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Abstract

The total irregularity of a simple undirected graph G is defined as irrt(G) = 1
2
∑

u,v∈V(G) |dG(u) − dG(v)|,
where dG(u) denotes the degree of a vertex u ∈ V(G). Obviously, irrt(G) = 0 if and only if G is regular.
Here, we characterise the nonregular graphs with minimal total irregularity and thereby resolve the recent
conjecture by Zhu et al. [‘The minimal total irregularity of graphs’, Preprint, 2014, arXiv:1404.0931v1]
about the lower bound on the minimal total irregularity of nonregular connected graphs. We show that
the conjectured lower bound of 2n − 4 is attained only if nonregular connected graphs of even order are
considered, while the sharp lower bound of n − 1 is attained by graphs of odd order. We also characterise
the nonregular graphs with the second and the third smallest total irregularity.

2010 Mathematics subject classification: primary 05C07; secondary 05C35.
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1. Introduction

All graphs considered here are undirected and simple (that is, loops and multiple edges
are not allowed). Let G be a graph of order n = |V(G)| and size m = |E(G)|. For
v ∈ V(G), the degree of v, denoted by dG(v), is the number of edges incident to v. G
is regular if all its vertices have the same degree, otherwise it is irregular. There are
many approaches, including those in [3–6, 8–11], to characterise how irregular a given
graph is. In this paper, we focus on the so-called total irregularity of a graph [1],
defined as

irrt(G) =
1
2

∑
u,v∈V(G)

|dG(u) − dG(v)|.

The total irregularity is related to the irregularity of a graph, defined as irr(G) =∑
uv∈E(G) |dG(u) − dG(v)|. The latter measurement was introduced by Albertson [5]

and investigated in several works, including [2, 14, 15]. For the motivation for
introducing the total irregularity as a new irregularity measure, we refer to [1]. Both
the irregularity of a graph and the total irregularity of a graph depend on a single
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parameter, namely the pairwise difference of vertex degrees. A comparison of irr and
irrt was considered in [12]. There, it was shown that irrt(G) ≤ n2 irr(G)/4 and, when G
is a tree, irrt(G) ≤ (n − 2) irr(G). Also, it was shown that among all trees of the same
order, the star has the maximal total irregularity.

In [1], graphs with maximal total irregularity were fully characterised and the upper
bound on the total irregularity of a graph was presented.

Corollary 1.1 [1]. For a graph G with n vertices,

irrt(G) ≤


1

12 (2n3 − 3n2 − 2n) n even,
1

12 (2n3 − 3n2 − 2n + 3) n odd.

Moreover, the bounds are sharp.

In [17, 18], the unicyclic and bicyclic graphs, respectively, with maximal total
irregularity were determined.

The lower bound on the total irregularity of general graphs is trivial, since it is
obvious that the total irregularity of a graph is zero if and only if the graph is regular.
Also by definition the total irregularity is nonnegative. However, it is not trivial to
determine lower bounds for the total irregularity of special classes of graphs, or the
total irregularity of nonregular graphs. In [19], Zhu et al. investigated the minimal total
irregularity of the connected graphs and determined the minimal, the second minimal
and the third minimal total irregularity of trees, unicyclic graphs and bicyclic graphs.
They also proposed the following conjecture.

Conjecture 1.2 [19]. Let G be a simple connected graph with n vertices. If G is a
nonregular graph, then irrt(G) ≥ 2n − 4.

In the next section, we characterise the nonregular graphs with minimal total
irregularity and thereby resolve the above conjecture. We show that Conjecture 1.2
is true only for nonregular connected graphs of even order, while the actual sharp
lower bound of n − 1 is achieved by graphs of odd order.

By D(G) we denote the set of the vertex degrees of a graph G, that is, D(G) =

{d(v) | v ∈ V}. Given an undirected graph, a degree sequence is a monotonic
nonincreasing sequence of the degrees of its vertices. A graphical sequence is a
sequence of numbers which can be the degree sequence of some graph. In general,
several graphs may have the same graphical sequence. In order to show that a
given sequence of nonnegative integers is graphical, one may use the following
characterisation by Erdős and Gallai.

Theorem 1.3 [13]. A sequence d1 ≥ d2 ≥ · · · ≥ dn of nonnegative integers with even
sum is graphical if and only if

r∑
i=1

di ≤ r(r − 1) +

n∑
i=r+1

min(r, di), (1.1)

for all 1 ≤ r ≤ n − 1.
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[3] Nonregular graphs with minimal total irregularity 3

Tripathi and Vijay [16] showed that (1.1) need be checked only for as many r as
there are distinct terms in the sequence, not for all 1 ≤ r ≤ n − 1. Denote the indices
1 ≤ i ≤ n − 1, with di > di+1, by σ1, σ2, . . . , σl, and define σl = n.

