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0. Introduction
Let # be a category with finite products and a final object and let X be any

group object in <6. The set of •g'-morphisms, Morv (X, X) is, in a natural way,
a near-ring which we call the endomorphism near-ring of X in <€. Such near-
rings have previously been studied in the case where <€ is the category of pointed
sets and mappings, (6). Generally speaking, if F is an additive group and S
is a semigroup of endomorphisms of F then a near-ring can be generated naturally
by taking all zero preserving mappings of F into itself which commute with S
(see 1). This type of near-ring is again an endomorphism near-ring, only the
category # is the category of S-acts and S-morphisms (see (4) for definition
of 5-act, etc.).

The question answered in this paper is the following. Under what con-
ditions do endomorphism near-rings of this type have near-rings of quotients
which are 2-primitive with d.c.c. on right ideals and an identity ? The conditions
obtained are described in terms of conditions on the semigroup S and the group
F, and are formalised by introducing the concept of a ^-system. 2-primitive
near-rings with d.c.c. on right ideals and an identity have been classified in
terms of endomorphism near-rings by Wielandt (6) (see also Ramakotaiah (5)
and Holcombe (3)).

1. Terminology

A near-ring is a set TV with two binary operations, addition ( + ) and multi-
plication (.), such that

(i) N is a group with respect to addition.

(ii) N is a semigroup with respect to multiplication.

(iii) For any n, «,, n2 eN, n.(nl+n2) = n.n1+n.n2.

(iv) If 0 is the additive identity of JV, then O.n = n.O = 0 for all n e N.

A subnear-ring S1 of a near-ring N is a subset S of N, which is a near-ring
under the induced binary operations.

A mapping/: N-*Nt of two near-rings N, iVj is a near-ring homomorphism
if (n+n')f = nf+ rif; («.«')/ = (»/). («'/) for any n, ri e N.

https://doi.org/10.1017/S0013091500010440 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010440


346 MICHAEL HOLCOMBE

If N is a near-ring, then an additive group M is an N-module, if there exists
a mapping (m, n)-*m.n of MxN into M, such that

(i) m.Cn+rtj) = m.n+m.ni for all meM; n, nL eN.

(ii) /M.(«.«I) = (w./i)./?! for all /n e M; n, nj e iV.

A mapping ^: M-+Mx (where M and A^ are JV-modules) is called an
N-homomorphism if

(m + TM')^ = mt/z+m'tl/ for any m,m'eM

{mn)\j/ = (m\j/)n for any w e M; « 6 iV.

An N-submodule M' of an JV-module Jkf is the kernel of an iV-homomorphism
fromM, so thatM'<aMand (/w+m').n—m.neM'for all meM, w' e M', n eiV.

An N-subgroup M" of an JV-module Af is an additive subgroup M" of M
such that m".« e M" for all m" e M", neN.

A near-ring iV is clearly an iV-module.
A right ideal ofN is an iV-submodule of the iV-module N.
A right N-subgroup ofN* is an iV-subgroup of the iV-module N.
An iV-module M is 0/ type 2 if M possesses no proper, non-trivial iV-sub-

groups and MN = {mn \meM; neN} i= {0}.
Let S be a subset of an .N-module M, we define

(S)r = {neN\sn = 0 forallseS}

and call this the right annihilator of S {in N). Clearly this is a right ideal of N.
A near-ring N is 2-primitive if there exists an A -̂module M of type 2 such

that (M)r = (0).
For any near-ring iV, define J2(N) to be the intersection of the right annihi-

lators of all iV-modules of type 2, with the convention that /2(A0 = N if N
possesses no Af-modules of type 2.

A near-ring N is 2-prime if aNb = (0) =*• a = 0 or b = 0 (a, b e N).
A near-ring satisfies the descending chain condition (d.c.c.) on right ideals

if, given a chain of right ideals in the near-ring,

K 1 gf l 2 g . . .gK P 3. . .

then there exists an integer q with Rq = Rq+1 = ...
A near-ring satisfies the ascending chain condition (a.c.c.) on right annihi-

lators if given a chain of right ideals of the near-ring, which are right annihilators,

(Z1)rg(Z2)p£.. .s(Zp),g...

then there exists an integer q with (Zq\ = (Zq+1)r....
An element n of a near-ring N is a regular element if

= n2n=>nt = n2 (nun2eN)
and

nn3 = nnA =>n3 = nA (n3,n4eN).
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A near-ring N has a near-ring of right quotients Q if

(i) N can be embedded (as a near-ring) in Q, and Q has an identity;

(ii) x is a regular element of N then 3ye Q such that x.y = y.x = 1Q

(we write y = x'1);

(iii) qe Q then q = nx"1 where ne N and x is a regular element of N.

