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Abstract

Nanospace governs the dynamics of physical, chemical, material and biological
systems, and the facility to model it with analytical formulae provides an essential
tool to address some of the worlds’ key problems such as gas purification, separation
and storage. This paper aims to provide some analytical models to exploit building
blocks representing various geometric shapes that describe nanostructures. In order
to formulate the various building blocks, we use the continuous approximation which
assumes a uniform distribution of atoms on their surfaces. We then calculate the
potential energy of the van der Waals interaction between an atom and the structure
to evaluate the location of the atom where the potential energy is at its minimum. We
provide applications of the analytical models for some real structures where more than
one type of building block is required.

2010 Mathematics subject classification: 5100.
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1. Introduction

Nanospace is the term used to describe the realm of nanoscaled objects. The
interactions of these objects govern the dynamics of many physical, chemical, material
and biological systems. Here we review some of the work related to the continuous
approximation which assumes that discrete atomic structures can be smeared over lines
or surfaces using average atomic densities. This approximation leads to analytical
formulae for interaction energies. Through the modelling of nanospace with analytical
formulae, we may address problems in the field of nanotechnology including (but not
limited to) gas purification and separation for clean energy purposes, and energy-
efficient, environmentally safe methods for storing gas. We aim to understand the
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nature of interaction energies in order to grasp the most efficient configuration in
nanospace. Our ability to build high-performing adsorbents can be greatly improved
by using a mathematical model that explains the interaction of gases with adsorbents
at the nanoscale.

Porous nanostructures such as carbon-based structures [3] and metal-organic
frameworks (MOFs) [11] which are highly ordered and periodic, have been shown
to be the most efficient for gas storage, since they possess low densities, large surface
areas and tunable pore sizes [9], and they rely on physisorption which means that
adsorbents are adsorbed on the surface of these structures through weak interactions.
Current methods of gas storage such as high-pressure tanks and metal hydrides are
unfavourable as the former can be energy- and space-inefficient [2], and the latter
relies on the chemisorption process (where the adsorbent is chemically bonded within
host hydrides) which suffers from high operating temperature, slow kinetics and low
gravimetric storage [12]. Porous materials which rely on physisorption are also
effective for gas separation processes due to the molecular sieving effect, where the
pore size of the structure determines whether the gas can enter the pores. The packing
interactions between the adsorbate and the surface of the adsorbent contribute to the
ability of the material to selectively adsorb gases [6].

There has been a lot of research to develop an improved understanding of the
adsorption process and optimize the conditions for gas storage and separation; for
example, see the paper by Watanabe and Sholl [16]. In that paper, the adsorption
and diffusion behaviour of CO2/N2 gas mixtures in 1163 MOFs are predicted using
the classical molecular simulation. Some selected materials are then analysed to
provide information about the flexibility of the structure and their chemical interactions
with contaminants. Although computational simulations are currently the preferred
methods to explore the properties of porous materials due to their capacity to be
highly accurate, analytical models are less time-consuming, and do not require
considerable computing power. In addition, applied mathematical modelling has been
shown to produce results that are comparable with computer simulations and existing
experimental data [7, 13].

Thornton et al. [13] analytically evaluated the heat of adsorption for MOF-177
and its gravimetric and volumetric uptake capacities for hydrogen and methane
gas adsorption. The modelling output for total hydrogen uptake provided good
agreement with various experimental and simulation results in the literature which
ensures the accuracy of the predictions made. A similar analytical method is also
employed by Lim et al. [7] to explore the hydrogen adsorption on beryllium
benzene tribenzoate (Be-BTB). The hydrogen adsorption isotherm calculated using
their proposed analytical model closely matches the data obtained from experiments
and simulations at 77 and 298 K. Using that model, the authors reached the same
conclusions as the results obtained in the literature, that is, there is a correlation
between hydrogen uptake and both surface area and pore volume at high pressure.

In this paper, we represent both simple and complicated geometries of nanoporous
materials using idealized building blocks that describe the interactions with simple
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Figure 1. Various atomic representations of structures that can be idealized by building blocks. An atom
can be described by a point (a), benzene by a ring (b), fullerene as a sphere (c), a carbon chain by a line
(d), graphene sheets by planes (e), and a carbon nanotube by a cylinder (f).

and elegant analytical models. Section 2 introduces the analytic representations of the
van der Waals interaction between an atom and building blocks which are represented
by standard geometrical shapes such as points, lines, planes, spheres and cylinders
as shown in Figure 1. Section 3 then discusses some examples of how they can be
exploited to describe actual nanostructures and a brief conclusion is given in Section 4.

