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ON TOTALLY PARANORMAL OPERATORS
CHRISTOPH SCHMOEGER

A continuous linear operator on a complex Banach space is said to be paranormal if
ITzl|? < |IT%|| ||z| for allz € X. T is called totally paranormal if T— ) is paranormal
for every A € C. In this paper we investigate the class of totally paranormal operators.
We shall see that Wey!’s theorem holds for operators in this class. We also show that

for totally paranormal operators the Weyl spectrum satisfies the spectral mapping

theorem. In Section 5 of this paper we investigate the operator equations eI’ = &5

and eTe’ = eSeT for totally paranormal operators T and S.

1. GENERAL AND INTRODUCTORY MATERIAL

Throughout this paper let X be a complex Banach space and denote the set of
bounded linear operators on X by L£(X). Let o(T) and p(T") denote, respectively, the
spectrum and the resolvent set of an element T of £{X). By r(T") we denote the spectral
radius of T and by o,(T) the set of eigenvalues of T. The set of those operators T in
L(X) for which the range T'(X) is closed and a(T'), the dimension of the kernel N(T) of
T, is finite is denoted by ¢, (X). Set

®_(X)={T € L(X): B(T) is finite},

where (T') is the codimension of T'(X). Observe that T'(X) is closed if T € ®_(X) ({9,
Satz 55.4]). Operators in &, (X) U ®_(X) are called semi-Fredholm-operators. For such
an operator T' we define the indez of T by '

ind(T) = a(T) - B(T).

An operator T is called a Fredholm operator if T € ®(X) = &, (X) N &_(X).
Let T € L£(X). Define p(T) [respecitvely ¢(T)], the ascent [respectively descent] of
T, to be the smallest integer n > 0 such that

N(T™') = N(T") [respectively T"*!(X) = T"(X)]

or oo if no such n exists.

The assertions of the following proposition are shown in [9, Section 72 and Sec-
tion 101].

ProOPOSITION 1.1. Let T € L(X).
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(1) Ifp(T) < oo and ¢(T) < oo, then p(T} = ¢(T) and o(T) = B(T).

(2) Ifa(T) = B(T) < oo and if p(T) < oo or ¢(T) < o0, then p(T) = q(T).
(3) Ifp(T) < oo, then o(T) < B(T).

(4) If¢(T) < oo, then B(T) € a(T).

(3) Ao € C is a pole of the resolvent (A — T)~! if and only if p(Ay — T)

= gq(Ao — T) < oo. In this case p(Ay — T) is the order of the pole and
Ao € Up(T).

Now we introduce the class of operators which we shall investigate in this paper:
An operator T € L(X) is said to be paranormal if

ITz|)® < |T?z|| ||z]| for all z € X.

By PN (X) we denote the set of all paranormal operators in £(X). The class TPN(X)
of all totally paranormal operators is given by

TPN(X)={T € L(X): A\-T e PN(X) forall AeC}.

ExAMPLES 1.2. Let H denote a complex Hilbert space.
(1) T € L(H) is said to be hyponormal if

IT*z|| < |Tz|| for every z € H.

If T is hyponormal, then
|ITz|* = (Tz | Tz) = (T"Tz | 2) < |T*Tz]| =] < |72z ||z

for any = € H (where (- | -) denotes the inner product on H). Thus T is paranormal. It
is easy to see that if T is hyponormal, then T — X is hyponormal for each A € C. Hence
every hyponormal operator is totally paranormal.

(2) An operator T € L{H) is called subnormal if T has a normal extension. We
see from [3, Proposition III 4.2] or (8, p. 108] that subnormal operators are hyponormal.
Hence subnormal operators belong to TPN (H).

(3) T € L(H) is said to be quasinormel if T and T*T commute. Quasinormal
operators are subnormal ([3, Proposition III 1.7]), thus they are totally paranormal.

REMARK. In [5] an example of a paranormal operator is constructed which is not totally
paranormal.
PROPOSITION 1.3. Let T € PN(X).
(1) T e PN(X) forallne N.
@ ATl =r(T).
(3 o(T)<1
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(1) is shown in [9, Hilfssatz 102.1].
(2) For a unit vector z € X, ||Tz|? < ||T%z|| < |T?, thus |T||> < |IT?
< |IT?. By (1) and induction we see that

IT*")| = |T||>* for alln € N,
hence
r(T) = lim |77 = ||T|.
n—o00
(3) The inclusion N(T) C N(T?) is trivial. The inclusion N(T?) C N(T)
follows from the definition of PA(X). 0
COROLLARY 1.4. IfT € TPN(X) then

p(A=T)<1 forevery A €C.

