
11

Massive gauge fields

In the preceding chapter (Section 10.2), we set up a simple Lorentz invariant

Lagrangian density, which we required to be also invariant under a local U(1)

transformation. This requirement leads to the introduction of a ‘gauge field’ Aμ.

The system has a degenerate ground state. Breaking the local symmetry results in

the appearance of a vector field carrying mass, together with a scalar Higgs field

also carrying mass. The motivation for introducing mass in this way is that the

subsequent quantum theory can be renormalised. In this chapter we apply the same

idea to a more complicated Lagrangian, which will turn out to have remarkable

physical significance.

11.1 SU(2) symmetry

As a further generalisation, which is basic to the Standard Model, we shall construct

a Lagrangian density that is invariant under a local SU(2) transformation as well as

a local U(1) transformation. The idea was first explored by Yang and Mills (1954).

We introduce a two-component field

� =
(

�A

�B

)
, (11.1)

where now �A and �B are both complex scalar fields,

�A = φ1 + iφ2, �B = φ3 + iφ4,

giving, in total, four real fields.

If e−iθ is any element of the group U(1) and U is any element of the group SU(2)

(discussed in Appendix B), so that U†U = UU† = 1, we require the Lagrangian

density to be invariant under the U(1) × SU(2) transformation

� → �′ = e−iθU�. (11.2)
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108 Massive gauge fields

A simple Lagrangian density that has a global U(1) × SU(2) symmetry is

L� = ∂μ�†∂μ� − V (�†�). (11.3)

In terms of the real fields,

�†� = �∗
A�A + �∗

B�B = φ2
1 + φ2

2 + φ2
3 + φ2

4,

∂μ�†∂μ� = ∂μφ1∂
μφ1 + ∂μφ2∂

μφ2 + ∂μφ3∂
μφ3 + ∂μφ4∂

μφ4.

If V (�†�) = m2�†�, this Lagrangian density corresponds to four independent

free scalar fields, all with the same mass m (cf. (3.18)).

In the Standard Model, the U(1) and SU(2) global symmetries are promoted to

local symmetries. The U(1) transformation may be written

� → �′ = e−iθ� = exp(−iθτ 0)�, (11.4a)

where in this context we write τ 0 for the unit matrix

τ 0 =
(

1 0

0 1

)
.

For this to become a local symmetry, we must introduce a vector gauge field Bμ(x)τ 0

with the transformation law

Bμ(x) → B ′
μ(x) = Bμ(x) + (2/g1)∂μθ, (11.4b)

and make the replacement

i∂μ → i∂μ − (g1/2)Bμ,

as in Chapter 7. Here the constant g1 is a dimensionless parameter of the theory,

and the factor 2 follows convention.

Any element of SU(2) can be written in the form

U = exp(−iαkτ k) (11.5)

where the αk are three real numbers and the τ k are the three generators of the group

SU(2). The τ k are identical to the Pauli spin matrices:

τ 1 =
(

0 1

1 0

)
, τ 2 =

(
0 −i

i 0

)
, τ 3 =

(
1 0

0 −1

)
.

For the global SU(2) symmetry to be made into a local SU(2) symmetry, with U =
U(x) dependent on space and time coordinates, we must introduce a vector gauge

field Wμ
k(x) for each generator τ k . The transformation law for the matrices

Wμ(x) = Wμ
k(x)τ k
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11.2 The gauge fields 109

is

Wμ(x) → W′
μ(x) = U(x)Wμ(x)U†(x) + (2i/g2)(∂μU(x))U†(x), (11.6)

which is a generalisation of (11.4). Here g2 is another dimensionless parameter of

the theory.

Note that the matrices

Wμ(x) =
(

W 3
μ

W 1
μ + iW 2

μ

W 1
μ − iW 2

μ

−W 3
μ

)
(11.7)

are Hermitian and have zero trace. These properties are preserved by the transfor-

mation (11.6) as is clearly necessary (Problem 11.1). A global SU(2) transformation

W′
μ= UWμU† corresponds to a rotation of the vectors Wμ

k in the three-dimensional

‘weak isospin’ space defined by the generators τ k . (See Appendix B.)

Finally we define

Dμ� = [∂μ + (ig1/2)Bμ + (ig2/2)Wμ]�. (11.8a)

It is straightforward to show

D′
μ�′ = [∂μ + (ig1/2)B ′

μ + (ig2/2)W′
μ]�′ = e−iθUDμ�,

where

�′ = e−iθU�. (11.8b)

Hence the locally gauge invariant Lagrangian density corresponding to (11.3) is

L� = (Dμ�)†Dμ� − V (�†�). (11.9)

L� is also invariant under Lorentz transformations if we require Bμ and Wμ to

transform as covariant four-vectors.