2. Interaction points with building blocks

In this section, we first introduce some methods which can be used to describe the
van der Waals energy that exists between an atom interacting with a nanostructure.
There are several methods that can be used to calculate the total interaction energy
of atom P interacting with nanostructure J. If the locations of P and the atoms on J
(which are denoted as j) are known, and are defined by coordinate positions, we can
evaluate the total interaction energy U by calculating the sum of the individual atomic
interactions between j and P; thus

U =
∑

j

Φ(ρ jp),

where Φ(ρ) is the potential energy function, and ρ jP is the distance between atoms j
and P.

If J is large or the locations of its atoms are not known, the discrete method can
be replaced by the continuum approximation provided that the geometry is reasonably
simple, such as cylinders for nanotubes and spherical surfaces for fullerenes. Using
this method, we assume that the atoms on the surface are uniformly distributed so that
we can perform a continuous integration over the surface to obtain the total interaction
energy

U = ηJ

∫
SJ

Φ(ρ) dSJ , (2.1)
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where ηJ denotes the atomic density (number of atoms/surface area) on surface J and
ρ represents the distance between P and the surface element dSJ .

The interaction energy between two atoms can be described by various potential
functions. In this paper, we focus on the 6–12 Lennard-Jones potential [5] which
describes the interaction between two nonbonded atoms. Using the Lennard-Jones
potential, we describe the interaction between j and P as

Φ(ρ) = −
C1

ρ6 +
C2

ρ12 ,

where C1 = 4εσ6 and C2 = 4εσ12 represent the attractive constant and the repulsive
constant, respectively, with ε as the well depth and σ as the van der Waals diameter
obtained by Rappe et al. [10].

Nanostructures can be quite complicated and difficult to represent geometrically, but
they can be represented in a simple manner by introducing the idea of building blocks.
Due to the symmetric nature of the building blocks that we introduce, the interaction
energy between an arbitrary point and these building blocks can be modelled using the
continuum approximation and a simplified version of equation (2.1). Thus,

U = ηJ(−C1 R3 + C2 R6), (2.2)

where

Rn =

∫
SJ

1
ρ2n dSJ (2.3)

with n = 3 and 6. In the following subsections, we present the interaction energy
between an arbitrary point and various building blocks using this approach.

2.1. Interaction with a point Given the coordinates of two atoms, atom
P = (xp, yp, zp) and atom j = (x j, y j, z j), the parameter ρ in equation (2.3) is given
by

ρ = [(xp − x j)2 + (yp − y j)2 + (zp + z j)2]1/2,

which is the formula for the distance between the location of j and P.

2.1.1. Carbon In this section, we use equation (2.2) to calculate the potential
energy between a carbon (C) atom and a hydrogen (H) atom. We assumed that C
is located at the origin (0, 0, 0) and H is located at (0, y1, z1). Figures 2(a) and (b) show
the contour plots for C interacting with H in two and three dimensions, respectively.
The figures show that the hydrogen atom is most stable at a distance of 3.3 Å from
the carbon atom, as shown by the blue area (colour online) of the contour plots which
defines the minimum potential energy. The parameter values used to obtain our figures
are as given in Table 1.
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Figure 2. (Colour online) Contour plots of H interacting with a carbon atom.

Table 1. Numerical values of various parameters (H–C denotes the interaction between hydrogen and
carbon, and H–H denotes the interaction between hydrogen and hydrogen).

Parameter Description Value

rc radius of C ring (benzene) 1.4 Å
rh radius of H ring (benzene) 2.48 Å
t radius of fullerene 3.55 Å
c radius of (10,10) carbon nanotube 6.784 Å
η2 mean atomic density of C and H in polyacetylene 0.831 Å−2

η3 mean atomic density of graphene 0.382 Å−2

η4c mean atomic density of C ring (benzene) 0.682 Å−2

η4h mean atomic density of H ring (benzene) 0.385 Å−2

η5 mean atomic density of fullerene 0.379 Å−2

η6 mean atomic density of carbon nanotube 0.381 Å−2

C1 H–C attractive constant H–C 5.576 eVÅ6

C1 H–H attractive constant H–H 1.036 eVÅ6

C2 H–C repulsive constant H–C 3944.302 eVÅ12

C2 H–H repulsive constant H–H 208.178 eVÅ12

2.2. Interaction with a line Using a two-dimensional coordinate system, the line
L lies on the x-axis and any position on L is denoted by (0, t). Point P is located at
(g, 0) and the distance between P and L is given by

ρ = [g2 + t2]1/2.