The present paper is organised as follows: in the next section we are concerned
with several essential spectra of totally paranormal operators (Fredholm spectrum, Weyl
spectrum, Kato spectrum). In Section 3 we briefly review some concepts of local spectral
theory and investigate local spectral properties of operators in 7PA(X). In Section 4
we collect some results concerning the inner derivation determined by T € £(X). These
results will be used in Section 5, where we consider the exponential function

[e o]
T_ZT"
e = —_—
n!

n=0

with T € TPN(X). In the final section of this paper we shall see that our results of
Section 5 are still valid for scalar-type operators (in the sense of Dunford).

2. ESSENTIAL SPECTRA OF TOTALLY PARANORMAL OPERATORS
For an operator T' € £(X) we shall use the following notations:
®(T)={reC:A-Te dX)},
Z(T)={A€C:A-T is semi-Fredholm},
or(T) = C\ &(T)
and

o,r(T) = C\ Z(T).

A Fredholm operator T with ind(T") = 0 is called a Weyl operator. The Weyl spectrum
of T € L(X) is defined to be

ow(T)={A€C:A—-T isnot a Weyl operator}.
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It is well known that ®(T) and L(7') are open ([9, Section 82]} and that ow (T') is non
empty and compact (see [1, 2]).

For T € L(X) we denote by moo{T") the set of isolated points of o(T) which are
eigenvalues of finite multiplicity.

Following Coburn {2], we say that Weyl’s theorem holds for T' € £(X) if

O'W(T) = O'(T) \ ﬂ'go(T).
There are several classes of operators, including hyponormal operators on a Hilbert space,

for which Weyl’s theorem holds (see [1, 2]).
PROPOSITION 2.1. Let T € PN(X). Then

T € &(X) ifand only if T € ®_(X).

In this case ind(T) < 0.

PrROOF: We only have to show that T € &_(X) implies T' € ®(X) and ind(T) £ 0.
Since T € PN (X), p(T) < 1, by Proposition 1.3(3). Thus o(T) € B(T), by Proposi-
tion 1.1(3). Hence T € ®(X) and ind(T) < 0

COROLLARY 2.2. Suppose that T e TPN(X).

(1) op(T)={reC:BA-T)=o0}.
(2) If C’ is a connected component of ®(T') then there are exactly the following
two possibilities:
(1) indA-T)=0andp(A-T)=q(A-T)< 1 forall A eC,
(i) ind(A-T) < 0,p(A-T)< landq(A-T) = oo forall X € C.

Proor: (1) follows from Proposition 2.1.

(2) Use Corollary 1.4 and Satz 104.6 in [9]. 0

COROLLARY 2.3. IfT € TPN(X) then

p(T)y={Ae€C:X-T issurjective}.

PROOF: If A — T is surjective, ¢(A — T) = 0 = (A ~ T). Corollary 2.2 shows that
A € ®(T) and p(A — T) = 0. Hence A — T is injective. 0
PROPOSITION 2.4. Suppose that T € L(X) is paranormal and that 0 is an
isolated point of o(T). Then 0 € 0,(T) and 0 is a pole of order 1 of the resolvent
(A=T)".
PROOF: There is some r > 0 such that the punctured disc
U000 ={reC:0< |\ <7} Cp(T)

Put y(t) := re*, t € [0, 2n], and define the operator P € L(X) by

__1 -1
P—M/QT)M
Y
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It follows from [9, Satz 100.1] that P? = P, TP = PT, so T(P(X)) € P(X), and
o(T|pxy) = {0}. Since T is paranormal, T'|px) is paranormal on the Banach space
P(X), thus, by Proposition 1.3(2),

1T eyl = r(T|pxy) = 0.

This gives TP = 0.
As an isolated point of ¢(T), 0 is a non-removable singularity of (A — T')~!, hence
(A = T)~! has the Laurent expansion

A=T)"'= Z,\_n + Z,\"Qn

n=0

in U,(0) with P,,Q, € L(X). It is seen from [9, (101.9)] that
PP=P and P, =T"'P (n=12,...).