Let T be an additive group and S a semigroup of endomorphisms of F.
We define Maps(r) to be the set of mappings {n\n: F-+F; (0r).n = 0r;
ysn = yns, Vy s F, Vs e S}. Then Maps (F) is a near-ring (with a multiplicative
identity), called the endomorphism near-ring of F in the category of S-acts and
S-maps.

2. ^-Systems

Theorem 2.1. Suppose that T is an additive group, and S is a multiplicative
semigroup of endomorphisms o/(F, +), which includes the identity endomorphism,
but not the zero endomorphism. Suppose that S is left and right cancellative,
left and right reversible and for all se S, ys = 0 => y = 0, (y e F). Then S has
a group G of left quotients, and G acts as a group of automorphisms on an additive
group A.

Proof. The existence of G is a standard result (2).
Consider FxS . Let (y, s), (yu s^eTxS, define the relation ~ by

(y, s)~(yu st) o 3a, b,eS such that sb = sta and yb = yta.
It is a fairly mechanical procedure to verify that ~ is well defined and an

equivalence relation (see (6)). Partitioning TxS into equivalence classes we
write y/s to represent the equivalence class containing (y, s). Let

A = { y / * | y e r , j e S } .
We show that A is an additive group and G is a group of automorphisms of A.

Let y/s, y'/s'eA and define y/s+y'/s' = (ya+y'b)/m where a, bsS, such
that s'b = sa = m. This operation is well defined. For suppose {yu Ji)~(y, s)
and (y'i,s'1)~(y',s')-! we show that y1ls1 + y'1ls\=yls+y'ls'. Let a, jleS
such that sen = stf} and ya = y^p. Also let A, n e S such that s'A = s\n and
y'A = yi/i. Then yi/sj+yi/si = (yiX+yi^/s^, where x, yeS such that
s[x = s'xy. Choose e,feS with stxf=sae. Then sae = s'fce, S!x/= sij>/.
Therefore s'be = s^yf. Now there exist k, heS such that aefc = ot/i. Then
saek = saA = s^h — s^xfk; thus jSA = xfk. yaek = yah = y^xfk. Then
(yae—yiXfik = 0=>yae = yxxf. Also y'fe/ = y'Am', where 1, m' e S such that
fee/ = Am'. Now s'beJ = sael = s[yfl = s'Am'. Then s\yfl = si/zm' => yfl = j*m'
and y'fre/ = y'Xm' = y\iim' = y'^yfl => y'fce = y'tj/. Since e and / are endomor-
phisms of F, (ya+y'b)e = yae+y'be = y1xf+y'1yf= (yiX + yiy)/: but sae = .Sjx/;
hence (ya + y'ft, sa)~(y1x+y'1y, stx). Thus addition is well defined, and the
group axioms are satisfied. If y/s e A and g eG, with g = rjs^ {r, st e S)
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define (y/s).g = yujis^i), where g = r/st and ult bte S such that sut = rbt.
It may be checked that this is a well-defined operation and g is an automorphism
of (A, +) , and G acts faithfully on A. For example, let y/s, y'/s',eA and
g = r/steG. Then (y/s+y'/s'^r/Si) = ((ya+y'fy/saXr/s,), where M = j ' 6 so

where jfl«! = r ^ . Now (y/j)(r/j,) = (yu^Ks^), where sw2 = rA2, and
(y'/s')(r/Sl) = (y'tij/isibj, where S'H3 = r63. Then

w h e r e s ^ c = 51fe3rf, i.e. £2e = ^3^- C h o o s e x j e S s u c h that stb2cx =
Then b2cx = bty = Z»3rfx and su2cx = r62c;t = rb3dx = rb±y = sauvy; hence
u2cx = OMJ^ => y«2cjc = yauiy. Also s'u3dx = rZ»3rfx = s'bu^; so w3<£c = buxy
and y'u3dx = y'bu^. Then (ya«! + y'bujy = yau^y+y'buyy = (yM2c+y'M3rf)x,
i.e. (yaMj + y'̂ M!, •y1&1)~(yM2c+y'u3</, 5ji2c). In this way we see that G is a
group of endomorphisms of A, and is in fact easily seen to be a group of auto-
morphisms of A.