11.2 The gauge fields

In the case of the gauge field Bμ, we define the field strength tensor Bμν by

Bμν = ∂μ Bν − ∂ν Bμ, (11.10)

and take the dynamical contribution to the Lagrangian density to be −(1/4) Bμν Bμν ,

as in Section 4.2.
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110 Massive gauge fields

There are additional complications in introducing the field strength tensors for

the gauge fields Wμ, stemming from the non-Abelian nature of the group SU(2).

The field strength tensor must be taken to be

Wμν = [∂μ + (ig2/2)Wμ]Wν − [∂ν + (ig2/2)Wν]Wμ. (11.11)

Under an SU(2) transformation, Wμ → W′
μ
, given by (11.6), it is straightforward,

if tedious, to show that

Wμν → W′
μν

= UWμνU†. (11.12)

In verifying this result, note that, since UU† = 1,

U(∂μU†) + (∂μU)U† = 0.

The complicated definition of Wμν given by (11.11) is necessary in order to achieve

the simple transformation property (11.12).

We then take the total dynamical contribution to the Lagrangian density associ-

ated with the gauge fields to be

Ldyn = −1

4
Bμν Bμν − 1

8
Tr(WμνWμν). (11.13)

Using (11.12) and the cyclic invariance of the trace, we can see that Ldyn is invariant

under a local SU(2) transformation.

Using the results [τ 2, τ 3] = 2iτ 1, etc., the matrix Wμν may be written

Wμν = W i
μντ

i (11.14)

where

W 1
μν

= ∂μW 1
ν − ∂νW 1

μ − g2

(
W 2

μW 3
ν − W 2

ν W 3
μ

)
, (11.15a)

W 2
μν

= ∂μW 2
ν − ∂νW 2

μ − g2

(
W 3

μW 1
ν − W 3

ν W 1
μ

)
, (11.15b)

W 3
μν

= ∂μW 3
ν − ∂νW 3

μ − g2

(
W 1

μW 2
ν − W 1

ν W 2
μ

)
. (11.15c)

Since Tr(τ i )2 = 2, and Tr(τ iτ j ) = 0, i �= j , we can use (11.14) to express the

Lagrangian density in the more reassuring form:

Ldyn = −1

4
Bμν Bμν −

3∑
i=1

1

4
W i

μνW iμν. (11.16)

We shall see, later in this chapter, that the fields W 1
μ and W 2

μ are electrically

charged, and it is convenient to define here the complex combinations

W +
μ = (

W 1
μ − iW 2

μ

)
/
√

2, W −
μ = (

W 1
μ + iW 2

μ

)
/
√

2. (11.17)
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11.3 Breaking the SU(2) symmetry 111

Note that the field W −
μ is the complex conjugate of the field W +

μ . We also define

W +
μν = (

W 1
μν − iW 2

μν

)
/
√

2

= (
∂μ + ig2W 3

μ

)
W +

ν − (
∂ν + ig2W 3

ν

)
W +

μ (11.18)

using (11.15a) and (11.15b). W −
μν is defined similarly.

We can also write (11.15c) as

W 3
μν = ∂μW 3

ν − ∂νW 3
μ − ig2

(
W −

μ W +
ν − W −

ν W +
μ

)
(11.19)

and (11.16) becomes

Ldyn = −1

4
Bμν Bμν − 1

4
W 3

μνW 3μν − 1

2
W −

μνW +μν. (11.20)

11.3 Breaking the SU(2) symmetry

As in equation (10.2) we take V (�†�) to be

V (�†�) = m2

2φ2
0

[
(�†�) − φ2

0

]2

= m2

2φ2
0

[
φ2

1 + φ2
2 + φ2

3 + φ2
4 − φ2

0

]2
(11.21)

where φ0 is a fixed parameter that is the analogue of (10.2). With this expression

for V, the vacuum state of our system is degenerate in the four-dimensional space

of the scalar fields. We now break the SU(2) symmetry. At our disposal we have the

three real parameters αk(x) that specify an element of SU(2). We use this freedom

to adopt a gauge in which for any field configuration �A = 0 (two conditions) and

�B is real (one condition). The ground state is then

�ground =
(

0

φ0

)
, (11.22)

and excited states are of the form

� =
(

0

φ0 + h(x)/
√

2

)
, (11.23)

where the field h(x) is real.