Since TP = 0, P, = 0 for n > 2. This shows that 0 is a pole of order 1 of (A—T)"!. From
Proposition 1.1(5) and Proposition 1.3(3) we get p(T) = ¢(T) = 1 and 0 € 0,(T). 0

THEOREM 2.5. IfT € TPN(X), then Weyl’s theorem holds for T.

PrROOF: First we show that ow (T) C o(T) \ mpo(T). Take A € ow(T). Since T — A
is paranormal, we can assume that A = 0. Suppose to the contrary that 0 € me(T). Then
0 is an isolated point of o(T") and a(T) < oo. Proposition 2.4 and Proposition 1.1 show
that p(T) = ¢(T) = 1 and B(T) = a(T) < co. Hence T is Fredholm and ind(T) = 0.
This contradicts 0 € ow (T). .

Now we show that o{T)\ meo(T) C ow(T). Take A € o(T)\ mo(T) and suppose that
A & ow(T). As above we assume A = 0. Hence T is a Weyl operator. Proposition 2.2(2)
yields p(T) = ¢(T) = 1, thus 0 is an isolated point of o(T) and 0 € 0,(T) (Proposi-
tion 1.1(5)). Since T € ®(X), a(T) < oo, therefore 0 € mpe(T’), a contradiction.

An operator T € L(X) is called isoloid if isolated points of o(T") are eigenvalues of

T.
COROLLARY 2.6. IfT € TPN(X), then T is isoloid.
PRrROOF: Proposition 2.4. 0
Before we state the main results of this section we need the following notation for
T e L(X):

={f:A(f) = C:A(f) isopen, o(T) C A(f), f is holomorphic}.

For f € H(T) the operator f(T') is defined by the well known analytic calculus (see [9]).

THEOREM 2.7. If T € L(X) is totally paranormal, then for each f € H(T),
Weyl’s theorem holds for f(T).
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ProOOF: We have shown that T has the following properties: T is isoloid (Corol-
lary 2.6), Weyl’s theorem holds for 7" (Theorem 2.5) and ind(A —T') < 0 for all A € ®(T")
(Proposition 2.2). Now use Theorem 1 in [15] to derive that Weyl’s theorem holds for

f(T) (f € H(T)). 1]

The Weyl spectrum satisfies the one-way spectral mapping theorem ([7, Theorem 2]):
f e H(T) = ow(f(T)) C f(ow(T)).

This inclusion may be proper ({1, Example 3.3]). For totally paranormal operators we
can say more:

THEOREM 2.8. IfT € TPN(X), then
ow (f(T)) = f(ow(T)) foreach f e H(T).

PROOF: Since ind(A — T') < 0 for each A € ®(T), the assertion follows from [15,
Theorem 2]. 0

For the remainder of this section we are concerned with a further important essential
spectrum, which we shall introduce now.

An operator T € L(X) is called a Kato operator if T(X) is closed and N(T)

- ﬁ1 T™(X). Let T € L(X). In [11] Kato has shown that the set
pr(Ty={XA€C:A—T isa Kato operator}
is open. Since p(T) C pg(T) the Kato spectrum
ox(T) =C\ px(T)

is a compact subset of o(T). In [14] we have shown that do(T) C ok (T) and that
f(ox(T)) = ok (f(T)) for all f € H(T). For operators in 7PN (X) we have the following
result:

THEOREM 2.9. IfT € L(X) is totally paranormal, then
pr(T)={r€C:(A-T)X) isclosed and a(A—T)=0}.

PROOF: The inclusion D is clear. Take A € pg(T). Since T € TPN(X), we can
assume that A = 0. Put z € N(T). Since N(T) C T(X), z = Ty for some y € X. Then
T?y = Tz = 0, thus

211 = ITylI* < [Tyl llyll = 0.

This shows that N(T) = {0}. 0
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3. LOCAL SPECTRAL PROPERTIES OF TOTALLY PARANORMAL OPERATORS

Given an operator T € £(X), the local resolvent set pr(z) of T at the point z € X is
defined as the union of all open subsets D C C for which there is a holomorphic function
f : D — X which satisfies

A=T)f(\)=z forall XeD.