Lemma 2.2. In the terminology of 2.1, G is a group of regular automorphisms
of A, if and only if, for every 0 # y 6 F, ys, = ys2 => st = s2, (su s2 e S).

Proof, (i) Suppose that G is a group of regular automorphisms. Let
y e T ; 5X e 5, s2 e S with yst = y52andji ^ s2. Then (y/l)(sjs2) = (y.a)/(s2b),
where l . a = stb. Hence (y/l)(.sjs2) = (ysib)/(s2b) = (ys2b)/(s2b) = y. Since
# = J J / J 2 e G, we have found an element y 6 F and j e G such that yg = y.
But g is regular; so y = 0.

(ii) Suppose that y/s e A, r/st e G and y # 0, and (y/sXr/sJ = y/j. Then
y/j = yuJ^Sib)), where r6t = sut. There exist M2, b2e S such that yt*2 = y i / ^
and su2 = 516162. Now y ^ 0 => M2 = u^b2 and thus

^ I ^ I ^ — ^"2 = sulb2=>slbl = sut = rbl=>sl — r.

Thus r/sj is the identity automorphism of A, and G is a group of regular auto-
morphisms of A.

f " )Lemma 2.3. In the terminology of Theorem 2.1 / / F = {0}u < (J ytS\for

suitable yu y2, ••-, yp e F, MCA /Aa? y^ny^-5 = 0 / o r / ^ 7, /Aen A Aas^ orifc
M/ia'er /̂ie ac/wn ofG.

Proof. Let 8 e A, 5 ^ 0. Then 5 = y/s for some y e F, j G S, and y = y^,-
p

for some j f e 5, and some ie {1,2, ...,p}. Then 8 = (yisi)ls = yi(s,ls)e U yfG.
i = 1

=10,"°}Thus A = < (J y;G> u{0}. Now suppose that 8' ^ 0 and <5' e y ^ n y G for
0 = 1 J

1 7 ^ / Let 8' = yi(r/s) = y/j /z) , where r, 5, ^, z e 5 . There exist a, / ? e S
such that SOL = zfi — m (say); so we have 5' = (y,r)/j = (yyj)/z and
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S'm = (yir/s)(mll) = ytrujbi, w h e r e uu bxe S a n d mb1 = sult i.e. s<xbt = su{,
i.e. abt = ux. Thus 5'm = (y.rafcj/i, = y,ra. Also <5'm = yjyu2jb2, where
«2, b2e S and /wft2 — ZM2> ie . /^2 = ui- Thus 5'/n = yy.y/? = y(ra; which
implies that yjSnytS # 0 , a contradiction.

Definition. A system (F, S) satisfying the hypothesis of Theorem 2.1 will be
called a ^-system, if and only if for every 0 # 7 e F, ysl = ys2, C?i> 2̂ 6 5).

Theorem 2.4. 7/"(F, S) and (Fj, St) ore ̂ -systems, then (T®ru Sx St) is a
SL-system.

Proof. SxSt is a semigroup of monomorphisms of F 0 F ! in the natural
way. Clearly S x S t is left and right cancellative, left and right reversible.
Let (y, 7l) e F 0 F ! with (y, yi) / (0, OJ and (y, y,)^, st) = (y, y^s ' , si) for
s, s'eS; su s^eSi. Thenys = ys'=>s = s'andy1s1=y1s\=>sl = s'v Finally,
if F = y1iSuy2Su...uypSu{0} and Tt = yii51uy12S'1u...uy1,S1u{0i} then

m

F 0 F ! = (J St(S x S^u^O, OJ}, where w = pq+p+q and the 5, are elements
t = 1

of the form (y,, 0x), (0, y u ) , (y,, yl}). Let

(y, / ) 6 {kit ^jXSxSJnfr, Alm)(Sx Sv)

for some A,, A,e{0, yl ( y2, •••, yp) and Xxj, Alme{0!, y n > y12, ..., ylq}. Suppose
(y. y') = ( V , XijSi) = (A,5', Alm5!) then Xts = A,s' and AuSi = Alms',. Clearly
A,- = A, and A1;- = Alm. This proves the result.