Given the line element dt, we solve equation (2.3) to obtain

Rn =

∫ ∞

−∞

(g2 + t2)−n dt

= g1−2nB
(1
2
, n −

1
2

)
.
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Rn is then substituted into equation (2.2) to yield the potential energy for L and P,

ULP = ηπ
(
−

3C1

8g5 +
63C2

256g11

)
, (2.4)

where η is the mean atomic density of line L calculated by dividing the number of
atoms by the length of the line, and B(x, y) is the beta function such that

B(x, y) =
(x − 1)!(y − 1)!

(x + y − 1)!
.

If the coordinates are known such that P = (xp, yp, zp) and two points located on the
line L are L1 = (x1, y1, z1) and L2 = (x2, y2, z2), the parameter g in equation (2.4) can
be replaced by

g =
|(L1 − P) × (L2 − L1)|

|(L2 − L1)|
,

which is the shortest distance between P and L.

2.2.1. Polyacetylene This section describes the interaction of a hydrogen atom
with polyacetylene which is an organic polymer with the repeating unit (C2H2)n that
creates a long polymer chain. We assume that the hydrogen atom lies at the location
(0, y2, z2). The polyacetylene is located on the x-axis and the two locations on the line
(picked at random) are L1 = (3, 0, 0) and L2 = (−2, 0, 0) which represent two atoms in
the chain. The total potential energy between the hydrogen atom and polyacetylene is
calculated by adding up the potential energies for H interacting with the hydrogen line
and carbon line to yield

Utot = UC + UH , (2.5)

where UC is the potential energy for H with the carbon line and UH is the potential
energy for H with the hydrogen line. The value of parameters C1 and C2 for both
the hydrogen–carbon and hydrogen–hydrogen interactions can be found in Table 1.
To calculate the mean line density, we found the length of a particular section of the
polyacetylene, C10H10 (as shown in Figure 3) to be 12.027 Å. The mean line density
for carbon and hydrogen for the polyacetylene (η2) is then obtained by dividing the
corresponding number of atoms by its length to obtain 10/12.027 = 0.831 Å−2. The
blue area in Figures 4(a) and (b) (colour online) represents the minimum potential
energy. This shows that the hydrogen atom is most stable at a distance of about 3.2 Å
from the polyacetylene.

2.3. Interaction with a plane We now consider the interaction of a plane S with
a point P using a three-dimensional coordinate system. We assume that S lies on the
yz-plane, S P lies on the plane S and P lies on the x-axis. Given that S P = (0, u, v) and
P = (g, 0, 0), where g is the perpendicular distance of P from S , the distance between
P and S is given by

ρ = [g2 + u2 + v2]1/2.
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Figure 3. Structure of polyacetylene (C10H10).
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Figure 4. (Colour online) Contour plots of H interacting with the carbon atoms on polyacetylene.

Using du dv as the area element of the plane, Rn is given by

Rn =

∫ ∞

−∞

∫ ∞

−∞

(g2 + u2 + v2)−n du dv

= g2−2nB
(
n −

1
2
,

1
2

)
B
(
n − 1,

1
2

)
.

The total interaction energy between P and S P is given by

UPS = πη
(
−

C1

2g4 +
C2

5g10

)
, (2.6)

where η is the mean atomic density.
Similarly to Section 2.2, we can replace the parameter g with the shortest distance

from P to S if the coordinates are given such that P = (xp, yp, zp), and three points
located on S are S 1 = (x1, y1, z1), S 2 = (x2, y2, z2) and S 3 = (x3, y3, z3). The shortest
distance is thus defined as

g = n̂ · (P − S x), (2.7)

where S x is any of the points S 1, S 2, S 3 and

n̂ =
(S 2 − S 1) × (S 3 − S 1)
|(S 2 − S 1) × (S 3 − S 1)|

is the unit normal for S .
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Figure 5. (Colour online) Contour plots of H interacting with a graphene sheet.

