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ON FUNCTIONS WHICH SATISFY SOME DIFFERENTIAL

INEQUALITIES ON RIEMANNIAN MANIFOLDS

KANJI MOTOMIYA

Introduction

Most of the problems in differential geometry can be reduced to pro-
blems in differential equations and differential inequalities on Riemannian
manifolds. Our main purpose of this paper is to study such differential
inequalities on complete Riemannian manifolds. In [5], H. Omori proved
a very important theorem. S. Y. Cheng and S. T. Yau gave a simplifica-
tion and a generalization of it which was called the generalized maximum
principle in [2] and [7], and many interesting applications in differential
geometry in [2], [3], [7], and [8].

THE GENERALIZED MAXIMUM PRINCIPLE : Let M be a complete Rieman-
nian manifold with Ricci curvature bounded from below. Let /be a C2-
function bounded from above on M. Then, for all ε > 0, there exists a
point x in M such that at x

s u p / - ε <f(x) ,

| F / | < ε ,

and

df<ε.

In particular, limε_0/(*) = sup/.

As the maximum principle plays an important role in geometry on
compact manifolds, so the generalized maximum principle does on non-
compact manifolds. Roughly speaking, if we want to compute the maximal
value of some function on noncompact manifold, we should compute its
asymptotic maximal value. If we have differential inequalities on Riemann-
ian manifold which are closely related to the Laplacian Δ, then we can
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58 KANJI MOTOMIYA

apply the generalized maximum principle. By the generalized maximum
principle, we shall give certain theorems on functions which satisfy dif-
erential inequalities on complete Riemannian manifolds.

In § 1, we give the notation of differential geometric foundations on
complete Riemannian manifolds which will be used later. In § 2, we prove
a Liouville theorem for functions which satisfy the differential inequality

In § 3, we prove the following theorem:
Let M be a complete Riemannian manifold with Ricci curvature bounded
from below by a constant K. Let /be a bounded C3-function such that,
for some constant 0 < C < 1,

and

Then

\Pf\ £ 2^sup/-inf/« V|X| (sup/ - /)1/2 .

In § 4, we give the boundedness of functions which satisfy the differential
inequality

Δf^φ(f,\Vf\),

and apply it to a generalized Schwarz lemma for harmonic maps of dila-
tation bounded by K.

§1. Complete Riemannian manifolds

In this paper the differentiability of Riemannian manifolds always means
the differentiability of class C°°.

Let M be a complete Riemannian manifold of dimension n. Let / be
a C3-function on M. Let x be any point of M and let Xl9 X2, , Xn be
an orthonormal frame field in an open neighborhood U of x.

Let ft(i = 1, 2, , ή) denote the covariant differentiation of / with
respect to Xί9 i.e., ft — FXif. Then, the gradient of / which will be denoted
by Pf is the vector field on M which is given on U by

(l.i) F/
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Hence, we have

(1.2)

We put fij = Fx.FXif. The Hessian of / is by definition the second

covariant differential F2f of /, i.e.,

Hess/(Z, Y) = VxVrf = X{Yf) - (VxY)f,

for all vector fields X, Y on M. The Laplacian Δf of / is by definition

trace (Hess f). In other words, then

( L 3 )
 W,N

Then, the norm of Hess / is given by

(1.4) |Hess/|

Let R denote the Ricci curvature tensor of M. We put Rυ = R(Xί9 X3).

Let i b e a tangent vector at x. Then we denote by Ric (v) the Ricci curva-

ture in the direction v, i.e., Ric (ύ) = R(v, v).

Now, we consider an orthonormal frame field {Xt} such that at x, Fx.Xj

= 0 (i, j = 1, 2, , ή). We put fίjk = VXkVXjFx.f. By tensor calculation (cf.

