VARIETIES AND D.G. NEAR-RINGS

by J. D. P. MELDRUM
(Received 5th June 1970)

In this note we show that the variety of near-rings generated by d.g. near-
rings is the class of all near-rings R satisfying

Ox = x0 = 0 for all xe R. (1)

This extends a result of J. J. Malone (3) on the embedding of near-rings.

A near-ring R is a set with two binary operations, addition and multiplication
such that R is a group with respect to addition, a semi-group with respect to
multiplication and x(y+2z) = xy+xz for all x, y, ze R. If xe R satisfies
(y+2)x = yx+zx for all y, z € R, we say that x is distributive. A distributively
generated (d.g.) near-ring is one which is generated as an additive group by its
distributive elements.

A variety of near-rings is the class of all near-rings satisfying a given set of
laws. Let X be a class of near-rings. Then let vX be the smallest variety
containing X, sX the class of all sub near-rings of X near-rings, QX the class of
all homomorphic images of X near-rings and RX the class of all residually X
near-rings. For further explanation of these ideas see P. M. Cohn (1).

Let G be a group written additively (G is not necessarily abelian). Then
we can define T(G), the near-ring of all mappings from G to G where addition
in T(G) is given by g(x+y) = gx+gy, g € G, x, y € T(G), and multiplication in
T(G) is the usual product of maps. T(G) contains the following sub near-rings,
each containing the next:

To(G), the set of all mappings preserving the identity of G;
E(G) the d.g. near-ring generated by all the endomorphisms of G;
I(G) the d.g. near-ring generated by all the inner automorphisms of G.
Denote by O the variety of near-rings satisfying (1) and let
T = {R; R =~ Ty(G) for some group G},
I = {R; R = I(G) for some group G},
F={R; | R|<¥N}.
We will show that O = vI, by showing that O < sqQrl, from which we can

deduce that O = sQrI = VI, using results from P. M. Cohn (1). In (3) J. J.
Malone proved that OnF = s(InF).

Lemma1l. O = sT.
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Proof. sT < O isimmediate. O £ sTfollows immediately from Theorem 1
of J. J. Malone and H. E. Heatherly (4), which states that if R € O, then R can

be embedded in T,(G) for any groupG such that G contains properly the additive
group of R.

By using this result, we can restrict our attention to To(G) where G belongs
to a class of groups such that any group can be embedded in a group of this
class. By Theorem 11.5.4 of W. R. Scott (5), such a class is that of the simple
(non-abelian) groups. So let G be a simple non-abelian group. Let{5,; 1 e A}
be the set of all finite subsets of G, R = T((G), S = I(G). Then A. Frohlich
(2) has established

Lemma 2. Let re R and let 3, be a finite subset of G. Then there is an
element s, € S such that gr = gs, for all g € J,.

This is essentially result 5.2 of (2). If G is finite, this shows that R = §.
For every AeA, let S; = S. Denote by T the direct product [] S,.

AeA
Then we will show that R is isomorphic to the homomorphic image of a sub

near-ring U of T, whose projection into each factor is onto. U is then a subdirect
product of the S; and hence lies in RI since S, € I (see P. Cohn (1) for a proof
that R erX if and only if R is a subdirect product of X near-rings).

We define a partial ordering on A by 4 < p if and only if §; £ 5,. Then
given 1,, 4, there is a u satisfying u = 4,, i = 1,2. Just take 5, = 9,,U4,,.
Let e T. Call ¢ eventually constant if given ge G, A€ A, there is a u = A
such that for all = u, gt(n) = his independent of . We are here considering
t(n) as lying in S for all 5. Let U = {¢; te T and ¢ is eventually constant}.

Lemma 3. U is a subdirect product of the S;, Ae A. That is, U e RL

Proof. We only need to show that U is a sub near-ring, since the constant
elements ¢ € T satisfying t(1) = #(u)for all A, uin A lie in U and so the projection
of U into each factor will be onto. Let u, ve U, and let g € G, 1 € A be given.
Then we have u; = A, p, = A suchthat if g = p,, gu() = h, h independent of
n, if 1 = Wy, gv(n) = k, k independent of n. Let u = u;, i = 1,2. Then for
n = i, gu(n) = h, gv(n) = k and sog(u+v)(n) = h+k. Henceu+ve U. Also
we have u; = A such thatif n = pu,, Av(n) = I, I independent of . Let u’ = y,,
i=1,3. Then for n = u', guv)n) = (gu(n))v(n) = hv(n) = I, I independent
of n. Hence uv e U. Finally it is obvious that u € U gives —u € U and that the
additive and multiplicative identities are in U.