2.3.1. Graphene sheet We present the case of a hydrogen atom interacting with
a sheet of graphite in this section. The mean surface density for a graphene sheet is
denoted by η3 = 4

√
3/(9γ2), where γ is the carbon–carbon bond length. For a sheet

of graphene, γ = 1.42 Å so that η3 = 0.382 Å−2. The parameters C1 and C2 for the
hydrogen–carbon interactions can be found in Table 1. We assume that the locations
of three points on the plane (picked at random) are S 1 = (1, 2, 4), S 2 = (2, 4, 5) and
S 3 = (3, 5, 7) and the location of the hydrogen atom is P = (0, y3, z3).

Substituting P, S 1, S 2 and S 3 into equation (2.7) will provide the shortest distance,
and g is then substituted in equation (2.6). The potential energy between S and P
against varying values of y3 and z3 is plotted in Figures 5(a) and (b). We can observe
that the minimum potential energy is located at the dark blue section (colour online)
of the contour plots. The hydrogen atom is stable when it is about 3 Å distance away
from the graphene sheet.

2.4. Interaction with a ring In this section, we will introduce the analytic formulae
for the interaction between a point and a ring. This interaction can be categorized into
two cases: (i) the point is interacting with the ring from the side; and (ii) the point is
interacting with the ring from the top or bottom. These two cases will be discussed in
this section.

2.4.1. Point P located at the side of the ring In this case, we use a two-dimensional
coordinate system with the centre of ring Q of radius q located on the origin. The
coordinates of the points on the ring are (q sin θ, q cos θ) for θ ∈ [0, 2π). The point
P which is interacting with Q is located at (0, g). The distance between P and Q is
given by

ρ =

[
(q − g)2 + 4gq sin2 θ1

2

]1/2
,

and since the line element is q dθ,

Rn =

∫ 2π

0
q
[
(q − g)2 + 4gq sin2 θ

2

]−n
dθ.

https://doi.org/10.1017/S1446181115000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000152


[9] Analytical representations of regular-shaped nanostructures for gas storage applications 51

By bisecting the interval of integration and making the substitution t = sin2(θ/2), we
obtain

Rn =
q

2(q − g)2n

∫ 1

0
t−1/2(1 − t)−1/2

[
1 +

4gqt
(q − g)2

]−n
dt,

where the integral is of standard hypergeometric form. Note that the standard
hypergeometric function is given by

F(a, b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tz)a dt.

Substituting the standard hypergeometric form into Rn yields

Rn =
πq

2(q − g)2n F
(
n,

1
2

; 1;−
4gq

(q − g)2

)
,

and the total potential energy for P and Q is then given by

UPQ =
πηq

2

[
−

C1

(q − g)6 F
(
3,

1
2

; 1;−
4gq

(q − g)2

)
+

C2

(q − g)12 F
(
6,

1
2

; 1;−
4gq

(q − g)2

)]
. (2.8)

To provide some variation on the location of point P for this case, we can consider
the case where P = (0, y6, z6) and is located on the yz-plane. To do this, we substitute

g =

√
y2

6 + z2
6 into equation (2.8).

2.4.2. Point P located at the top or bottom of the ring The second case is when
the point is interacting from the top or bottom of the ring. Using a three-dimensional
coordinate system, the centre of the ring Q of radius q is located on the origin and
the location of point P is (xp, yp, zp). The coordinates of the points on the ring are
Q = (q cos θ, q sin θ, 0) for θ ∈ [0, 2π) and thus the distance between P and Q is given
by

ρ = [β − αq cos(θ − θ0), ]1/2,

where β = q2 + x2
p + y2

p + z2
p, α =

√
x2

p + y2
p and θ0 = arctan(yp/xp). To solve for Rn,

we follow similar calculations to those of Tran-Duc et al. [15] and obtain

Rn =

∫ 2π

0
q[β − αq cos(θ − θ0)]−n dθ,

=
2πq

(β − αq)n F
(
n,

1
2

; 1;
2αq
αq − β

)
,

and the potential energy for P2 and Q is then given by

UPQ = 2πηq
[
−

C1

2(β − αq)3 F
(
3,

1
2

; 1;
2αq
αq − β

)
+

C2

120(β − αq)6 F
(
6,

1
2

; 1;
2αq
αq − β

)]
. (2.9)

In both cases, η is the mean atomic density of the ring which is calculated by dividing
the number of atoms by the circumference of the ring.
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Figure 6. (Colour online) Contour plots of H interacting with a benzene ring from the side.