Proof of formula of Bochner-Lichnerowicz in [1]), we have, at x

2-J fjtjiί = Z_J fjfίji
i,3 i,j

(i 5)

We shall fix a point x0 e M and use r(x) to denote the distance func-

tion from xQ. Let σ be any geodesic parametrized by arclength joining a

point x to x0. Let σ/(ί) be the tangent vector of σ. Define

K.(x)= min [ " ~ \ - / Γ ( ) « - A;)2 Ric
L ( x ) — /? (r(x) — ky J

If x is not on the cut locus of x0, then we can take σ to be unique mini-

mizing from x0 to £ and define K(x) = Kσ(x). Otherwise, we define K(x)

= min Ka(x), where σ ranges over all the minimal geodesic from x0 to x.
σ

Then, if x is not on the cut locus of x0, we have
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(1.6) Δr{x) £ K(x)

(cf. Lemma 1 in [7]).

§2. The generalized maximum principle and a Liouville theorem

We shall state the generalized maximum principle proved in [2] and

give a remark on it that will be needed in § 3.

THEOREM 1 (The generalized maximum principle). Let M be a complete

Riemannian manifold with Ricci curvature bounded from below. Let f be

a C2-function bounded from above on M.

Then for all ε > 0, there exists a point x in M such that at x

(1) sup/-β</(x),

(2) |Γ/|<e,

(3) Ff<ε.

Furthermore, if f has no maximum, then there exists a sequence of positive

numbers {εk} such that εfc —• 0 (k-+ oo), and for all k, (1) may be replaced

by

(I') sup/ - εt < f(x) < sup/ - h-.
Δ

Proof. By the proof of Theorem 3 in [2], it is sufficient to show the

following easy lemma.

LEMMA 1. Let a be a real number and let {an} (n = 1, 2, ) be a se-

quence of real numbers such that, for all positive integer n, an < a and

lim^^ an = a. Then there exists a sequence of positive numbers {εk} such

that εk —> 0 (k —> oo), and for all k, there exists a positive integer n such

that

a- εk < an < a - -i*

Now, we shall prove a Liouville theorem. Let Mbe a complete Riemann-

ian manifold. We shall use the notation and the definition in § 1. For

some constant 0 < p < 1, the following condition will be called condition

(C[p]): For all sequence of points xk e M (k = 1, 2, •) such that r(xk)->

limsup
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DIFFERENTIAL INEQUALITIES 61

If M is a complete Riemannian manifold with Ricci curvature bounded

from below, then K(x) is bounded from above by some constant when r(x)

7> 1 and hence M satisfies the condition (C[p]).

THEOREM 2. Let M be a connected complete Riemannian manifold satis-

fying the condition (C[p\). Let f be a C2-function bounded from above on

M such that

where φ(x,y) is a continuous nonnegative function defined for all x and

y 2> 0 such that

(1) ψ{x,ϋ) = Q,

(2) for all sequences {xk} and {yk} (k = 1, 2, •) such that

xk > sup/, yk> 0 and yk -+ 0,

l i m i n f < * y >
yl

Then, f is a constant.

COROLLARY 1. Let M be a connected complete Riemannian manifold

with Ricci curvature bounded from below. Let f be a C2-functίon bounded

from above on M such that, for some constants 0 < p < 1 and C > 0,

^ C\Ff\p .

Then, f is constant

Remark 1 (Corollary 1 in [2]). Let M be a connected complete two-

dimensional Riemannian manifold with nonnegative Ricci curvature. Then,

subharmonic functions bounded from above are constants.

Remark 2. Let M = Rn be the Euclidean space of dimension n with

standard Euclidean metric. Let x = (xl9 x2, , xn) e Rn and we put

r(x) = (*; + * ; + . . . + χ3y/2.

For a constant p > 1, we choose the positive integer k, n such that

Then, the function on Rn defined by

f(χ) = -
(r(xY + If
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satisfies the following differential inequality:

Proof of Theorem 2. We shall fix a point xoeM and use r(x) to denote

the distance function from x0. Then clearly we can assume f(xQ) > 0 and

sup/ > 0. For all k > 0, let

s(x) __ fix)

Then since

gix0) > 0 and limg(x) £ 0 ,

we see that g must attain its maximum at some point xk. If xk is not on

the cut locus of xQ9 then we can differentiate at xk to obtain

(2.1) Fg(xk) = 0 ,

(2-2) Δg(xk) £ 0 .