A local U(1) symmetry remains: the fields (11.23) are unchanged by a U(1) ×
SU(2) transformation of the form

e−iθ/2

(
e−iθ/2 0

0 eiθ/2

)
=

(
e−iθ 0

0 1

)
. (11.24)
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112 Massive gauge fields

Such matrices give a 2 × 2 matrix representation of the group U(1). This residual

symmetry will turn out to be the U(1) symmetry of electromagnetism.

We wish to express L� (equation (11.9)) in terms of the field h(x). We have from

(11.21)

V ( �†�) = m2h2 + m2h3

√
2φ0

+ m2h4

8φ2
0

= V (h),

and from (11.8a) and (11.7)

Dμ� =
(

0

∂μh/
√

2

)
+ ig1

2

(
0

Bμ(φ0 + h/
√

2)

)
+ ig2

2

(√
2W +

μ (φ0 + h/
√

2)

−W 3
μ(φ0 + h/

√
2)

)
.

Multiplying (Dμ�)† by Dμ�, we find

L� = 1

2
∂μh∂μh + g2

2

2
W −

μ W +μ(φ0 + h/
√

2)2

+
[

g2
2

4
W 3

μW 3μ − g1g2

2
W 3

μ Bμ + g2
1

4
Bμ Bμ

]
(φ0 + h/

√
2)2 − V (h)

= 1

2
∂μh∂μh + g2

2

2
W −

μ W +μ(φ0 + h/
√

2)2

+ 1

4

(
g2

1 + g2
2

)
ZμZμ(φ0 + h/

√
2)2 − V (h). (11.25)

We have written

Zμ = W 3
μ cos θw − Bμ sin θw, (11.26)

where

cos θw = g2(
g2

1 + g2
2

)1/2
, sin θw = g1(

g2
1 + g2

2

)1/2
. (11.27)

θw is called the Weinberg angle.
Along with the field Zμ, we define the orthogonal combination

Aμ = W 3
μ sin θw + Bμ cos θw. (11.28)

Equations (11.26) and (11.28) correspond to a rotation of axes in (Bμ, W 3
μ) space.

The rotation can be inverted to give

Bμ = Aμ cos θw − Zμ sin θw,

W 3
μ = Aμ sin θw + Zμ cos θw.

(11.29)

Substituting in (11.10) and (11.19) gives

Bμν = Aμν cos θw − Zμν sin θw,

W 3
μν = Aμν sin θw + Zμν cos θw − ig2

(
W −

μ W +
ν − W −

ν W +
μ

)
,
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11.4 Identification of the fields 113

where

Aμν = ∂μ Aν − ∂ν Aμ (Aμν is the Fμν of Chapter 4)

and

Zμν = ∂μZν − ∂v Zμ. (11.30)

11.4 Identification of the fields

We are now in a position to rearrange the terms in the full Lagrangian density

L = L� + Ldyn to reveal its physical content. In Ldyn (equation (11.20)) we use

(11.29) and (11.30) to express the field Bμ and W 3
μ in terms of the fields Aμ and

Zμ, and then we may write

L = L1 + L2,

where

L1 = 1

2
∂μh∂μh − m2h2

− 1

4
Zμν Zμν + 1

4
φ2

0

(
g2

1 + g2
2

)
ZμZμ

− 1

4
Aμν Aμν

− 1

2

[(
DμW +

ν

)∗ − (
DνW +

μ

)∗]
[DμW +ν − DνW +μ] + 1

2
g2

2φ
2
0W −

μ W +μ,

(11.31)

and DμW +
ν = (∂μ + ig2 sin θw Aμ)W +

ν .

L1 is relatively simple: you will recognise it as the Lagrangian density for a

free massive neutral scalar boson field h(x), a free massive neutral vector boson

field Zμ(x), and a pair of massive charged vector boson fields W +
μ (x) and W −

μ (x),

interacting with the electromagnetic field Aμ(x).

L2 is the sum of the remaining interaction terms. As the patient reader may

verify,

L2 =
(

1

4
h2 + 1√

2
hφ0

) (
g2

2 W −
μ W +μ + 1

2

(
g2

1 + g2
2

)
ZμZμ

)

− m2h3

√
2φ0

− m2h4

8φ2
0

+ g2
2

4

(
W −

μ W +
ν − W −

ν W +
μ

)
(W −μW +ν − W −νW +μ)

+ ig2

2
(Aμν sin θw + Zμν cos θw)(W −μW +ν − W −νW +μ)

− g2
2 cos2 θw(ZμZμW −

ν W +ν − ZμZ νW −
ν W +μ)
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114 Massive gauge fields

+ ig2

2
cos θw[(ZμW −

ν − ZνW −
μ )(DμW +ν − DνW +μ)

− (
ZμW +

ν − ZνW +
μ

)
(DμW +ν)∗ − (DνW +μ)∗)]. (11.32)

Most of the U(1) × SU(2) symmetry with which we began has been lost on sym-

metry breaking. In particular, no trace of the original SU(2) symmetry is to be seen

in the interactions described by L2. Nevertheless it is precisely this complicated set

of interactions that makes the theory renormalisable, as it would be if the symmetry

were not broken.