2.4.3. Benzene ring For the interaction of H with the benzene ring (C6H6), we
assume that the centre of the benzene ring lies on the origin O and that it is made of two
rings: one to represent the hydrogen atoms and the other to represent the carbon atoms.
The radius of the hydrogen ring, rh, is 2.48 Å, and of the carbon ring, rc, is 1.4 Å. The
mean surface density for the hydrogen ring, η4h, is deduced from 6/(2πrh) = 0.385 Å,
and for the carbon ring, η4c, is deduced from 6/(2πrc) = 0.682 Å. Parameters C1 and C2

for the hydrogen–carbon and hydrogen–hydrogen interactions can be found in Table 1.
The total potential energy for H interacting with a benzene ring is calculated by adding
up both the potential energies for H interacting with the hydrogen ring and carbon ring
following equation (2.5), where UC is the potential energy for H with the carbon ring,
and UH is the potential energy for H with the hydrogen ring.

For the case of H interacting with the benzene ring from the side, we assume that the

position of the hydrogen atom is at (0, y4, z4), and make the substitution g =

√
z2

4 + y2
4

into equation (2.8). The two-dimensional contour plot for this interaction is presented
in Figure 6(a) and the three-dimensional contour plot in Figure 6(b). The most stable
position for the hydrogen atom is at the blue section of the contour plots or at about
4.9 Å from the centre of the benzene ring.

For the case of H interacting with the benzene ring from the top (or bottom), we
assume that the position of H is at (1, y4, z4). The two-dimensional contour plot for
this interaction is presented in Figure 7(a) and the three-dimensional contour plot in
Figure 7(b). The most stable position for the hydrogen atom is at the blue section
(colour online) of the contour plots or at about 1 Å from the centre of the benzene ring.
The hydrogen atom experiences a repulsive force in the centre of the benzene ring, as
shown by the red area (colour online) of the figures.

2.5. Interaction with a sphere For the interaction of an atom P with a sphere S of
radius t, we assume that the centre of the sphere is at the origin O. Thus, the location
of any point on the surface of the sphere in Cartesian coordinates is defined as

S i = (t sin θ cos φ, t sin θ sin φ, t cos θ),
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Figure 7. (Colour online) Contour plots of H interacting with a benzene ring from the top.

where φ is the azimuthal angle in the xy-plane with φ ∈ [−π, π) and θ is the zenith angle
with θ ∈ [0, π].

To make the calculation easier, we assume that P lies on the z-axis and is at a
distance g from the centre of S , and thus is defined as (0, 0, g). The distance between
P and S i is

ρ = [t2 sin2 θ + (t cos θ − g)2]1/2,

and given that the area element is t2 sin θ dφ dθ, Rn is calculated using methods similar
to those of Cox et al. [4] as follows:

Rn =

∫ π

0

∫ π

−π

t2 sin θ[t2 sin2 θ + (t cos θ − g)2]−n dφ dθ

=
πt

g(1 − n)

[ 1
(t + g)2(n−1) −

1
(t − g)2(n−1)

]
.

Substituting Rn into the potential energy equation (2.2) gives

UPS =
πηt
g

[C1

2

{ 1
(g + t)4 −

1
(g − t)4

}
−

C2

5

{ 1
(g + t)10 −

1
(g − t)10

}]
, (2.10)

where UPS is the total potential energy of P interacting with S . The parameter η is
the mean surface density for the sphere, which is calculated by dividing the number of
atoms by the surface area of the sphere.

2.5.1. Interaction inside and outside a sphere There are two different cases for the
interaction of P with a sphere: (i) P is located inside the sphere; and (ii) P is located
outside the sphere. To account for the position of P inside and outside the sphere, we
redefine the position of P to be located on the yz-plane such that the position of P is
(0, yp, zp).

Substituting g =
√

y2
p + z2

p into equation (2.10) will provide the interaction energy
between P and S . If P is inside the sphere, then the distance of P from the centre of S
has to be smaller than its radius such that g < t. If P is located outside the sphere, then
g > t.
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Figure 8. (Colour online) Contour plots of H interacting the outer walls of a C60 fullerene.
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Figure 9. (Colour online) Contour plots of H interacting with the inner walls of a C60 fullerene.