By the proof of Theorem 3 in [2], we have

(2.3) f(xk) > sup f(k • 0) .

By hypothesis on /, / is a subharmonic function on M. If / is not a con-

stant, it follows from the maximum principle of E. Hopf (Theorem 2.1 in

[6]) that / has no maximum. Hence, we have

(2.4) rfe) >oo(& •O).

Direct computation shows that

(2.5) Vg = Ff 2krfVr
[log (r2 + 2)P [log (r2 + 2)]*+I(r2 + 2) '

Δ e = Δf AkrVf-Vr
[log (r2 + 2)]* [log (r2 + 2)]*+1(r2 + 2)

(2.6)
[log(r2 + 2)]ί+I(r2 + 2)

- D/r2

[log (r2 + 2)]t+1(r2 + 2) [log (r2 + 2)]*+2(r2 + 2)2
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Hence, by (2.6), we have

Δf 4krPf.fr 2kf
[log (r2 + 2)](r2 + 2) [log (r2 + 2)](r2 + 2)

2kfrΔr 4k(k±• l)/r2

[log (r2 + 2)](r2 + 2) [log (r2 + 2)]2(r2 + 2)2

4kfr2

[log(r2 + 2)](r2 + 2)2

Putting (1.6), (2.5) and hypothesis into (2.7), we obtain

ψ(f,
[log(r2

2kf

(2.8) - [log(r2 + 2)]2(r2 + 2)2 [log(r2 + 2)](r2 + 2)

4k(k + l)fr2 4kfr2

[log (r2 + 2)]2(r2 + 2)2 [log (r2 + 2)](r2 + 2)2

2kfr K(xk)

Now consider the case where xk is on the cut locus of x0. By a method

of Calabi (cf. Proof of Theorem 3 in [2]), we have the inequality (2.8).

Multiplying (2.8) by ([log (r2 + 2)p(r2 + 2)ϊ>)/£τ!', we have

2ferj/| \/ 2kr\f\
r2 + 2)](r2 + 2) Λ [log(r2 + 2)](r2' [log(r2 + 2)](r2 + 2) Λ [log(r2 + 2)](r2 + 2)

8fer2-"/ 2/r*

h 2)]2-J'(r2 + 2)2-J> [log(τ 2 + 2)]1-ϊ'{

4(yfe + lyfr2-" 4fr2-"

< 8fer2-"/ 2fr-p

(2.9) = [lOg(r2 + 2)]2-J'(r2 + 2)2-J' [log(τ 2 + 2)γ-\r* + 2)'

[log(r2 + 2)]2-*(r2 + 2f'J> [log(r2

2f( rϊ \'P

Vr2 + 2/ r'-r'-p[log(r2 + 2)]1"* '

When k -+ 0, by the condition (C[p\), (2.3) and (2.4), (2.9) is a contradic-

tion.

Theorem 2 is thereby proved.
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§ 3. Gradient estimate of functions

Gradient estimates of partial differential equations on a complete

Riemannian manifold were given in [7],

We shall prove the following:

THEOREM 3. Let M be a complete Riemannian manifold with Ricci

curvature bounded from below by a constant K. Let f be a bounded C3-

functίon such that

(C.I) Δf ^ 0, i.e., f is subharmonic,

(C.2) For some constant 0 < C < 1,

Then

\Pf\ < 2Vsup/- inf/VjXI (sup/-

COROLLARY 1. Le£ M be a connected complete Riemannian manifold

with nonnegative Ricci curvature. Let f be a bounded C2-functίon which

satisfies the conditions (C. 1) and (C. 2). Then, f is a constant.

Proof of Theorem 3. We put dim M — n. We shall use the notation

given in § 1. For any constants, a > sup /, b > 0 and 1 > p > 1/2, let

σ(x) - / ( )

If g has no minimum, then, by Theorem 1, for any positive number εk (we

shall denote εk by ε), there is a point y e M such that at y

(3.1) inf g + -L < g < inf g + ε, |Fg| < ε, and Δg > - ε.