Evidently, pr(z) is open and pr(z) 2 p(T). The local spectrum or(z) of T at z is then
defined as
or(z) =C\ pr(z).

Clearly, or(z) is closed and or(z) C o(T).
We say that T € L£(X) has the single-valued extension property, if for every open
subset D C C the only holomorphic solution f : D — X of the equation

(A=T)f(x)=0 forall AeD

is the zero function on D.
The following proposition is immediate.
PrOPOSITION 3.1. Let T € L£(X) with the single-valued extension property.

(1) Ifz € X, then there is a unique holomorphic solution f : pr(z) — X of
the equation
A=T)f(N) =z forall Xe€ pr(z).

(2) Ifze X, then _
or(z) =0 ifandonlyif z=0.

Let T € £(X) and F C C. The spectral subspace Xr(F) is defined by
Xr(F)={z € X :or(z) C F}.

It is clear that :

Xr(F) = Xr(o(T) N F)

and
Xr(F) € Xr(G)

whenever F C G CC.
PROPOSITION 3.2. LetT € L(X) and X € C.

(1) N(o-T) < Xr({})-
(2) IfT has the single-valued extension property, then

Xr({X}) = {x € X : lim||(d - T)"z|"/" = 0}.
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PROOF:

(1) Takez € N(Xg — T) and define f : C\ {Ao} = X by f(A) = (A — X))~ 'z
Then (A — T)f(A) = z for each A # A;. Thus C \ {X¢} C pr(z), so
or(z) € {Ao}-

(2) is shown in [12, Corollary 2.4]. 0

PROPOSITION 3.3. Suppose that T € L£(X) and that p(A — T) < oo for each
A € C. Then T has the single-valued extension property.

PROOF: [12, Proposition 1.8]. 0

PROPOSITION 3.4. IfT € TPN(X), then T has the single-valued extension
property.

Proor: Corollary 1.4, Proposition 3.3. 1

The following result, which is shown in [12, Corollary 4.8], is of central importance
for our investigations in the following sections.

PROPOSITION 3.5. IfT € TPN(X), then
Xr({A}) =N\ -T) forall AeC.

We close this section with a result, which we need in the final section of this paper.

PROPOSITION 3.6. Let T € L(X), Ay € C and suppose that g is a simple pole
of the resolvent (A — T)~!'. Then

T n, ||/ _
NOo-T) ={z € X: lim|| (0 - T)"||"* = 0}.
If in addition T has the single-valued extension property, then
N(do = T) = Xz({)}).

PROOF: [9, Satz 100.2, Satz 101.2] and Proposition 3.2(2). 0

4. THE INNER DERIVATION 6

In this section we collect some results which we need for the proofs of our results in
Section 5.
Given T € L(X), the map 67 : L(X) — L(X), defined by

é7(C) = CT - TC

is called the inner derivation determined by T'. Evidently, ér is a bounded linear operator
on L(X) with {|ér|| < 2||Tl.
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For the remainder of this paper let ¥ denote the entire function ¥ : C — C given by

¥(z) =

z7 Y e*-1), ifz#0
1, if z=0.

Let Mr = {A € o(é7) : ¥(X) = 0}.
PROPOSITION 4.1. Let T € L(X).

(1)

~ e~~~
> W N
~ N

(6)
(7)
(8)

PROOF:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

If C,D € L(X), do,o € C, 67(C) = MC and é7(D) = peD, then
6r(CD) = (Ao + 1o)CD.

If A\ € Mz, the X is a simple zero of ¥ and A = 2jwi for some j € Z\ {0}.
If Mt = 0, then ¥(dr) is an invertible operator.

My is a finite set and
Mr C {+2m4, 2471, .. .}
If Mr # 0, My = {\,..., Ay} and Aj # X; for j # k, then
N(¥(6r)) = N(br = M) @ ... & N(0r — A,).

obr) ={A—p: Apea(}
eT(C) = e TCeT for all C € L(X).
¥(87)(67(C)) = e TCe™ — C for all C € L(X).

Straight forward.

Clear.

Follows from [9, Satz 99.1].

Follows from (2).

Is shown in [17].

Is shown in [9].

Follows from [13, Proposition 6.4.8).

