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ON TOTALLY PARANORMAL OPERATORS

CHRISTOPH SCHMOEGER

A continuous linear operator on a complex Banach space is said to be paranormal if
||Tz||2 ^ ||T2x|| ||x|| for all x £ X. T is called totally paranormal if T-A is paranormal
for every A e C. In this paper we investigate the class of totally paranormal operators.
We shall see that Weyl's theorem holds for operators in this class. We also show that
for totally paranormal operators the Weyl spectrum satisfies the spectral mapping
theorem. In Section 5 of this paper we investigate the operator equations eT = es

and eTes = eseT for totally paranormal operators T and 5.

1. GENERAL AND INTRODUCTORY MATERIAL

Throughout this paper let X be a complex Banach space and denote the set of
bounded linear operators on X by C(X). Let a(T) and p(T) denote, respectively, the
spectrum and the resolvent set of an element T of C(X). By r(T) we denote the spectral
radius of T and by ap(T) the set of eigenvalues of T. The set of those operators T in
C(X) for which the range T(X) is closed and a(T), the dimension of the kernel N[T) of
T, is finite is denoted by $+(X). Set

$_(*) = {T € C(X) : f3(T) is finite},

where /3(T) is the codimension of T(X). Observe that T{X) is closed if T € $_(X) ([9,
Satz 55.4]). Operators in $+(X) U $-(X) are called semi-Fredholm-operators. For such
an operator T we define the index of T by

An operator T is called a Fredholm operator if T € $(X) = $+(X) n $-(

Let T 6 C(X). Define p{T) [respecitvely q(T)], the ascent [respectively descent] of
T, to be the smallest integer n ^ 0 such that

N{Tn+1) = N{Tn) [respectively Tn+l{X) = Tn(X)]

or oo if no such n exists.

The assertions of the following proposition are shown in [9, Section 72 and Sec-
tion 101].

P R O P O S I T I O N 1 . 1 . LetT e £(X).
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426 C. Schmoeger [2]

(1) Ifp(T) < oo and q(T) < oo, then p(T) = q(T) and a(T) = /3{T).

(2) Ifa{T) = P(T) < oo and ifp(T) < oo or q(T) < oo, then p{T) = q(T).

(3) Ifp(T) < oo, then a{T) ^ 0(T).

(4) Hq{T) < oo, then 0(T) ^ a{T).

(5) Ao € C is a pole of the resolvent (A - T)~l if and only if p(A0 - T)
= ?(Ao — T) < oo. 7n this case p(Ao — T) is the order of the pole and
Ao G crp{T).

Now we introduce the class of operators which we shall investigate in this paper:

An operator T € C(X) is said to be paranormal if

||Tx||2 ^ ||T2x|| ||x|| for all xeX.

By VAf(X) we denote the set of all paranormal operators in C(X). The class TVM{X)

of all totally paranormal operators is given by

TVM{X) = {T € £{X) : A - T e VAf(X) for all A e C}.

EXAMPLES 1.2. Let H denote a complex Hilbert space.

(1) T € £(H) is said to be hyponormal if

||T*a;|| ^ ||Ti|| for every x e H.

If T is hyponormal, then

||Tx||2 = (Tx | Tx) = {T'Tx \ x) ^ \\TTx\\ \\x\\ ̂  \\T2x\\ \\x\\

for any x € H (where (• | •) denotes the inner product on H). Thus T is paranormal. It
is easy to see that if T is hyponormal, then T — A is hyponormal for each A £ C. Hence
every hyponormal operator is totally paranormal.

(2) An operator T 6 C(H) is called subnormal if T has a normal extension. We
see from [3, Proposition III 4.2] or [8, p. 108] that subnormal operators are hyponormal.
Hence subnormal operators belong to TPAf{H).

(3) T € C(H) is said to be quasinormal if T and T*T commute. Quasinormal
operators are subnormal ([3, Proposition III 1.7]), thus they are totally paranormal.

REMARK. In [5] an example of a paranormal operator is constructed which is not totally
paranormal.

P R O P O S I T I O N 1 . 3 . LetT z

(1) Tn £ VN(X) for all n

(2) ||T||=r(T).

(3)
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[3] Totally paranormal operators 427

P R O O F :

(1) is shown in [9, Hilfssatz 102.1].