Then direct computation shows

(|F/T

H-
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For any real numbers a and β, we have

kaβ + ma2 ̂  (a + β)2 ,

provided

( * ) k > 0, m > 0 and (2 - &)2 - 4(1 - m) ̂  0

By (3.1), we have

,
(\Pf\2

From the above inequality, we have

2pk(a-f)fiΣjfJfji ,

Hence,

(3.4)
V (|F/T + 6Γ / '(IF/I2 + 6)P + I A(o - /) V (|F/T +

For any real numbers a and β, we have

- λa2 + μβ2 < (a + /3)2 ,

provided

(**) λ > 0, ̂  > 0 and (1 + ̂ )(1 - ^) ̂  1 .

By (3.1) and the above inequality, we have

(|F/T + δ)2"+2

Hence, for some constant 0 < r < 1,

(3.5)

^ nε2 +

(\Vff
λ\Ff\2

~ P μ (a-f)

By tensor calculation in § 1 and hypothesis on M, we have
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Hence,

(36)

2p(a-f)Σujfjfm

+ by*1

2p(a-f)\ΣifMf)J\

Putting (3.2), (3.4), (3.5) and (3.6) into (3.1), we have

\
2- /_ β < -

^p|g|(α-/)|Γ/p
(\Fff + by+i

p + r _ l _ ( \ F P + b ) ( t

p ^ (α-/) V ^

4p(l - rXo - /) ΣJ (Σ, fjfjd Ma - f) ΣJJ
(|F/|2 + by+* (\Ff\* + 6)

By the fact that / satisfies (C.I) and (C.2) and the Schwarz inequality,

we obtain

+
g\k p μ

2p\K\(a - f)\Fff _ \Fff (2m _ p + r λ\
(im + bY*1 (Wff + b)%a - f)\ k p μ)

- 2p(l - C- 2(1 - r» ( | F / | 2 + 6 ) P + 1

We can choose a number 1 > r > 0 such that 1 — C — 2(1 — r) > 0.

Therefore, we obtain

g\ k p μf (|F/|2+ 6)

i \m D
g<P-n/p (μ _ fiVP-r
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where D = 2m\k - (p + r)lp>λ/μ.
Let us now prove

(3.8) inf £ > 0 .

In fact, if inf g = 0, by (3.1), we have

Δ

When ε->0, \Pf\(y)-+ °o and (3.7) is a contradiction.
Hence, we have

(3.9) sup|F/ | 2 < oo .

As before, we claim that limε_0 inf \Pf\2(y) ̂  0
when

b< suplF/l2(α-sup/)1 / y

(a - inff)1/p -(a- sup/)1/2)

In fact, if this were not true, then we could find y such that

a - inf/ ^ a - f(y)
+6)* = (\Pf\\y)+by

By (3.1) and the assumption, we have

a — inf/ ^ a — sup /

(sup|F/f + 6)' * V9

This contradicts our assumption.
Let

£ = liminf|F/|20>).
e—0

Therefore, when e -*• 0 in (3.7), we have

(3.10) 0£iπ£g 2p\K\
B -D.

'"' (a - inf/)<*»-»/» B+b

If g has a minimum at some point x0, then, by Theorem 1, for any ε > 0,
there is a point y such that at y

(3.11) £ < infg + ε, \Vg\< e, Δg > - ε , and y • x0 (ε > 0) .
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Then, the same argument as above implies (3.10).

By (3.10), we have

B D

Therefore, we obtain

(3.12)

When b —> 0, we have

(3.13) |F/T £ %L.\K\(μ - inifY2p'1)/p(a - f)ί/p .

By letting p -> 1 and α -> sup/ in (3.13), we obtain

(3.14) \Vff £ A . ^ K s u p / - inf/)(sup/- /) .

Finally, we shall determine the constant D. By conditions (*) and

(**), we can choose a number D such that D = 1/2.