2.5.2. Fullerene In this section, we demonstrate the interaction between a
hydrogen atom and a fullerene (C60). We present the two cases where the hydrogen
atom is located inside and outside the fullerene. We assume that H is located at
(0, y5, z5) and the centre of the fullerene is at the origin O. Here we use equation (2.10)
to generate a three-dimensional figure. The mean surface density for a fullerene,
η5 = 60/(4πt2) = 0.379 Å−2, where t = 3.55 Å is the radius of the fullerene. The
parameters C1 and C2 for the hydrogen–carbon interactions can be found in Table 1.

Figure 8 shows the contour plots of the potential energy of a hydrogen interacting
outside a C60. The minimum potential energy occurs in the dark blue sections of the
contour plots or at 6.5 Å from the centre of the fullerene.

Figure 9 shows the contour plots of the potential energy of a hydrogen interacting
inside a C60. The minimum potential energy, in this case, occurs in the centre of the
fullerene due to the small size of the fullerene. If H is interacting with a larger sphere,
the minimum potential energy will be located nearer to the walls of the fullerene and
away from the centre.

2.6. Interaction with an infinite cylinder The last building block that is described
is the cylinder. Point P is located on the xy-plane at (g, 0, 0) and the cylindrical surface
C is defined to be (c cos θ, c sin θ, zc) where c is the radius of the cylinder, θ ∈ [0, 2π),
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zc ∈ (−∞,∞). We present two cases in the following subsections where: (i) point P is
located inside the cylinder; and (ii) point P is located outside the cylinder.

2.6.1. Point P located inside cylinder For this case, g < c. The distance from P to
C is thus given by

ρ1 = [(c cos θ − g)2 + c2 sin2 θ + z2
c]1/2

= [(c − g)2 + z2
c + 4cg sin2(θ/2)]1/2.

The area element is given by c dθ dzc which is used to solve for Rn1. Following similar
calculations of Cox et al. [4], we obtain

Rn1 =

∫ ∞

−∞

∫ π

−π

c[(c − g)2 + z2
c + 4cg sin2(θ/2)]−n dθ dzc

= c
∫ π

−π

1
α2n−1 dθ

∫ π/2

−π/2
cos2n−2 ψ dψ,

where α2 = (c − g)2 + 4cg sin2(θ/2). Further, substituting t = sin2(θ/2) yields

Rn1 =
2c

(c − g)2n−1 B
(
n −

1
2
,

1
2

) ∫ 1

0
t−1/2(1 − t)−1/2

(
1 +

4cgt
(c − g)2

)(1/2)−n
dt,

which by using Euler’s integral formula reduces to

Rn1 =
2πc

(c − g)2n−1 B
(
n −

1
2
,

1
2

)
F
(
n −

1
2
,

1
2

; 1;−
4cg

(c − g)2

)
=

2π2

Γ(2n − 1)(2c)2n−2

∞∑
m=0

(
Γ(2n + 2m − 1)gm

Γ(n + m)m!(4c)m

)2
.

We can now express the total potential energy between C and P as

UCP1 =
π2η6

192
(−C1 R3 + C2 R6), (2.11)

where

R3 =
1
c4

∞∑
m=0

[ (2m + 4)!gm

(m + 2)!m!(4c)m

]2
,

R6 =
1

9 676 800c10

∞∑
m=0

[ (2m + 10)!gm

(m + 5)!m!(4c)m

]
.

2.6.2. Point P located outside cylinder The second case is when point P is outside
the cylinder, that is, g > c. In this case, the distance from P to C is

ρ2 = [(g − c cos θ)2 + c2 sin2 θ + z2
c]1/2

= [(g − c)2 + z2
c + 4cg sin2(θ/2)]1/2.
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We perform calculations similar to those above to solve for the integral

Rn2 =

∫ ∞

−∞

∫ π

−π

c[(g − c)2 + z2
c + 4cg sin2(θ/2)]−n dθ dzc

to yield

Rn2 =
2cπ

(g − c)2n−1 B
(
n −

1
2
,

1
2

)
F
(
n −

1
2
,

1
2

; 1;−
4cg

(g − c)2

)
=

4cπ2

Γ(2n − 1)(2g)2n−1

∞∑
m=0

[
Γ(2n + 2m − 1)cm

Γ(n + m)m!(4g)m

]2
.