(2) For a unit vector x e X, \\Tx\\2 ^ \\T2x\\ ^ | |T2| | , thus | |T||2 ^ \\T2\\

^ \\T\\2. By (1) and induction we see that

| |T2 n | | = ||T||2n for a l i n e TV,

hence
r(T) =n l im| |T2 n | | 1 /2" = ||T||.

(3) The inclusion N{T) C N{T2) is trivial. The inclusion N(T2) C N(T)
follows from the definition of VAf(X). U

COROLLARY 1 . 4 . IfT e TVN{X) then

p(X - T) ^ 1 for every X e C .

The present paper is organised as follows: in the next section we are concerned
with several essential spectra of totally paranormal operators (Fredholm spectrum, Weyl
spectrum, Kato spectrum). In Section 3 we briefly review some concepts of local spectral
theory and investigate local spectral properties of operators in TVAf(X). In Section 4
we collect some results concerning the inner derivation determined by T e C{X). These
results will be used in Section 5, where we consider the exponential function

n=0

with T € TVAf(X). In the final section of this paper we shall see that our results of
Section 5 are still valid for scalar-type operators (in the sense of Dunford).

2. ESSENTIAL SPECTRA OF TOTALLY PARANORMAL OPERATORS

For an operator T € C(X) we shall use the following notations:

$(T) = {\eC:\-T€${X)},

E(T) = {A G C : X - T is semi-Fredholm},

aF(T)=C\$(T)

and
asF(T) = C

A Fredholm operator T with ind(T) = 0 is called a Weyl operator. The Weyl spectrum

of T e C(X) is defined to be

aw(T) = {XeC : X-T is not a Weyl operator}.
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It is well known that <J>(T) and E(T) are open ([9, Section 82]) and that aw{T) is non

empty and compact (see [1, 2]).

For T € £{X) we denote by TTOO(T') the set of isolated points of o{T) which are

eigenvalues of finite multiplicity.

Following Coburn [2], we say that Weyl's theorem holds for T e C(X) if

ow(T)=o(T)\n00(T).

There are several classes of operators, including hyponormal operators on a Hilbert space,
for which Weyl's theorem holds (see [1, 2]).

P R O P O S I T I O N 2 . 1 . LetT eVN{X). Then

T e *(X) if and only if T € $_(X).

In this case ind(T) ^ 0.

PROOF: We only have to show that T 6 $_(X) implies T € $(X) and ind(T) ^ 0.
Since T e VN{X), p(T) ^ 1, by Proposition 1.3(3). Thus a{T) s$ 0(T), by Proposi-
tion 1.1(3). Hence T e $(X) and ind(T) ^ 0. D

COROLLARY 2 . 2 . Suppose that TeTVAf(X).

(1) <TF(T) = {\eC:/3(\-T) = oO}.

(2) IfC is a connected component of$(T) then there are exactly the following
two possibilities:

(i) ind(A - T) = 0 and p{\ -T)=q(X-T)^l for all XeC,

(ii) ind(A-T) < 0,p(X-T) ^ 1 andq(X-T) = oo for all X £ C.

P R O O F : (1) follows from Proposition 2.1.

(2) Use Corollary 1.4 and Satz 104.6 in [9]. D

COROLLARY 2 . 3 . IfT eTVN(X) then

p(T) = {XeC : X-T issurjective}.

P R O O F : If A - T is surjective, q(X-T) = 0 = 0(X - T). Corollary 2.2 shows that
A G $(T) and p(X - T) = 0. Hence A - T is injective. D

PROPOSITION 2 . 4 . Suppose that T e C{X) is paranormal and that 0 is an
isolated point of o{T). Then 0 € oP{T) and 0 is a pole of order 1 of the resolvent
(X-T)-K

P R O O F : There is some r > 0 such that the punctured disc

f/r(0) = {A G C : 0 < |A| < r} C p(T).

Put 7(£) := re", £ 6 [0, 2TT], and define the operator P e £(X) by
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It follows from [9, Satz 100.1] that P2 = P, TP = PT, so T(P{X)) C P(X), and
CT(T|P(A-)) = {0}. Since T is paranormal, T\P(X) is paranormal on the Banach space
P(X), thus, by Proposition 1.3(2),

\\T\P{x)\\=r(T\P{x)) = 0.

This gives TP = 0.