Examples. Let F be the additive group of integers and 5 the semigroup of
positive integers under multiplication. Then (F, 5) is a ^-system if we define
(y)s = ys for all y e F, s e S. Also let F be any finite group and S = {identity
automorphism} then (F, S) is a ,2-system.

3. The near-rings associated with ^-systems

To each 5-system (F, 5), we have associated an additive group A and a
group G of regular automorphisms of A admitting only finitely many orbits
on A. We now define two near-rings in a natural way. Let N = Maps (F)
and Q = Mapc (A). We can imbed N in Q in a natural way. Let ne N;
define n: A-»A by O.n = 0 and [yf(>/.s)]n = (yin)(r/s), where yf(r/j) is a typical

non-zero element of A, and A = {0}u U yfi . It is not difficult to see that
v = 1 _ /

fie Q. Define a map E,\ N^Q by n£ = n, VneTV. Let n, nt e N; then
For any <5eA, 5 ^ 0 ,

d(n + nj) =
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Also <5(n.Mj) = (Vi(a/i))(««i) = (y^m^.ia/b). Let yinnl = y/u for some
je{l, ..., p} and r1 e S, so that <5(nnj) = y/^a/b). Now

where ftn = yfcr2 for some A; e {1, ..., />} and r2 e S. Then

5(n.ni) = yk.nl{r2.alb).

Let y^! = y,r3 for some /e {1, ..., p] and r3 e 5, then

7(««i = V/i = (y/2>i = 7iV2.

Hence din.n^ = ytr3r2-(a/b) = y/i.(a/b) = <5(nn!). Thus ^ is a near-ring
homomorphism. If n e ker £ then n = 0, and An = 0. Thus if 0 ^ d e A, and
^ = yifllb), then [y,-(a/ft)]n = yin(a/b) = 0. In particular, y,n = 0 and this is
clearly true for i = 1, ...,/?. Hence « is the zero mapping and £, is bijective.
We have

Theorem 3.1. If (T, S) is a ^-system, and A and G the groups constructed
by Theorem 2.1, then Maps (F) may be imbedded in Mapc (A).

Remark. The near-ring Q = MapG (A) is a 2-primitive near-ring with
identity and descending chain condition on right ideals (see (3)). The remainder
of this section will show that Q is a near-ring of right quotients of N.

Let / = {1, 2, ..., p). Suppose n e N and for any k e I define

Ik{n) = {ieI\yineykS}.

It is clear that Ik(ri) may be empty and that if / e / with k ^ I, then

It(n)rM{n) = 0 .

Lemma 3.2. If n is a regular element of N, then each Ik(ri) contains one
element for any kel.

Proof. If Ik(n) = 0 for some kel, define nt so that

ViS/ij = y;s for all iel with i # k and any seS;

yksnt = 0 for all s e S and 0«! = 0.

Then «x e JV, yfM.l = yinnl {i j= k) and ykn.\ — y}s = yjsnt = yknnu

where yfc« = yjS for some./e/\{fc} and seS. Thus R . I = n . n 1 = ^ n 1 = l which
contradicts yknt = 0. Thus 7ft(n) # 0 for any A: e 7.

Theorem 3.3. If n is a regular element of N, then there exists qe Q such
that n.q = q.n = 1Q.