We identify the three vector fields, W +
μ , W −

μ , Zμ, with the mediators of the

weak interaction, the W +, W −, Z particles, which, subsequent to the theory, were

discovered experimentally. The masses are (Particle Data Group, 2004)

Mw = 80.425 ± 0.038 GeV, (11.33)

Mz = 91.1876 ± 0.0021GeV. (11.34)

From (11.31) and Section 4.9, we identify

φ0g2/
√

2 = Mw, (11.35)

φ0

(
g2

1 + g2
2

)1/2
/
√

2 = Mz. (11.36)

Then, from (11.27), and neglecting quantum corrections to the mass ratio,

cos θw = Mw/Mz = 0.8810 ± 0.0016. (11.37a)

It is usual to quote the value of sin2 θw, which will appear in later calculations.

The estimate above would suggest

sin2 θw = 0.23120 ± 0.00015.

The uncertainty arises mainly from uncertainty in Mw. Other ways of estimating

sin2 θw exist and the accepted value (in 1996) was

sin2 θw = 0.2315 ± 0.0004. (11.37b)

We shall adopt this value in subsequent calculations.

The W± bosons are found experimentally to carry charge ±e. In (11.31) the

gauge derivative is

DμWν
+ = (∂μ + ig2 sin θw Aμ)Wν

+,

so that from the coupling to the electromagnetic field Aμ and (11.27) we can

identify

e = g2 sin θw = g1 cos θw. (11.38)
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The fields W 1
μ, W 2

μ, and Zμ have free field expansions similar to (4.15) but with

three polarisation states (see Section 4.9). As a quantum field W +
μ destroys W+

bosons and creates W− bosons; W −
μ destroys W− bosons and creates W+ bosons.

There remains the scalar Higgs field h(x). The vacuum state expectation value

φ0 of the Higgs field is, from (11.35),

φ0 =
√

2Mw

g2

=
√

2Mw sin θw

e
= 180 GeV. (11.39)

The only parameter not fixed from experiment is the mass MH = √
2m of the

Higgs boson. No Higgs boson has yet been identified experimentally, though

its existence is, apparently, an essential part of the Standard Model. The fail-

ure so far of experimental searches to find the Higgs boson suggests MH >

64 GeV. Recent experimental and theoretical studies suggest an MH close to this

limit.

The requirements of U(1) and SU(2) symmetry, followed by SU(2) symmetry

breaking, have generated the electromagnetic field, the massive vector W± and Z

boson fields, and the scalar Higgs field, in a remarkably economical way. In the next

chapter, we add lepton fermion fields to these boson fields, to obtain the richness

of the Weinberg–Salam electroweak theory.

Problems

11.1 Show that the W′
μ defined by (11.6) are Hermitian and have zero trace. (Use the

expression (B.9) of Appendix B: U= cos αI+i sin α(α̂ · τ ).)

11.2 Verify that the expressions (11.13) and (11.16) for Ldyn are equivalent.

11.3 Verify that the last two terms on the right-hand side of (11.31) correspond to a pair

of massive charged vector boson fields.

11.4 Show that the Higgs boson can decay to two photons, in the third order of perturbation

theory. Draw the appropriate Feynman graph.

11.5 Under an SU(2) transformation, � → �′ where

(
�′

A

�′
B

)
= U

(
�A

�B

)
.

Using (B.9), show that τ 2U ∗ = Uτ 2. Hence show that

(
�′∗

B

−�′∗
A

)
= U

(
�∗

B

−�∗
A

)
.
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116 Massive gauge fields

11.6 Show that the SU(2) matrix U = eiτα with α = α(sin φ, cos φ, 0) is

U =
(

cos α eiφ sin α

−e−iφ sin α cos α

)
.

Show that under the SU(2) transformation �′ = U�, the two-component complex

field

� =
(

�A

�B

)
=

(
aeiδ

beiγ

)

can be put in the form

�′ =
(

�′
A

�′
B

)
=

(
0

eiγ
√

a2 + b2

)
,

taking φ = (δ − γ ) and α = − tan−1(a/b). Show that �′ can then be put in the

standard form (11.23) by a further SU(2) transformation with α = γ (0, 0, 1).
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