Theorem 1.4 [16]. In Theorem 1.3 it suffices to check (1.1) for r = σ1, σ2, . . . , σl.

Remark 1.5. For σl = n, (1.1) always holds since
∑n

i=1 di ≤ n(n − 1).

To show that a sequence of nonnegative integers is the degree sequence of a
connected graph, we use the following characterisation from [7, Theorem 9, pages
117–118], slightly reformulated to fit the notation introduced above.

Theorem 1.6 [7]. Let d1 ≥ d2 ≥ · · · ≥ dn be a sequence of nonnegative integers with
n ≥ 2. A necessary and sufficient condition for the existence of a simple connected
graph G with degrees dG(vi) = di, is that:

(i) dn ≥ 1;
(ii)

∑n
i=1 di ≥ 2(n − 1); and

(iii) the sequence is graphical.

2. Results

The only nonregular connected graph of order at most three is the path with three
vertices, whose total irregularity is 2 = n − 1, agreeing with the sharp lower bound for
graphs of odd order presented later in this section. Therefore, in the sequel we consider
connected graphs of order at least four. First, we present two results that will be used
to obtain the main results later in this section.

Lemma 2.1. Let G be a connected graph of order n > 3 with |D(G)| ≥ 3. Then there
exists a connected graph H of the same order as G with |D(H)| = 2, such that each
degree in H occurs at least twice and irrt(H) < irrt(G).

Proof. Assume that the claim of the proposition is false. Let D(G) =

{d1, d2, . . . , dk}, 3 ≤ k ≤ n − 1. Also, we assume that d1 > d2 > · · · > dk. Let DG =

(dG(v1), dG(v2), . . . , dG(vn)) be the degree sequence of G and p the smallest index
such that dG(vp) = d3. We apply a set of transformations to DG, obtaining a sequence
DH = (dH(v1), dH(v2), . . . , dH(vn)), and consider the difference∑

u,v∈V(G)

(|dG(u) − dG(v)| − |dH(u) − dH(v)|). (2.1)

We distinguish two cases according to the size of p.

Case 1. p < n. We apply the following assignments to DG:

dH(vi) := d3 + 1, i = 1, . . . , p − 1 and dH(vi) := d3, i = p + 1, . . . , n.

After these assignments, for all pairs of vertices vi and v j with dG(vi) , dG(v j) , dG(vp),

|dG(vi) − dG(v j)| − |dH(vi) − dH(v j)| ≥ 1.

https://doi.org/10.1017/S0004972715000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000271


4 H. Abdo and D. Dimitrov [4]

For the remaining pairs of vertices vi and v j,

|dG(vi) − dG(v j)| − |dH(vi) − dH(v j)| ≥ 0.

Thus, it follows that the difference (2.1) is positive.
If n − p + 1 and d3 are odd, the sum of the elements of DH is also odd, and DH

cannot be a graphical sequence, since the parity condition of Theorem 1.3 is not
satisfied. In this case we apply additional assignments such that d3 occurs an even
number of times in the sequence DH . We distinguish two cases:

• If p − 3 < n − p, then dH(vp−1) := d3. In this case, p − 2 summands in∑
dH (u),dH (v)∈DH

|dH(u) − dH(v)| increase by one, n − p + 1 summands decrease by
one, and the rest remain unchanged. Thus, the total change p − 2 − (n − p + 1) is
negative.

• If p − 3 ≥ n − p, then dH(vp) := d3 + 1. After this assignment p − 1 summands in∑
dH (u),dH (v)∈DH

|dH(u) − dH(v)| decrease by one, n − p summands increase by one,
and the rest remain unchanged. Here also, the total change −(p − 1) + n − p is
negative.

Case 2. p = n. In this case DG is comprised of three degrees and the degree d3 occurs
once. Assume that d1 occurs x times, n − 2 ≥ x ≥ 1. Then d2 occurs n − x − 1 times.
We perform the following assignments:

dH(vp−1) := d3 and dH(vi) := d3 + 1, i = 1, . . . p − 2.