As an isolated point of o(T), 0 is a non-removable singularity of (A — T)~l, hence
(A - T)"1 has the Laurent expansion

n=l n=0

in Ur(0) with P n ,Q n € C{X). It is seen from [9, (101.9)] that

PX = P and Pn=Tn-1P ( n = l , 2 , . . . ) .

Since T P = 0, Pn = 0 for n ^ 2. This shows that 0 is a pole of order 1 of (A-T)" 1 . From
Proposition 1.1(5) and Proposition 1.3(3) we get p{T) = q(T) = 1 and 0 e ap(T). D

THEOREM 2 . 5 . If T € TVM{X), then Weyl's theorem holds for T.

PROOF: First we show that aw(T) C <j(T) \ TTOO{T). Take A 6 aw{T). Since T -X

is paranormal, we can assume that A = 0. Suppose to the contrary that 0 S 7roo(T). Then
0 is an isolated point of a(T) and a(T) < oo. Proposition 2.4 and Proposition 1.1 show
that p(T) = q(T) = 1 and 0(T) = a(T) < oo. Hence T is Fredholm and ind(T) = 0.
This contradicts 0 € aw(T).

Now we show that O(T)\TT0O{T) C aw{T). Take A € a(T)\ir0o(T) and suppose that
A £ <JW(T). As above we assume A = 0. Hence T is a Weyl operator. Proposition 2.2(2)
yields p(T) = q(T) = 1, thus 0 is an isolated point of a(T) and 0 € ap(T) (Proposi-
tion 1.1(5)). Since T £ $(X), a(T) < oo, therefore 0 € 7rOo(T), a contradiction. D

An operator T 6 C(X) is called isoloid if isolated points of a(T) are eigenvalues of
T.

COROLLARY 2 . 6 . If T e TVAf(X), then T is isoloid.

PROOF: Proposition 2.4. D

Before we state the main results of this section we need the following notation for
TeC{X):

H{T) = {/ : A(/) -> C : A( / ) is open, a{T) C A(/ ) , / is holomorphic}.

For / € H{T) the operator f(T) is defined by the well known analytic calculus (see [9]).

THEOREM 2 . 7 . If T e C(X) is totally paranormal, then for each f 6 U{T),

Weyl's theorem holds for f(T).
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PROOF: We have shown that T has the following properties: T is isoloid (Corol-
lary 2.6), Weyl's theorem holds for T (Theorem 2.5) and ind(A - T) < 0 for all A <E $(T)
(Proposition 2.2). Now use Theorem 1 in [15] to derive that Weyl's theorem holds for
f(T)(feH(T)). D

The Weyl spectrum satisfies the one-way spectral mapping theorem ([7, Theorem 2]):

f€H(T)=>aw(f(T))cf(aw(T)).

This inclusion may be proper ([1, Example 3.3]). For totally paranormal operators we

can say more:

THEOREM 2 .8 . IfT eTVM(X), then

ow{f{T))=f(ow(T)) for each feH(T).

PROOF: Since ind(A - T) < 0 for each A € $(T), the assertion follows from [15,

Theorem 2]. D

For the remainder of this section we are concerned with a further important essential

spectrum, which we shall introduce now.

An operator T € C(X) is called a Kato operator if T(X) is closed and N(T)
oo

C fl Tn(X). Let T e C{X). In [11] Kato has shown that the set
n=l

pK(T) = {A eC : X-T is a Kato operator}

is open. Since p{T) C px(T) the Kato spectrum

aK(T)=C\pK{T)

is a compact subset of cr{T). In [14] we have shown that da{T) C GK{T) and that
f(aK(T)) = aK(f{T)) for a l l / e U{T). For operators in TVM{X) we have the following
result:

THEOREM 2 . 9 . IfT e C{X) is totally paranormal, then

pK(T) = {AeC:(\-T)(X) is closed and a ( A - T ) = 0}.

PROOF: The inclusion D is clear. Take A e PK(T). Since T e TVAf(X), we can
assume that A = 0. Put x G N{T). Since N(T) C T(X), x = Ty for some y&X. Then
T2y = Tx = 0, thus

This shows that N(T) = {0}. D
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3. LOCAL SPECTRAL PROPERTIES O F TOTALLY PARANORMAL OPERATORS

Given an operator T e C(X), the local resolvent set (>T{X) of T at the point i e l i s
denned as the union of all open subsets D C C for which there is a holomorphic function
/ : D —» X which satisfies

(X-T)f(X)=x for all X £ D.