Thus, the total potential energy between C and P is

UCP2 =
cπ2η6

192
(−C1 R3 + C2 R6), (2.12)

where

R3 =
1
g5

∞∑
m=0

[ (2m + 4)!cm

(m + 2)!m!(4g)m

]2
,

R6 =
1

9 676 800g11

∞∑
m=0

[ (2m + 10)!cm

(m + 5)!m!(4g)m

]2
.

In both cases, η6 is the mean atomic density for the cylinder, which is calculated by
dividing the number of atoms by the surface area of the cylinder.

To provide some variation on the location of point P, we can consider the case

where P = (0, y6, z6) and is located on the yz-plane. Here we substitute g =

√
y2

6 + z2
6

into equation (2.11) to obtain the potential energy inside the cylinder and into
equation (2.12) to obtain the potential energy outside the cylinder.

2.6.3. Carbon nanotube In this section, we model the interaction between a
hydrogen atom and a semi-infinite (10,10) carbon nanotube of radius c = 6.784 Å. The
mean surface density for a carbon nanotube is the same as for a graphene. Therefore,
η6 = 4

√
3/(9γ2) = 0.381 A−2, where γ = 1.421 Å is the carbon–carbon length. The

value of the parameters C1 and C2 for the hydrogen–carbon interactions can be found
in Table 1. For the case where H is located inside the carbon nanotube, we assume that
H is located at (0, y6, z6), and the centre of the carbon nanotube lies on the x-axis.

Substituting these parameter values into equation (2.11) shows the total potential
energy between the hydrogen atom and the semi-infinite (10, 10) carbon nanotube as
a function of y6 and z6. Figure 10 shows plots of this function. H is at equilibrium
distance at 3.75 Å from the centre of the carbon nanotube as shown in the dark blue
sections of the contour plots. The potential energy will tend to zero as H moves towards
the centre of the nanotube.

Figure 11 shows the contour plots of the potential energy of H interacting outside
an infinite carbon nanotube. The potential energy for this interaction is obtained by
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Figure 10. (Colour online) Contour plots of H interacting with the inner walls of an infinite carbon
nanotube.
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Figure 11. (Colour online) Contour plots of H interacting with the outer walls of an infinite carbon
nanotube.

substituting the values of the parameters into equation (2.12). As shown in the figure,
H is at equilibrium distance at 9.7 Å from the centre of the carbon nanotube as shown
in the dark blue sections (colour online) of the contour plots.

3. Example of interactions with porous materials

In this section, we present some examples of how we can implement the idea of
building blocks discussed in the previous sections. An example of how nanostructures
can be represented by planes and rings has been given by Tran-Duc et al. [14]. This
paper investigated the adsorption of polycyclic aromatic hydrocarbons – in particular,
coronene (C24H12) – onto a graphite surface using both the discrete and continuous
approach. The coronene is modelled as four circular rings and the graphite surface as
a plane as shown in Figure 12. The equation for the potential energy between the two
is based on equations (2.6) and (2.9).

Comparison of results obtained using the discrete and continuous method shows
that the continuous method provides results that are as accurate as the discrete method.
The energy profiles for the interaction between two structures are also provided for
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Figure 12. (Colour online) (a) Geometric representation of coronene (C24H12). (b) Coronene interacting
with a graphite sheet. Reprinted from [14] with permission from Elsevier.

different values of the vertical distance between C24H12 and the graphene sheet Z.
The different values used are: Z ≥ 7.5 Å when it is far from the graphite surface;
3.9 Å < Z < 7.5 Å when it is at an intermediate distance; and Z ≤ 3.9 Å when it is
near the graphite plane. The authors concluded that the most stable configuration for
coronene molecule when Z ≥ 7.5 Å is when it is perpendicular to the graphene sheet.
At 3.9 Å < Z < 7.5 Å a tilted configuration is preferred, and at Z ≤ 3.9 Å the minimum
potential energy occurs when it is parallel to the plane.