For every v ∈ V(G), consider the pair (dG(v), dH(v)). After the above transformation
there are x pairs (d1, d3 + 1), n − x − 2 pairs (d2, d3 + 1), one pair (d2, d3) and one pair
(d3, d3). Consequently.∑

i=1,...,x
j=x+1,...,n−2

(|dG(vi) − dG(v j)| − |dH(vi) − dH(v j)|) = x(n − x − 2)(d1 − d2),

∑
i=1,...,x

(|dG(vi) − dG(vn−1)| − |dH(vi) − dH(vn−1)|) = x(d1 − d2 − 1),∑
i=1,...,x

(|dG(vi) − dG(vn)| − |dH(vi) − dH(vn)|) = x(d1 − d3 − 1),∑
i=x+1,...,n−2

(|dG(vi) − dG(vn−1)| − |dH(vi) − dH(vn−1)|) = −(n − x − 2),∑
i=x+1,...,n−2

(|dG(vi) − dG(vn)| − |dH(vi) − dH(vn)|) = (n − x − 2)(d2 − d3 − 1),

and

|dG(vn−1) − dG(vn)| − |dH(vn−1) − dH(vn)| = d2 − d3.
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[5] Nonregular graphs with minimal total irregularity 5

Thus, the difference (2.1) is

x(n − x − 2)(d1 − d2) + x(d1 − d2 − 1) + x(d1 − d3 − 1) − (n − x − 2)
+ (n − x − 2)(d2 − d3 − 1) + d2 − d3. (2.2)

Since d1 − d2 ≥ 1, d1 − d2 − 1 ≥ 0, d1 − d3 − 1 ≥ 1, d2 − d3 − 1 ≥ 0, d2 − d3 ≥ 1 and
x ≤ n − 2, the lower bound on (2.2) is

x(n − x − 2) + x − (n − x − 2) + 1 = (x − 1)(n − x − 2) + x + 1. (2.3)

Since x ≥ 1, it follows that (2.3), and therefore (2.2) and (2.1) are positive.
In both cases 1 and 2, the sequence DH is comprised of degrees d3 + 1 and d3,

where d3 occurs an even number of times and d3 ≤ n − 3. Also, note that DH does not
necessarily satisfy the parity condition of Theorem 1.3. For example, this is the case
precisely when n is odd and d3 is even. In this case, we apply the assignment

dH(vi) := dH(vi) + 1, i = 1, . . . n.

In the case where d3 = 1 and d3 occurs more than twice in DH , we apply the assignment

dH(vi) := dH(vi) + 2, i = 1, . . . n.

Now we have a degree sequence D′H with 2 ≤ y ≤ n − 2 occurrences of degree d + 1
and n − y occurrences of degree d, where d occurs an even number of times in D′H and

d =


d3 = 1 and d3 occurs twice in DH ,
d3 + 2 = 3 that is, d3 = 1, and d3 occurs at least four times in DH ,
d3 + 1 ≥ 3 where d3 is even and n is odd,
d3 ≥ 2 otherwise.

(2.4)

It follows that for D′H conditions (i) and (ii) of Theorem 1.6 are satisfied.
Next we show that D′H is the graphical sequence of a graph H, by showing that D′H

satisfies condition (1.1). By Theorem 1.4 and Remark 1.5, it suffices to show that (1.1)
is satisfied for r = y. With respect to y, we consider two cases.

• y ≤ d + 1. Then, for r = x, (1.1) can be written as

y(d + 1) ≤ y(y − 1) + y(n − y) or y(d + 1) ≤ y(n − 1),

which holds for all four possibilities of d given in (2.4), since d ≤ d3 + 2 and
d3 ≤ n − 3.

• y > d + 1. In this case, (1.1) can be written as

y(d + 1) ≤ y(y − 1) + (n − y)(d + 1) or 0 ≤ y(y − d − 2) + (n − y)(d + 1),

and it is satisfied because d + 2 ≤ y and y < n.
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6 H. Abdo and D. Dimitrov [6]

Thus, we have shown that D′H is a graphical sequence of a connected graph H, and

irrt(G) =
1
2

∑
u,v∈V(G)

|dG(u) − dG(v)| >
1
2

∑
u,v∈V(H)

|dH(u) − dH(v)| = irrt(H),

which is a contradiction to the initial assumption that G is a nonregular connected
graph with minimal total irregularity. �

Lemma 2.1 shows that a nonregular graph with minimal total irregularity must have
degree set of cardinality two and both degrees must occur more than once. Obviously,
the total irregularity is smallest if the two degrees differ as little as possible, that is, if
they differ by one. In the next lemma we present sharper conditions on a nonregular
graph of odd degree with minimal total irregularity.