Therefore, we obtain

(3.15) |F/| rg 2Vsup/- inf/ VΓ&I (sup/ -

This completes the proof of Theorem 3.

We can now use the same method as in the proof of Theorem 3 and

show the following:

THEOREM 4. Let M be a complete Riemannian manifold with Ricci

curvature bounded from below by a constant K. Let f be a C3-function which

satisfies the following conditions:

(C.I) 0<inf/, sup/< oo,

(C.2) j ( f ) ^ 0 ,

(C.3) for some constant 0 < C < 1,

Then
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§ 4. Boundedness of functions

In [8], S. T. Yau considered boundedness of certain function which

satisfy a differential inequality and proved a generalized Schwarz lemma

for Kahler manifolds.

We shall give a generalization of it.

THEOREM 5. Let M be a complete Riemannian manifolds with Ricci

curvature bounded from below. Let f be a C2-functίon bounded from below

on M such that

where φ(x, y) is a function defined for x^> a (a = inf/) and y ^ 0 such that,

for some constant p > 0,

(1) <p(x, y) is continuous in x and differentiate of C2 in y,

(2) φ{x, 0) = g(x),

(3) liminf
p/2

(4) 4 ^ 0 ,
df

where g(x) is a continuous function defined for x >̂ a such that

(i) There exists a number b > a such that

g(x) > 0 (x > 6) ,

(ii) l i m i n f - ^ - > 0 .
χ1+*

Then

f(x) £b (x e M) .

Remark 1. Let g(x) = -Kxx + K2x (K, ^0,K2> 0) and φ(x, y) = g(x).

This is a typical example of φ and was considered in [8].

THEOREM 6 ([4]). Let M be a complete Riemannian manifold with Ricci

curvature bounded from below by a constant — A. Let N be a Riemannian

manifold with sectional curvature bounded from above by a constant — B

(B > 0).

Let f be a harmonic map M -> N of dilatation bounded by K.

Then

,* . k2K2 A
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where k = min (dim M, dim N) and gM9 gN are Riemannian metric of M and

N respectively.

In particular, if A = 0, then f is a constant.

Proof. Let m = d i m M a n d n = dimN. Let xeMand θt{i*» 1,% * -, m)

be an orthonormal coframe field in an open neighborhood of x< Then, we

have

Let ωa(a — 1, 2, , ή) be an orthonormal coframe field in an open neigh-

borhood of f(x) e N.

Then we can define

t = l

and

Σ

Clearly, we have

(4.1) f*gN < ugM .

By formula of the Laplacian of u (cf. [4]) and a simple calculation,

we obtain

(4.2) Δu>- 2Au + -^u*.

By Theorem 5 and Remark 1, we have

Hence, (4.1) and the last inequality prove Theorem 6.

Proof of Theorem 5. Let c be a constant such that a + c > 0.

Let

Let ε > 0 be any number. Then, by Theorem 1, there exists a point

y such that at y,
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(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

1

(4.8)

< inf-

Then direct computation shows

F\(/+c)W
\m

>(«£
By (4.5) and (4.7), we have

P_
2 2 \2

Dividing (4.8) by pβ{f + c)p'2, we have

(4.9) Δf 2
1 p (f+c)"*

By (4.4), (4.6) and the hypothesis, we obtain

(410) P.

Using Taylor's formula on φ, we have

(4.11) φ(x,y) = y<χ, 0)
dy

, 0)y
2 dy2

θy)f

where θ is some number with 0 < θ < 1.

Putting (2), (3) and (4.11) into (4.10), we obtain

(4.12) g(f) , , 0)

By (4.2), we have
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(413) ψ^m (
Let us now prove

(4.14) s u p / < o o .

In fact, if sup/ = oo, by (4.3) we have

f(y) >°o (ε >0).

When ε -> 0, by (3), (ii) and (4.13), (4.12) is a contradiction.

Let m = sup/. When ε -> 0, by (4.12), we obtain

(4.15) g(m) £ 0 .

Therefore, by the condition (i), we obtain

m<,b .

This completes the proof of Theorem 5.
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