Evidently, pr{x) is open and pr{%) 2 piT). The local spectrum aT(x) of T at x is then
defined as

aT(x) =C\ pr{x).

Clearly, OT(X) is closed and OT{X) C a(T).
We say that T £ C(X) has the single-valued extension property, if for every open

subset DCC the only holomorphic solution / : D —> X of the equation

( X - T ) f ( x ) = 0 f o r a l l X e D

is the zero function on D.
The following proposition is immediate.

PROPOSITION 3 . 1 . Let T € C(X) with the single-valued extension property.

(1) If x € X, then there is a unique holomorphic solution f : pr{x) —> X of
the equation

(A - T)f{X) = x for all X € pr(x).

(2) IfxeX, then
aT(x) = 0 if and only if x — 0.

Let T e C{X) and FCC. The specira/ sutispace XT(F) is denned by

X T ( F ) = {xeX : aT(x) C F}.

It is clear that
XT(F) =XT(a(T)nF)

and
XT(F) C Xr(G)

whenever F CG CC.

PROPOSITION 3 . 2 . Let r e £(X) and Xo e C.

(1) N(X0-T)CXT({X0}).

(2) Jf T has the single-valued extension property, then

XT{{*O}) = {x e X : Um ||(A0 - T)"x||1/n - o}.
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P R O O F :

(1) Take x e N{X0 - T) and define / : C \ {Ao} -> X by /(A) = (A - Ao)-1*.
Then (A - T)f(X) = x for each A ^ Ao. Thus C \ {Ao} C pr(x), so
aT{x) C {Ao}.

(2) is shown in [12, Corollary 2.4]. [|

PROPOSITION 3 . 3 . Suppose that T e C(X) and that p(A - T) < oo for each
X £ C. Then T has the single-valued extension property.

P R O O F : [12, Proposition 1.8]. •

PROPOSITION 3 . 4 . IfT€ TVAf(X), then T has the single-valued extension

property.

P R O O F : Corollary 1.4, Proposition 3.3. D

The following result, which is shown in [12, Corollary 4.8], is of central importance

for our investigations in the following sections.

PROPOSITION 3 .5 . IfTeTVN"(X), then

XT({X})=N(X-T) for all X € C.

We close this section with a result, which we need in the final section of this paper.

PROPOSITION 3 . 6 . Let T € C(X), Ao € C and suppose that Ao is a simple pole

of the resolvent (A - T)" 1 . Tien

AT(A0 - T) = [x e X : lim ||(A0 - T)nx||1/n = o}.

If in addition T has the single-valued extension property, then

N(X0-T)=XT({X0}).

P R O O F : [9, Satz 100.2, Satz 101.2] and Proposition 3.2(2). D

4. T H E INNER DERIVATION ST

In this section we collect some results which we need for the proofs of our results in

Section 5.

Given T e £(X), the map ST : C(X) ->• C{X), defined by

6T(C) = CT-TC

is called the inner derivation determined by T. Evidently, 6T is a bounded linear operator

on C{X) with \\6T\\ < 2||T||.
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For the remainder of this paper let \P denote the entire function <& : C —» C given by

„ „ _/«-•(••-i). " " "
| l , if 2 = 0.

Let MT = {X 6 cr(£r) : tf (A) = 0}.

PROPOSITION 4.1. LetTe£(X).

(1) if C,£> € £ ( * ) , A0,/x0 € C, 6T(C) = \QC and 5T(D) = n0D, then

ST(CD) = (Ao + no)CD.

(2) If A e MT, t ie A is a simple zero ofty and A = 2JTTZ for some j e Z\ {0}.

(3) Jf MT = 0, then *((5r) is an invertibJe operator.

(4) MT is a finite set and

MT C

(5) If MT T£ 0, MT = {Ai, . . . , Ap} and Aj ^ AA for j ^ k, then

N(9(5r)) = N(6T - Ai) © . . . © N{5T - Ap).

(6) {
(7) e^(C) = e - r C e T for aiJ C €

(8) *(*r) (*r(C)) = e-TCeT - C for ail C G

PROOF:

(1) Straight forward.

(2) Clear.

(3) Follows from [9, Satz 99.1].

(4) Follows from (2).

(5) Is shown in [17].

(6) Is shown in [9].