Lemma 2.2. Let G be a connected graph of odd order n > 3 with |D(G)| = 2, such that
each degree occurs at least twice. Then there exists a connected graph H of the same
order n, with one of the following degree sequences:

(d + 1, d, . . . , d, d), 3 ≤ d ≤ n − 2, or
(d + 2, d + 2, . . . , d + 2, d + 1), 1 ≤ d ≤ n − 4, (2.5)

where d is odd and irrt(H) < irrt(G).

Proof. All possible sequences, where one degree occurs only once and the difference
between the two degrees is one, are given in (2.5). In the sequel, we will show that
they are indeed graphical sequences. Since n is odd, d must be odd as well, otherwise
the parity condition of Theorem 1.3 will not be satisfied. Observe that the range of
values of d in (2.5) follows from the fact that n and d are odd and d ≤ n − 1.

First, we show that, for a fixed d with 3 ≤ d ≤ n − 2, the sequence (d + 1,d, . . . , d,d)
is graphical. For that, we need to show in addition that (1.1) holds. In this case, by
Theorem 1.4 and Remark 1.5, it suffices to show that (1.1) is satisfied for r = 1. Then,
(1.1) can be written as

d + 1 ≤
n∑

i=2

min(r, d),

which obviously holds since d ≤ n − 2 and r = 1. Since d ≥ 3, conditions (i) and (ii)
from Theorem 1.6 are also satisfied.

Next, we show that, for a fixed d with 1 ≤ d ≤ n − 4, the sequence (d + 2, d +

2, . . . , d + 2, d + 1) is graphical. Since (n − 1)(d + 2) + d + 1 is even, the parity
condition of Theorem 1.3 is satisfied. By Theorem 1.4 and Remark 1.5, it suffices
to show that (1.1) is satisfied for r = n − 1. Then, (1.1) can be written as

(n − 1)(d + 2) + d + 1 ≤ (n − 1)(n − 2) + d + 1 or 0 ≤ (n − 1)(n − d − 4) + d + 1.

The last expression holds since d ≤ n − 4. Since d + 1 ≥ 2, conditions (i) and (ii) from
Theorem 1.6 are also satisfied for the sequence (d + 2, d + 2, . . . , d + 2, d + 1).
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[7] Nonregular graphs with minimal total irregularity 7

Next, we show that irrt(H) < irrt(G). Assume that G has y vertices of degree d + 1
and n − y vertices of degree d, where 2 ≤ y < n. Then

irrt(G) = y(n − y). (2.6)

With the given constraints, irrt(G) reaches its minimum of 2n − 4 for y = 2 and
y = n − 2, which is larger than irrt(H) = n − 1, for n > 3. �

For an illustration of the above lemma consider the degree sequence (n − 1, n −
2, . . . , n − 2, n − 2). A graph with this degree sequence can be constructed by deleting
bn/2c edges from Kn, such that no two deleted edges have a common end vertex.

For the degree sequence (n − 2, n − 2, . . . , n − 2, n − 3), a corresponding graph can
be constructed by deleting bn/2c − 1 edges from Kn, such that no two deleted edges
have a common end vertex. There remain three vertices with degrees n − 1. Finally,
delete the two edges that connect one of those vertices with the remaining two.

We are now ready to present the sharp lower bound on the total irregularity of the
connected nonregular graphs, as well as their second and the third minimal value with
respect to the total irregularity.

Theorem 2.3. Let G be a connected nonregular graph with n vertices. Then irrt(G) ≥
n − 1. Moreover, this bound is attained by the graphs of odd order characterised in
Lemma 2.2.

Proof. Let H be a graph with the minimal total irregularity. By Lemmas 2.1 and 2.2,
the degree sequence of H consists of two different degrees that differ by one. Denote
them by d and d + 1. Assume that H has y vertices of degree d and n − y vertices
of degree d + 1, where 1 ≤ y < n. Its total irregularity is y(n − y) (as in expression
(2.6)). With the given constraints, irrt(H) reaches its minimum of n − 1 for y = 1 and
y = n − 1. If n is even, we cannot obtain a graphical sequence for y = 1 and y = n − 1,
since then the sum of all degrees is odd. Thus, y = 1 or y = n − 1 are feasible solutions
only when n is odd. In this case also the degree that occurs only once must be even. In
Lemma 2.2 the degree sequences of these graphs are fully characterised and the total
irregularity of each one is n − 1. �

Theorem 2.4. The second and third smallest value of the total irregularity of connected
nonregular graphs of order n are 2n − 4 and 2n − 2, respectively, and can be attained
by graphs of order n with an arbitrary parity.