Proof. Let yji — yjrsl where jter, Si^S; i = 1, ...,p.
The integers j u ..., jp are a permutation of I, ..., p by Lemma 3.2; let

this permutation be denoted by n. Thus^ = n(i), i e /. Let sf1 be the inverse
of s, in G (iel). Define q: A-+A by Oq = 0 and (ynWgi)q = yis^1gi for
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i e I, gte G. Let <5eA, geG and suppose that S = ynW.gl for some
lei,gteG. Then

Hence q e Q.
Now let 8' e A with 8' # 0, and 8' = y,0,- = y((

ri/0> where i e /, r,, t, e 5.
Then 5 ^ = {yfy-Jt^nq =ptri){rjtdq =pnWsi)(rilti)q ^y&hfajtd =8'.
Hence nq = 1Q. Also (5'#n = {y^rjt^qn = y„&)&,/tt)qn, where 7t(A:) = i. Then

Now Vk» = 7X(t)% a n d so 5'^« = 5'. Thus nq = qn = 1Q. Therefore we can
invert the imbedded regular elements of N in Q.

Theorem 3.4. If x is an arbitrary non-zero element of Q, then there exist
0, nl e N, with 9 regular in N such that x = n^'1, where Q~l is the inverse in
Q of the element 0.

We first need the following lemma, which is proved by a standard induction
argument.

Lemma 3.5. Let rlt ..., ra, t^ taeS, then there exist meS and
hy, ..., hae Ssuch that mrt = hltlfor i = 1, ..., a.

Proof of Theorem 3.4. Let xeQ, with x * 0. Put X = {a e I \ yxx = 0}.
Suppose that x: yt->?;,#;, ieI\X, jtel, gi^G. We have that x: ya->0 for
a'e X. For any kel, put I*(x) = {iel \ ytxeykG}.

Some of these /*(x) may be empty. If vel*(x) for some kel then
V«x = M*o say, (gkveG) and so yvx = yk(rjtkv) for suitable rkv, tkveS.
From Lemma 3.5, there exist mkeS and hkveS, (yel*(x)) such that
mkrk0 = hkvtkv for all vel*(x), and each kel.

Now we define a mapping nt: F->r by putting

(yv. s)«x = yk(hkD)s for all ce/?(x), kel,

0. «j = 0, (}>„;>•)«! = 0 for a e X.
Clearly nx e N.

Let / ' = {y G /1 yfxe y}G for some / e / } . (Thus / ' is the set of indices
whose associated orbits appear in the image of x in A.)

Define 0: T->T by
yts9 = y,mts for all t e I',

yisO = y,s for all iel\l',

0.6 = 0.

Then 6 is a regular element of N and the element 0" 1 : A-»A is given by

)>,#-• y,mt~
 1gr for all teI',

M - W for all ie I\I'.
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Put y = n^O'1, then for ie/?(x), yty = y,n10~1 = (yAi) 0 " 1

Now mkrki = hkitki and so in G, r^ t"1 = m^xhki. Thus y,)> = ykrkitji
l = ytx.

If y e JT, then y3y — y /^0 * = 0 as y^ i = 0. Hence y = x = «t0 *. Thus
2 is a near-ring of right quotients of N.

Theorem 3.6. If (T, S) is a 2,-system, then N = Maps (F) is a 2-prime
near-ring.

Proof. Assume that n, n' € N with nNri = 0 but n # 0 and «' # 0. Let
/ = {1, 2, ..., />}. Since n # 0, then y^ = y7-5 for some 1, j e I and 5 e S; also
y,n' = yrj ' for some t, re I and j ' e 5. Define n t : F-+F by

= Vtsi f° r a n y sx eS ,

= 0 for any sleS and lei, 1 # 7 .

= yjsn^ri = y,5«' = y^'5 7̂  0. But««!«' 6 nA^n' = 0;
thus we have a contradiction.

The theorems of this section show that if (F, S) is a ^-system then the near-
ring Maps (F) will have a near-ring of right quotients which is in fact 2-primitive
and artinian and is of the form MapG (A) for suitable groups A, G. Notice
that the near-ring of quotients, although an endomorphism near-ring is
associated with the category of G-acts and G-morphisms rather than with the
related category of 5-acts and S-morphisms.

Some of the theorems of ring theory which describe the connection between
a ring and its ring of right quotients (if it has one) can be generalised easily to
the near-ring case. Using results of Betsch (1) concerning near-rings with d.c.c.
on right ideals which have a zero J2-T&dical, it is possible to prove that
N = Maps (F) has a.c.c. on right annihilators and possesses no infinite direct
sums of right ideals (see (3)).
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