–Pratt: our experiments
measured roughly a factor of 3 increase in the computation time. Nevertheless, its
interest lies in the fact that its technique can be applied to solve several interesting
variants of this problem.

Variant: The Search for Multiple Patterns
The Rabin–Karp algorithm which verifies if a string t is a factor of a given string s

can naturally be generalised to a set T of strings to be found in s, in the case where
all of the strings of T have the same length. It suffices to store the hash values of the
strings in T in a dictionary to_search and for each window on s to verify whether
the associated hash value is contained in to_search.

Variant: Common Factor
Given two strings s,t and a length k, we look for a string f of length k that is
at the same time a factor of s and of t . To solve this problem, we first consider
all of the factors of length k of the string t . These substrings are obtained in an
analogous method to the Rabin–Karp algorithm, by sliding a window of size k across
t and storing the resulting hash values in a dictionary pos. With each hash value, we
associate the start positions of the corresponding windows.

Next, for each factor x of s of length k, we verify whether the hash value v is in
pos, in which case we compare character-by-character x with the factors in t at the
positions of pos[v].

For this algorithm, we must pay attention to the choice of the hash function. If
s and t are of length n, it is necessary to choose p ∈ �(n2), so that the number
of collisions between the hash values of one of the O(n) windows of t with one
of the O(n) windows of s is roughly constant. For a precise analysis, see Karp and
Rabin (1987).

Variant: Common Factor with Maximal Length
Given two strings s,t , finding the longest common factor can be done with a
binary search on the length k by using the previous algorithm. The complexity is
O(n log m) where n is the total length of s and t , and m is the length of the optimal
factor.
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def rabin_karp_factor(s, t, k):
last_pos = pow(DOMAIN, k - 1) % PRIME
pos = {}
assert k > 0
if len(s) < k or len(t) < k:

return None
hash_t = 0

# First calculate hash values of factors of t
for j in range(k):

hash_t = (DOMAIN * hash_t + ord(t[j])) % PRIME
for j in range(len(t) - k + 1):

# store the start position with the hash value
if hash_t in pos:

pos[hash_t].append(j)
else:

pos[hash_t] = [j]
if j < len(t) - k:

hash_t = roll_hash(hash_t, ord(t[j]), ord(t[j + k]), last_pos)

hash_s = 0
# Now check for matching factors in s
for i in range(k): # preprocessing

hash_s = (DOMAIN * hash_s + ord(s[i])) % PRIME
for i in range(len(s) - k + 1):

if hash_s in pos: # is this signature in s?
for j in pos[hash_s]:

if matches(s, t, i, j, k):
return (i, j)

if i < len(s) - k:
hash_s = roll_hash(hash_s, ord(s[i]), ord(s[i + k]), last_pos)

return None

Problem
Longest Common Substring [spoj:LCS]

2.7 Longest Palindrome of a String—Manacher

input: babcbabcbaccba
output: abcbabcba

Definition
A word s is a palindrome if the first character of s is equal to the last, the second is
equal to the next-to-last and so on.

The problem of the longest palindrome consists in determining the longest factor
that is a palindrome.
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Complexity
This problem can be solved in quadratic time with the naive algorithm, in time
O(n log n) with suffix arrays, but in time O(n) with Manacher’s algorithm (1975),
described here.

Algorithm
First, we transform the input s by inserting a separator # around each character and
by adding sentinels ^ and $ around the string. For example, abc is transformed into
^#a#b#c#$. Let t be the resulting string. This allows us to process in an equivalent
manner palindromes of both even and odd length. Note that with this transformation,
every palindrome begins and ends with the separator #. Thus, the two ends of a
palindrome have indices with the same parity, which simplifies the transformation
of a solution on the string t into one on the string s. The sentinels avoid special care
for the border cases.

The word nonne contains a palindrome of length 2 (nn) and one of length 3 (non). Their
equivalents in

|-----|
^#n#o#n#n#e#$

|---|

all begin and end with the separator #.

The output of the algorithm is an array p indicating for each position i, the largest
radius r such that the factor from i − r to i + r is a palindrome. The naive algorithm
is the following: for each i, we initialise p[i] = 0 and increment p[i] until we find the
longest palindrome t[i − p[i], . . . ,i + p[i]] centred on i.

d
i

c
j

Figure 2.12 Manacher’s algorithm. Having already computed p for the indices < i, we wish to
compute p[i]. Suppose there is a palindrome centred on c of radius d − c with d maximal, and
let j be the mirror image of i with respect to c. By symmetry, the palindrome centred on j of
radius p[j ] must be equal to the word centred on i, at least up to the radius d − i.
Consequently, p[j ] is a lower bound for the value p[i].

Manacher’s improvement concerns the initialisation of p[i]. Suppose we already
know a palindrome centred on c with radius r , hence terminating on the right at
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d = c + r . Let j be the mirror image of i with respect to c, see Figure 2.12. There is
a strong relation between p[i] and p[j ]. In the case where i +p[j ] is not greater than
d, we can initialise p[i] by p[j ]. This is a valid operation, as the palindrome centred
on j of radius p[j ] is included in the first half of the palindrome centred on c and of
radius d − c; hence it is also found in the second half.

After having computed p[i], we must update c and d, to preserve the invariant that
they code a palindrome with d − c maximal. The complexity is linear, since each
comparison of a character is responsible for an incrementation of d.

def manacher(s):
assert set.isdisjoint({’$’, ’^’, ’#’}, s) # Forbidden letters
if s == "":

return (0, 1)
t = "^#" + "#".join(s) + "#$"
c = 1
d = 1
p = [0] * len(t)
for i in range(2, len(t) - 1):

# -- reflect index i with respect to c
mirror = 2 * c - i # = c - (i-c)
p[i] = max(0, min(d - i, p[mirror]))
# -- grow palindrome centered in i
while t[i + 1 + p[i]] == t[i - 1 - p[i]]:

p[i] += 1
# -- adjust center if necessary
if i + p[i] > d:

c = i
d = i + p[i]

(k, i) = max((p[i], i) for i in range(1, len(t) - 1))
return ((i - k) // 2, (i + k) // 2) # extract solution

Application
A man is walking around town, and his smartphone registers all of his movements.
We recover this trace and seek to identify a certain type of trajectory during the day,
notably round trips between two locations that use the same route. For this, we extract
from the trace a list of street intersections and check it for palindromes.

Problems
Longest Palindromic Substring [spoj:LPS]
Casting Spells [kattis:castingspells]
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