Is a consequence of (7) and the equation 2¥(2) = ¥(z)z =€* — 1. 0

If T € L(X), we define the positive integer n(T') as

n(T) = min{n EN: T(?r—T) < n}

PROPOSITION 4.2. LetT € £L(X) andn = n{(T). Suppose that o,...,a, € R,
Cr,y...,Cq € L(X) and 6r(C;) =10 C; (= 1,...,n).

(1)

Ifaj22rforj=1,...,n,then C,Cy-...-C, =0.

https://doi.org/10.1017/50004972700040284 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700040284

434 C. Schmoeger (10]

(2) Ifaj< —2rforj=1,...,n, then C\Cz-...-Cp=0.
PrOOF: We only show (1) (the proof for (2) is similar). By Proposition 4.1(1),
67(C) = i(z a,-) C,
i=1

n
where C = C,Cy - ... - C,. Assume that C # 0. Then iy a; € 0,(d7), thus, by
Proposition 4.1(6), j=1

iZaj =A—p forsome A u € o(T).

=1
This gives
n
D =1A—ul <A+l < 2r(T) < 2mn,
j=1
a contradiction, since a; 2 27 (j =1,...,n). 0

PROPOSITION 4.3. Let T € L{X), )y € C and C € N(61r — Xy). Then

C(X) € Xr(o(T - Xo) na(T)).

PROOF: Put S =T — Xy. For each p € p(S) we have

(T-pC(S—u) ' =TC(S —p)™ —pC(S — )™
=(CT - XMC)(S-p)' = pC(S — )™
=CS(S—p)~" —pC(S —p)~!
=CS-uS-p'=0C

Therefore, for u € p(S) and z € X
(T —p)C(S—p) 'z =Cx.
This shows that forz € X
p(S) C pr(Cx),
thus o7(Cz) C (S) = o(T ~ Ap). Consequently

Cze XT(O'(T — /\0)) = XT(U(T— )\0) n O'(T))

Since z € X was arbitrary, C(X) C Xz(co(T - Ao) No(T)). 0
The following proposition is of crucial importance for our investigations in the next
section.
PROPOSITION 4.4. Let T € TPN(X). Suppose that Ay € C, C € N(0r — X),
po € C and o(T — Ag) No(T) C {0}. Then

TC = poC.
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PRrooOF: Use Proposition 4.3 to get
C(X) € Xr(a(T = X) Na(T)) € Xr({t})-
Proposition 3.5 shows then that
Cz € Xr({mo}) = N(T — po) forallz e X.

thus TCx = ppCx for all z € X. 0

5. EXPONENTIALS OF TOTALLY PARANORMAL OPERATORS
In this section we investigate the operator equations

el =¢° and eTe’ =e’e”

where T € TPN(X) (or T, S € TPN(X)).
If T € L(X), then we say that o(T) is 2mi-congruence-free if

o(T)No(T +2kmi) =0 foreach ke Z\{0}.

Hille {10] has shown the following

THEOREM 5.1. Let T,S € L(X) and suppose that o(T) is 2mi-congruence-free.
IfeT = e, then TS = ST.

The next result is due to Wermuth [18] (see also [16] for a very short proof, which
uses the derivation é7).

THEOREM 5.2. LetT,S € L(X). Suppose that o(T) and o(S) are 2wi-congruence-
free. If eTeS = e%eT, then TS = ST. ‘

The object of this section is to obtain results, similar to the above fheorems, for
totally paranormal operators, where we weaken the property “2wi-congruence-free” as
follows:

We say that T € £(X) has property (P), if

o(T)No(T + 2nmi) C {nni} for n=1,2,....

REMARKS 5.3. Let T € L(X).
(1) It is easy to see that if T has property (P), then

o(T) N o(T + 2kmi) C {kni} foreach ke Z\ {0}.

(2) U r(T) < w, then T has property (P).
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In what follows we shall use the following notations:

inN = {im, 2mi, 373, ...},
—irN = {—in, -2mi, =371, ...},
zZr = Z\ {0}

and
inZ* = (iwN)U (—irN).
PROPOSITION 5.4. Let T € TPN(X) have property (P).
(1) Ifke N and C € N(ér + 2kmi), then

TC = kniC = -CT.
(2) Ifke€ N and D € N(8r — 2kmi), then
TD = —kmiD = —-DT.