The spherical model is used in the paper by Thornton et al. [13] where the gas
uptake for three types of MOFs is predicted: MOF-177, MOF-177 impregnated with
C60 fullerenes (C60@MOF) and MOF-177 impregnated with magnesium-decorated
fullerenes (Mg–C60@MOF). The paper first verified the model which is based on
equation (2.10) with other experimental and simulation results. The authors reported
that the model accurately portrays the observed effects of temperature, pressure and
cavity size on hydrogen uptake. The model is then used to predict the hydrogen
and methane uptake for MOF-177 and the proposed structures C60@MOF and
Mg–C60@MOF by first calculating the potential energy within the cavity. In
C60@MOF and Mg–C60@MOF the fullerene and magnesium-decorated fullerene are
assumed to be located in the middle of the MOF structure and modelled as a sphere
as shown in Figure 13(a). Figure 13(b) shows the potential energy gradient inside the
Mg–C60@MOF. The total potential energy is calculated by adding the potential energy
between the gas and the MOF structure to the potential energy between the gas and
the fullerene or magnesium-decorated fullerene. The authors in [13] concluded that
Mg–C60@MOF has a greater potential energy compared to the other structures and,
therefore, is able to adsorb gases more efficiently.

The final example that is presented is the work by Adisa et al. [1] which discusses
the encapsulation of methane molecules into carbon nanotubes using two different
models of methane. The first model describes the methane molecule using the discrete
method as shown in Figure 14(a). This model calculates the individual potential energy
between the atoms on the methane and the carbon nanotube, which is modelled using
the continuous approximation and is based on equations (2.11) and (2.12). The second
model, as shown in Figure 14(b), assumes that the hydrogen atoms on the methane
are evenly distributed over the surface of a sphere with the carbon atom at its centre
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Figure 13. (Colour online) MOF-177 impregnated with magnesium-decorated fullerenes
(Mg–C60@MOF). The schematic representation for Mg–C60@MOF is given in (a) and the potential
energy for adsorption in the cavity is described in (b). Reprinted with permission from [13]; copyright
2009 American Chemical Society.
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Figure 14. Two different representations of a methane molecule entering a carbon nanotube: (a)
discrete representation of the methane molecule; (b) continuous representation of the methane molecule.
Reprinted from [1] with permission from Elsevier.

and is based on equation (2.10). The potential energy between the methane molecule
and carbon nanotube is then calculated by adding the potential energy of the carbon
atom and the carbon nanotube using the discrete method and the potential energy of
the hydrogen atoms and the carbon nanotube using the continuous approximation.
Comparison between the two models shows that the continuous approximation, which
is a simpler way to calculate the potential energy, produces comparable results to the
discrete model.

4. Conclusions

We determine analytical potential energy models which describe the interactions
between atoms and various idealized building blocks, such as points, lines, planes,
rings, spheres and cylinders. Case studies of these models provide the potential energy
distribution between a hydrogen atom and various building blocks represented by
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a carbon atom, polyacetylene, graphene sheet, benzene ring, fullerene and carbon
nanotube. It is important to note that the analytical models can be combined to
represent more complicated structures. Examples of structures that represent a
combination of the analytical models to determine the total potential energy between
the interacting structures [1, 13, 14] have been discussed. Describing complicated
structures using idealized building blocks allows us to simplify the model, so that
calculations can be done easily and accurately.

The analytical method presented here approximates the interactions between the
atoms on the building blocks and the gas molecules, particularly for those structures
that have uniformly distributed atoms. Even for nonuniformly distributed atoms, this
technique provides an average approximation as shown by Thornton et al. [13]. In
that paper, MOF-177 is modelled as a sphere by smearing the atoms of the structure,
which are a mixture of zinc, carbon, oxygen and hydrogen, over the surface of a sphere,
and the adsorption isotherms from the analytical model agree well with experimental
isotherms.

We have only described some idealized building blocks that are regular in shape.
However, fortunately for porous materials that are irregularly shaped, their pores can
still be represented using cylindrical, spherical or slit-shaped porosity, since these
are used for all pore size characterization methods which include permporometry,
thermoporometry, mercury intrusion, positron annihilation, lifetime spectroscopy and
gas adsorption and (or) desorption methods [8]. To date, there has been no geometric
representation of nanoporous structures that are cubic or parallelepipeds, and further
work is currently in progress to present analytical models using parallelepipeds to
represent materials, such as MOF-5 which has a cubic structure.
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