We are interested in what happens “ eventually . So we define an equi-
valence relationship on the elements of U as follows. Let u, ve U. Then
u~vifgiveng € G, A € A, thereisapu = Asuchthatforallny = u, gu(n) = go(n).
The fact that ~ is symmetric and reflexive is immediate. If u~v, v~w, then
given g € G, A€ A, there is a u, = A such that for all n = uy, gu(n) = gv(n),
and a p, = A such that for all # 2 u,, gv(n) = gw(y). Soif u = pu;, i =1,2,
then for all n = pu, gu(n) = gv(n) = gw(n). Hence u~w. We have
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Lemma 4. ~ is an equivalence relationship on U.
We next show that ~ is compatible with multiplication and addition in U.

Lemma 5. Let O be the additive identity in U, and let
N = {u; ue U, u~0}.

Then N is an ideal in U and ~ is compatible with multiplication and addition
in U.

Proof. Let v, weU, ueN. letgeG, AeA. Then as in the proof of
Lemma 3, there is a ¢ = A such that gw(n), gv(n) and gu(n) are constant and
gu(m) = Oforalln = pu. Sog(—v+u+v)(n) = —gv(n)+gu(n)+guv(n) = 0, ie.
—v+u+veN. We now need to show that uw~0 and (w+u)p—wv~0. If
n 2 u, then guw(n) = gu(mw(n) = Ow(n) = 0. So uw~0. If gw(n) = k for
n = p,thereisa p, = Asuch that kv(n)is constantforn = u,. Thenifpu, = u,,
U2 = u, we have

gw+v(n) = (gw(m)+gu(n)v(n) = kv(n) = gwv(n) as gu(n) = 0,
forn = pu,. So (w+u)v—~wv~0 and N is an ideal in U. Finally if u~v, then

by the definition of ~ it is immediate that u—~v~0. Hence ~ is compatible
with multiplication and addition in U.

We can now prove our result.
Theorem 6. O = SQRL

Proof. Let 8: R—U/N, which is a near-ring by Lemma 5, be given by
r8 = u+ N where u(2) is given by gr = gu(l) for all g € §,. This is possible by
Lemma 2. Given ge G, L€ A, let p be such that g=é, and p = 1, eg.
8, = 8;,u{g}. Then if n = pu, gu(n) = gr is constant. So ue U. But u(y) is
not uniquely defined. Suppose that #'(n) also satisfies gr = gu'(y) if g €6,
Then g(u—u')(n) = 0 if g € 5, and hence for all = u as defined above So
u+N = u'+ N and r8 is uniquely defined.

Letr, se R, r = u+N, s6 = v+N. Givenge G, €A, let §, = 6,0{g}.
Then gu(n) = gr and go(n) = gsforallp =2 u. So

g(u+v)(n) = gu(m)+go(n) = gr+gs = g(r+s).
Hence if (r+s)0 = w, then w+ N = u+v+N.
Now let g € G, gr = h, Ae A. Define p by 6, = 6,U{g, h}. Then
gu(n) = gr, gu(n) = gs and g(uv)(n) = (gu(mM)v(n) = hv(n) = hs = grs

for all 7 = u. So if (r5)0 = w, then w+ N = uv+N. This shows that § is a
homomorphism.

Suppose that r = N+u and ue N. Then given ge G, A€ A, let u, be
defined by §,, = 6,u{g}. We have gu(n) = gr for all n = u,. But u~0. So
given g€ G, u, €A, there is a u, = pu, such that gu(n) = 0 for all n = p,.

E.M.S.—§
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But n = u, gives us gr = gu(n) = 0. This is true for all ge G. So r =0,
and 0 is an isomorphism.

Finally if ue U, given g € G, A€ A, there is a u = A such that gu(n) = h is
constant for n = p. In particular if u, is defined by §,, = 6,0{g}, we have
gu(n) = hfor n = u,. Define re R by gr = h, and let v+ N = rf. Then for
n = Uy, go(n) = gr = h =gu(m). So v+ N = u+N. Hence 6 is onto and
R =~ UJN.

By Lemma 3, U e RI and so U/Ne Qrl. Hence R € QrI and by the remarks
made after Lemma 1, T £ QrRI. By the remarks made just before Lemma 1
and Lemma 1 itself, O = sQrIZ, thus finishing the proof of the theorem.

This extends J. J. Malone’s result (3) that OnF = s(InF) in the sense that
we remove the F, but have to replace I by QrI. It would be interesting to know
if we can get rid of Qr or replace it by something simpler.

I am grateful to Professor J. J. Malone for letting me have a copy of his
paper (3) before publication.
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