(3) IfV e N(¥(dr)), then
TV + VT =0.

ProOOF: (1) Put Ag = —2k7i and g = kni. Then C € N(ér — Ag) and, since T has
property (P},
a(T = X)No(T) =0T+ 2kni) No(T) C {p}-
From Proposition 4.4 we derive that TC = uC = kniC. Since CT — TC = —2kmiC, we
get CT =TC — 2kmiC = —kmiC = -TC.
(2) Similar.
(3) By Proposition 4.1(4), (5) there are A, ..., A, € {£27i,+47i,...}and Cy,...,C,
€ L(X) such that
V=C+...4+G
and
CieN@r—2j) (7=1,...,p).
Use (1) and (2) to see that T'C;+C;T =0 (j =1, ...,p). Thisshows that TV+VT = 0. 0
Recall that for T € £(X) we have denoted by n(T') the smallest positive integer n
such that (r(T))/7 < n.
PROPOSITION 5.5. LetT € TPN(X) have property (P) and let V € N(¥(dr)).
(1) If (inN)Nop(T) = 0, then VD) =0,
(2) If (—inN) N op(T) = 0, then VHT) = (.
(3) If(inZ*)Noy,(T)=0, thenV =0.
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Proor: Put n = n(T).
Case 1. n = 1. Thus 7(T") < 7. Proposition 4.1(6) shows that then My = §, thus, by
Proposition 4.1(5), ¥(d7) is injective, therefore V = 0.

CASE 2. n > 1. Then, use Proposition 4.1,
My C {*2ri, +4mi,..., +2(n — 1)mi}
and
V=U+...+Up1+V14+... + Vo,
where U; € N(ér —2jwi) and V; € N(67 +2jm1) ( = 1,...,n—1). Proposition 5.4 gives

(%) TU; = —jmiU; and TV; = jmiV; (j=1,...,n—1).
(1) If (¢ N No,(T) = B, then it follows from (*) that V; = Vo, = ... = V,_; = 0, thus
V=U, +...+U,_1. The power V" is a sum of products of the form Ui, Uy, - ... Uk,,

where Uy, € {U1,...,Un_1}. Therefore
(ST(U]C”) = QkuﬂiUkv
and 2k,m > 27. From Proposition 4.2 we then conclude that Uy, Uy, -...- U, = 0. Hence
vr =0.
(2) Similar.
(3) If (inZ2*)Nop(T) = ®, (%) shows that U; = V; =0 (j = 1,...,n — 1), thus
V=0 0

T,S SCT

Our first result concerning the equation e’ e = e reads as follows:

THEOREM 5.6. LetT € TPN(X) have property (P). Let S € L£(X) and suppose
that eTeS = eSeT. Then T?e’ = e5T2.
Furthermore we have:
(1) If(izrN)YNoyx(T) =0 or (—irN) No,(T) = 0, then

(Te® — ST)MD = 0.
(2) If(iwZ*)Nop(T) =0, then
TeS = e5T.
PRrROOF: By Proposition 4.1(8),
U(67)(6r(e®)) = e TeSel - €°
=eTelTe’ — e =0,
thus V = 5T — Te® = 67(e®) € N(¥(67)). From Proposition 5.4(3) we derive
0=TV + VT = T(e5T — Te®) + (¢° — Te5)T

= eST? — T?5.
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(1) It follows from Proposition 5.5 that 0 = V™) = (5T — Te5)™T).
(2) Use Proposition 5.5(3). 0

THEOREM 5.7. Let T, S € TPN(X) and suppose that T and S have property
(P). IfeTeS = e°e”, then
T25% = 5°T2,
Furthermore we have:
(1) If (i7N) N op(T) = 0 or (—imN) N0, (T) = O, then (T'S? — S*T)™TD) = 0.
(2) If(inZ2*)No,(T) =0 and (in2*) N 0,(S) = 0, then

TS =ST.
PROOF: Theorem 2.1 gives T2%e% = e5T?. Therefore
¥(85)(6s(T?) = e°T%5 — T* =0,
thus V = T2S — ST* = §5(T?) € N(¥(és)). Proposition 5.4(3) yields then that
0=5V+VS=_ST?S — S°T*S +T?S? — ST?S = T?5* - S°T*.