Proof. As in Lemma 2.2, if a graph G has y vertices of degree d + 1 and n − y vertices
of degree d, where 2 ≤ y < n and d + 1 and d occur at least twice, then (2.6) is
minimised for y = 2 and y = n − 2 and its value is 2n − 4. Such a sequence, with d ≥ 2,
satisfies conditions (i) and (ii) of Theorem 1.6 and the parity condition of Theorem 1.3
for both odd and even n. To show that the sequence is graphical, by Theorem 1.4 and
Remark 1.5, it suffices to show that (1.1) is fulfilled for r = y. With respect to y, we
consider two cases.

https://doi.org/10.1017/S0004972715000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000271


8 H. Abdo and D. Dimitrov [8]

• y ≤ d. Then, for r = y, (1.1) can be written as

y(d + 1) ≤ y(y − 1) + y(n − y) or 0 ≤ y(n − d − 2),

which is satisfied since d ≤ n − 2.
• y > d. In this case, (1.1) can be written as

y(d + 1) ≤ y(y − 1) + d(n − y) or 0 ≤ y(y − d − 2) + d(n − y). (2.7)

If y = d + 1, it follows that y(y − d − 2) + d(n − y) = −d − 1 + d(n − y) = d(n −
y − 1) − 1. Since y ≤ n − 2 and d ≥ 2, d(n − y − 1) − 1 > 0, and thus (2.7) holds.
If y ≥ d + 2, from y > d and d ≤ n − 2, it follows that y(y − d − 2) + d(n − y) ≥
d(y − d − 2) + d(n − y) = d(n − d − 2) ≥ 0.

Thus, we have shown that a sequence comprised of y vertices of degree d + 1 and
n − y vertices of degree d is graphical and the corresponding connected graphs have
total irregularity 2n − 4.

A candidate that may have smaller total irregularity than 2n − 4 is a graph with
two degrees which differ by more than one and where one of the degrees occurs only
once. Obviously, if the difference between the two degrees is larger (than two) the
total irregularity will be larger as well. Thus, let us consider first the case where the
degrees differ by two. If this results in a total irregularity larger than 2n − 4, then we
do not need to check the cases where the difference between the two degrees is larger
than two. So, consider the degree sequences

(d, d − 2, . . . , d − 2, d − 2), d = 3 and n = 4; or 4 ≤ d, d is even and d + 1 < n;
or 5 ≤ d, d is odd, n is even and d + 1 < n;

(d, d, . . . , d, d − 2), 4 ≤ d, d is even and d + 1 < n;
or 3 ≤ d, d is odd, n is even and d + 1 < n. (2.8)

The constraints on d ensure that conditions (i) and (ii) of Theorem 1.6 and the parity
condition of the Erdős–Gallai theorem are satisfied, so the degree sequences in (2.8)
may belong to connected graphs. Next, we show that the degree sequences in (2.8)
also satisfy relation (1.1).

First consider the sequences (d, d − 2, . . . , d − 2, d − 2). By Theorem 1.4 and
Remark 1.5, it suffices to show that (1.1) is satisfied for r = 1. Now (1.1) can be
written as

d ≤
n∑

i=2

min(r, d − 2).

Obviously, the inequality holds, since r = 1 and d < n − 1.
Next, consider the sequences (d, d, . . . , d, d − 2). In this case, by Theorem 1.4 and

Remark 1.5, it suffices to show that (1.1) is satisfied for r = n − 1. Then (1.1) can be
written as

(n − 1)d ≤ (n − 2)(n − 1) + d − 2 or 0 ≤ (n − d − 2)(n − 1) + d − 2.
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[9] Nonregular graphs with minimal total irregularity 9

Since d < n − 1 and n ≥ 3, it follows that the last inequalities hold. Thus, we have
shown that the degree sequences in (2.8) are graphical and the corresponding graphs
have total irregularity 2n − 2. It follows that 2n − 4 is the second smallest value of the
total irregularity of connected nonregular graphs.

Note that for every graph the total irregularity is an even number, since the number
of vertices of odd degree is even. Thus, the value 2n − 3 is excluded as a value of the
total irregularity and the third smallest value is 2n − 2. The degree sequences of graphs
with such total irregularity were characterised in (2.8). �

We note that for disconnected nonregular graphs, just as for connected graphs, one
may obtain the above presented bounds simply by including zero as a possible degree.
For example, the sharp lower bound in the case of disconnected nonregular graphs of
n − 1 can be obtained by a graph of odd order n with degree sequence (1, 1, . . . , 1, 0),
comprising (n − 1)/2 pairs of adjacent vertices and one isolated vertex.
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