(7) Follows from [13, Proposition 6.4.8].

(8) Is a consequence of (7) and the equation z^(z) — ̂ (z)z = ez - 1.

If T 6 £(X), we define the positive integer n(T) as

{ r(T) i
n € Af : <n>.

IT I

PROPOSITION 4 . 2 . Let T e C{X) and n-n(T). Suppose t ha f ca i , . . . , a n e K,

d , . . . , Cn e C(X) and 6T(Cj) = iaj C, (j = 1,..., n).

(1) Ifaj ^ 27T for j = 1,. . . , n, then dC2 •... • Cn = 0.

https://doi.org/10.1017/S0004972700040284 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040284


434 C. Schmoeger [10]

(2) If a, ^ -2?r for j = 1 , . . . , n, then dd •... • Cn = 0.

P R O O F : We only show (1) (the proof for (2) is similar). By Proposition 4.1(1),

ST(C) = i

where C = CiC2 • ... • Cn. Assume that C ^ 0. Then ij^aj € crp(6T), thus, by
Proposition 4.1(6), J - 1

i ^ Oj: = A — n for some A , / J 6 ^(T1)-
3=1

This gives
n

a,- = |A - /i| < |A| + |/i| ^ 2r(T) < 27rn,

a contradiction, since a.j ^ 2?r (j = 1 , . . . , n). D

P R O P O S I T I O N 4 . 3 . LetT e £(X) , Ao e C and C e 7V(JT - A0) . Then

P R O O F : Put 5 = T - Ao. For each /x e p(5) we have

= (CT - X0C)(S -IJ.)-1- nC{S

= CS(S - /x)-1 - /JLC(S - / i )-1

= C(S - »)(S - /z)-1 = C.

Therefore, for fi e p(S) and x € X

This shows that for x s X

p(S) C

thus aT(Cx) C u(5) = cr(T — Ao). Consequently

Cx € XT(a(T - Ao)) = ^r(<r(T - Ao) n

Since x € X was arbitrary, C{X) C XT(cr(T - Ao) n cr(T)). D

The following proposition is of crucial importance for our investigations in the next

section.

P R O P O S I T I O N 4 . 4 . LetT e TVAf(X). Suppose that XoeC,C e N(6T - Ao),
Mo € C and <J(T - Ao) D o{T) C {/x0}. Tien

TC = fi0C.
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PROOF: Use Proposition 4.3 to get

C(X) C XT(a(T - Ao) na (T) ) C X r ({/*})•

Proposition 3.5 shows then that

Cx e XT({no}) = N(T - no) for all z eX .

thus TCx = fi0Cx for all x £ X. D

5. EXPONENTIALS OF TOTALLY PARANORMAL OPERATORS

In this section we investigate the operator equations

eT = es and eTes = e"eT

where T e TVM{X) (or T,S€ TVM(X)).

If T e C(X), then we say that a(T) is 2ni-congruence-free if

a{T) n a(T + 2kni) = 0 for each keZ\{0}.

Hille [10] has shown the following

THEOREM 5 . 1 . Let T,S € C(X) and suppose that <r(T) is 2Tri-congruence-free.

IfeT = es, thenTS = ST.

The next result is due to Wermuth [18] (see also [16] for a very short proof, which
uses the derivation ST)-

THEOREM 5 . 2 . LetT,S e C{X). Suppose that<r(T) anda(S) are2ni-congruence-

free. IfeTes = eseT, then TS = ST.

The object of this section is to obtain results, similar to the above theorems, for
totally paranormal operators, where we weaken the property "27ri-congruence-free" as
follows:

We say that T € C{X) has property (P), if

a(T) D o(T + 2mri) C {niri} for n = l , 2 , . . . .

REMARKS 5.3. Let T e £{X).

(1) It is easy to see that if T has property (P), then

o(T) n cr(T + 2kni) C {kiri} for each k e Z \ {0}.

(2) If r(T) ^ n, then T has property (P ) .

https://doi.org/10.1017/S0004972700040284 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040284


436 C Schmoeger [12]

In what follows we shall use the following notations:

:= {in, 2ni, 3iri,...},

:= {—in, -2iri, -3ni,...},

Z* = Z\{0}

and
mZ* = (iirN)U(-iirAf).

PROPOSITION 5 . 4 . LetT € TVM{X) have property (P).