(1) If we replace T by S, we see as above that U := 67(S?) = S?T — T'S?
€ N(¥(d7). Now use Proposition 5.5 to get U™T) = 0.
(2) Theorem 5.6(2) shows that Te’ = 5T, hence

\I/((Ss) (55(T)) =e 5T - T =0.

Therefore TS—ST € N(¥(8s)). From Proposition 5.5(3) it follows now that 7S = ST. [I

THEOREM 5.8. Suppose thatT,S € L(X), T+S € TPN(X), T+S has property
(P), irZ2*)Noy(T + S) =0 and that

Then TS = ST.
ProOOF: We have

‘I’(6T+s) (5T+5(eT)) = ¢~ (T+8) T T+S _ T

— ¢=Se-TeTeT+S _ T

=¢S5l — el =,

thus V = eTS — Se” = eT(T + S) — (T + S)e” = br45(e”) € N(¥(6r45)). By Proposi-
tion 5.5(3), N(¥(6r+s)) = {0}, hence e7S = SeT. It follows that

U(0rys) (0r+5(S)) = e T+ GeT+S — 5 .

=eSeTSeTe’ — S =0.
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Hence S(T + S) — (T + S)S = ST — TS € N(¥(674s)) = {0}. 0

Now we are concerned with the equation 7 = 5.

THEOREM 5.9. Suppose that T € TPN(X) has property (P), S € £(X) and
that e” = e5. Then
T%S = ST?.

Furthermore we have:
(1) If(inN)Nop(T) =0 or (—inN) N o,(T) = O, then

(TS ~ ST)™M = 0.

(2) If(inZ*)No,(T) = 0, then
TS = ST.

PROOF: Since
U(67)(6r(S)) = e TSeT — S =e 98¢5 - S =0,
ST — TS € N(¥(ér)). By Proposition 5.4(3) we see that
0=T(ST —-TS)+ (ST - TS)T = ST? - T*S.
(1) follows from Proposition 5.5(1), (2).

(2) follows from Proposition 5.5(3). 0

6. FINAL REMARKS
In Proposition 3.5 we have seen that if ' € £(X) is totally paranormal, then
Xr({A}) = N(T = \) for every A € C.

An inspection of the proofs of Theorem 5.6, 5.7, 5.8 and 5.9 shows that we have only
used the property

Xr({kmi}) = N(T — kni) for each k € Z".
Thus, if we define the class C(X) by
C(X) = {T € L(X) : Xp({kmi}) = N(T - kni) forall k¢ z*},

then we have

THEOREM 6.1. Theorems 5.6 through 5.9 remain true if we replace TPN(X) by
C(X).
EXAMPLE 6.2. Let T € L£(X) be a scalar-type operator (in the sense of Dunford, see
[4, 6]). Then T € C(X).
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This can be seen from [6, Theorem XV.3.4, Theorem XV.8.2] (see also [4, Theo-
rem 5.33, Thereom 11.12]). Furthermore, T has the single-valued extension property (6,
Theorem XV.3.2].

An operator T € £(X) is said to be meromorphic, if each Ay € o(T) \ {0} is a pole
of the resolvent of (A — T')~!. If T is meromorphic, then ¢(T") has no interior points, thus
T has the single-valued extension property.

ExXAMPLE 6.3. Let T € £(X) be meromorphic. Suppose that 7(T) = ||T|,

(1) o(T)C {z€C:|Imz| <}
and
(2) o(T + 2mi) Na(T) C {irn},

then T € C(X) and T has property (P).
PRrOOF: Since (1) and (2) hold, T has property (P). By (1) and Proposition 3.1(2),
we only have to show that

XT({/\()}) = N(T - /\0) for Ao € {-’iﬂ',’i?l’},

since T has the single-value extension property. Take A\g € {—im,in}. If Ao € p(T), then
Xr({A}) = N(T - X) = {0}. Hence assume that A\g € o(T’). From (1) it follows that
|Xo] = r(T). Satz in [9, 102.4] shows now that A is a simple pole of (A — T')~!, thus by
Proposition 3.6 '

Xr({Ma}) = N(T = Xo). 0

COROLLARY 6.4. Suppose that T € L(X) is meromorphic and r(T) = ||T|| < .
Then T € C(X) and T has property (P).
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