(1) Ifk € M and C € N(ST + 2km), then

TC = k-niC = -CT.

(2) IfkeAf andD€ N(6T - 2km), then

TD = -kiriD = -DT.

(3) IfVeN(V(6T)),then

TV + VT = 0.

P R O O F : (1) Put Ao = -2kni and ^0 = kni. Then C € N(5T - Ao) and, since T has
property (P),

cr(T - Ao) n CT(T) = <T(T + 2kiri) n <r(T) C

From Proposition 4.4 we derive that TC = /u0C = kitiC. Since CT-TC = -2kniC, we
get C T = T C - 2kiriC = -kniC = -TC.

(2) Similar.

(3) By Proposition 4.1(4), (5) there are Xh..., Ap € { ± 2 T U , ±4TTZ, . . . } and CU...,CP

€ C(X) such that

V = d + ... + Cp

and

Use (1) and (2) to see that TCj+CjT = 0 (j = 1,... ,p). This shows that TV+VT = 0. D

Recall that for T G £(X) we have denoted by n(T) the smallest positive integer n

such that (r(T))/7r < n.

PROPOSITION 5 . 5 . LetT &TVM{X) have property {P) and letV

(1) If (ITTAO n op(T) = <D, then Vn^ = 0.

(2) If {-inAf) n op(T) = 0, then Vn^ = 0.

(3) If (iirZ*) n o-p(T) = 0, fien V = 0.
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PROOF: Put n - n{T).

CASE 1. n = 1. Thus r(T) < n. Proposition 4.1(6) shows that then MT = 0, thus, by

Proposition 4.1(5), ^(6T) is injective, therefore V = 0.

CASE 2. n > 1. Then, use Proposition 4.1,

MT C {±2TTZ, ±4TU, . . . , ±2(n - l)iri}

and
V = U1 + ... + Un.1+V1 + ... + Vn.l,

where Uj £ N(6T — 2jiri) and Vj € N(6T + 2jiri) (j = 1 , . . . , n — 1). Proposition 5.4 gives

(*) TUj = -jiriUj and TV, = jiriVj (j = 1 , . . . , n - 1).

(1) If (J7r7Vnap(T) = 0, then it follows from (*) that Vi = V2 = ... = K - i = 0, thus
V = U\ + ... + Un-i- The power Vn is a sum of products of the form U^U^ • • • •• t/*n,
where £/*„ € {U\,...,C/n-i}. Therefore

and 2kl/n ^ 2?r. From Proposition 4.2 we then conclude that U^U^ • . . . • Ukn = 0. Hence

Vn = 0.

(2) Similar.

(3) If (i-nZ*) n <7P(T) = $, (*) shows that t/,- = ^- = 0 (j = 1 , . . . ,n - 1), thus
V = 0. []

Our first result concerning the equation eTes = eseT reads as follows:

THEOREM 5 . 6 . LetT e TVM{X) have property (P). Let S € C(X) and suppose

that eTes = eseT. Then T2es = e5T2.

Furthermore we have:

(1) If (iirtf) n <xp(T) =®or (-ZTTTV) D <TP(T) = 0, then

(Tes - e5T)"(T» = 0.

(2) If (inZ*) n <7P(T) = 0, tien

Te5 = esT.

PROOF: By Proposition 4.1(8),

*(6T)(6T(es))=e-TeseT-es

thus V = esT - Tes = 6r(es) G N(<H(6T)). From Proposition 5.4(3) we derive

0 = TV + VT = T(esT - Tes) + (es - Tes)T

= e
sT2 - T2es.
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(1) It follows from Proposition 5.5 that 0 = Vn^ = (esT - Tes)n{-T\

(2) Use Proposition 5.5(3). []

THEOREM 5 . 7 . LetT,Se TVAf(X) and suppose that T and S have property
(P). IfeTes = eseT, then

T2S2=S2T2.

Furthermore we have:

(1) If (ivAf) n ap(T) = Q)or (-mN) n ap{T) = 0, then {TS2 - S2T)n^ = 0.

(2) If {i-irZ*) n ap{T) = 0 and {iirZ*) n ap(S) = 0, then

TS = ST.

P R O O F : Theorem 2.1 gives T2es = esT2. Therefore

*(6S)(5S(T
2)) = e-sT2es - T2 = 0,

thus V = T2S - ST2 = SsiT2) € N(V(6S)). Proposition 5.4(3) yields then that

0 = SV + VS = ST2S - S2T2S + T2S2 - ST2S = T2S2 - S2T2.

(1) If we replace T by S, we see as above that U := ST{S2) = S2T - TS2

E N{y(6T). Now use Proposition 5.5 to get C/"(T) = 0.

(2) Theorem 5.6(2) shows that Tes = esT, hence

*{6s)(5s{T)) =e-sTes-T = Q.

Therefore TS-ST 6 N(V(6S)). From Proposition 5.5(3) it follows now that TS = ST. D

THEOREM 5 . 8 . Suppose that T,S e £{X), T+S € TVM{X), T+S has property

(P), (iitZ*) n ap{T + S) = 0 and that

= er+s =

Then TS = ST.

PROOF: We have

-eT

= e-se-TeTeT+s - eT

thus V = eTS - SeT = eT{T + S) - (T + S)eT = 5T+s(e
T) e N(*(<Jr+,)). By Proposi-

tion 5.5(3), N(V(6T+s)) = {0}, hence eTS =SeT. It follows that

*(6T+S)(6T+S(S)) = e-lT+!»SeT+s - S

= e-se-TSeTes - 5 = 0.
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Hence S(T + S) - (T + S)S = ST-TSG N(^(6T+S)) = {0}. •

Now we are concerned with the equation eT = es.

THEOREM 5 . 9 . Suppose that T € TVN(X) has property (P), S <E C(X) and

that eT = es. Then

T2S = ST2.

Furthermore we have:

(1) If {inN) n ap{T) = 0 or (-iirAf) n ap(T) = 0, then

(TS - 5T)n ( T ) = 0.

(2) If (inZ*) n ap{T) = 0, then
TS = ST.

PROOF: Since

*(*r)(*r(5)) = e-TSeT -S = e~sSes - S - 0,

ST -TS € N(V(dT)). By Proposition 5.4(3) we see that

0 = T(ST - TS) + {ST - TS)T = ST2 - T2S.

(1) follows from Proposition 5.5(1), (2).

(2) follows from Proposition 5.5(3). D

6. FINAL REMARKS

In Proposition 3.5 we have seen that if T S C(X) is totally paranormal, then

XT({\}) = N(T - A) for every A € C.

An inspection of the proofs of Theorem 5.6, 5.7, 5.8 and 5.9 shows that we have only
used the property

XT({kiri\) = N(T - kni) for each Jfc € Z*.

Thus, if we define the class C(X) by

C(X) - J T e C(X) : XT({kTTi}) = N{T - km) for all k € Z*} ,

then we have

THEOREM 6 . 1 . Theorems 5.6 through 5.9 remain true if we replace TVM(X) by

C(X).

EXAMPLE 6.2. Let T e C(X) be a scalar-type operator (in the sense of Dunford, see
[4, 6]). Then T€C(X).
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This can be seen from [6, Theorem XV.3.4, Theorem XV.8.2] (see also [4, Theo-
rem 5.33, Thereom 11.12]). Furthermore, T has the single-valued extension property [6,
Theorem XV.3.2].

An operator T € C(X) is said to be meromorphic, if each Ao £ cr(T) \ {0} is a pole

of the resolvent of (A — T)~l. If T is meromorphic, then a(T) has no interior points, thus

T has the single-valued extension property.

EXAMPLE 6.3. Let T £ C(X) be meromorphic. Suppose that r{T) = \\T\\,

(1) a{T)C {z€ C:\lmz\^n}

a n d

(2 ) a(T + 2ni)no{T)C{iTr},

then T eC(X) and T has property (P).

P R O O F : Since (1) and (2) hold, T has property (P). By (1) and Proposition 3.1(2),
we only have to show that

XT({X0}) = N(T - Ao) for Ao € {-i7r,z7r},

since T has the single-value extension property. Take Ao E {—ZTT, ITT}. If Ao £ p(T), then
XT({*O}) = N(T - Ao) = {0}. Hence assume that Ao £ o(T). From (1) it follows that
|A0| = r(T). Satz in [9, 102.4] shows now that Ao is a simple pole of (A - T)"1, thus by
Proposition 3.6

COROLLARY 6 . 4 . Suppose that T e C{X) is meromorphic and r(T) = \\T\\ ^ re.
Then T € C{X) and T has property (P).
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