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Collective locomotion of two-dimensional
lattices of flapping plates. Part 1. Numerical
method, single-plate case and lattice input power
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We propose a model and numerical method for the propulsion of rectangular and rhombic
lattices of flapping plates at O(10–100) Reynolds numbers in incompressible flow. The
numerical method uses an adaptive mesh to mitigate singularities at the plates’ edges.
We establish convergence rates and find good numerical accuracy in a test problem:
Laplace’s equation in the region exterior to a plate. We then use the method to establish
benchmark results for a single flapping plate, including vortex wake characteristics and
Froude efficiency over ranges of flapping amplitude, frequency and Strouhal number. As a
prelude to a study of propulsive efficiency in Part 2 (J. Fluid Mech., vol. 915, 2021, A21),
we study a key ingredient: the time-averaged input power in lattices of plates. Scaling laws
for the mean input power are estimated in the limits of small and large streamwise spacings,
using steady flow models with small-gap and Poiseuille-like flows between the plates
respectively in the two limits. For both lattice types, the mean input power saturates as the
lateral spacing becomes large (and thrust occurs). At small lateral spacings, the rhombic
lattices’ input power becomes much larger when the plates overlap. The time-averaged
input power in flapping lattices agrees qualitatively with the steady models.

Key words: propulsion, swimming/flying

1. Introduction

Propulsion by flapping foils has garnered considerable interest in recent years, as a
bio-inspired alternative to traditional designs for aquatic and aerial vehicles. Flapping
propulsion has potential advantages in efficiency, manoeuvrability and stealth, particularly
at small and medium scales (Lighthill 1960; Wu 1971; Sparenberg 1995; Anderson et al.
1998; Shyy, Berg & Ljungqvist 1999; Triantafyllou, Triantafyllou & Yue 2000; Lewin
& Haj-Hariri 2003; Triantafyllou, Techet & Hover 2004; Heathcote & Gursul 2005;
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Fish & Lauder 2006; Miller et al. 2012; Smits 2019). Some of the different types of
flapping bodies and motions considered are: rigid or flexible foils (Lighthill 1960; Wu
1971; Anderson et al. 1998; Heathcote & Gursul 2005) undergoing heaving and/or pitching
motions (Freymuth 1988; Lewin & Haj-Hariri 2003; Von Ellenrieder, Parker & Soria 2003;
Triantafyllou et al. 2004; Buchholz & Smits 2005; Smits 2019); flexible foils oscillated
at one point and otherwise bending passively (Alben 2008b, 2009c; Michelin & Smith
2009; Yeh & Alexeev 2014; Hoover et al. 2018; Hess, Tan & Gao 2020), or with an
internal driving force distributed all along the foil (Tytell et al. 2016; Ming et al. 2019);
foils oscillated transversely to an imposed oncoming flow (Anderson et al. 1998; Lewin
& Haj-Hariri 2003), or swimming (translating/rotating) freely under a force balance law
(Vandenberghe, Zhang & Childress 2004; Alben & Shelley 2005; Spagnolie et al. 2010;
Alben et al. 2012; Yeh & Alexeev 2014). Another large body of work has considered
the stability and dynamics of passive flexible flags, plates and membranes in fluid flows
(Shelley & Zhang 2011). A common way to understand the physics of force generation by
flapping foils is to relate the forces on the foil to the vorticity shedding patterns, often
von Kármán vortex streets or other ordered arrays. Given a certain body motion, the
formation of such vorticity distributions depends on unsteady large-scale boundary layer
separation and is difficult to describe using a simple analytical approach. Computational
and experimental approaches are more commonly used to describe the phenomena. Several
works have found that Froude efficiency is maximized when a reverse von Kármán street
is formed, typically near Strouhal numbers of 0.2–0.5 for biological and biomimetic
swimmers (Triantafyllou, Triantafyllou & Grosenbaugh 1993; Anderson et al. 1998; Jones,
Dohring & Platzer 1998; Taylor, Nudds & Thomas 2003; Rohr & Fish 2004; Triantafyllou
et al. 2004; Dabiri 2009; Eloy 2012). Outside this range, other ordered and disordered
vortex wakes are observed (Triantafyllou et al. 2004; Godoy-Diana, Aider & Wesfreid
2008; Schnipper, Andersen & Bohr 2009).

A number of works have investigated multiple flapping foils interacting in a fluid
(Sparenberg & Wiersma 1975; Akhtar et al. 2007; Wang & Russell 2007; Boschitsch,
Dewey & Smits 2014; Kurt & Moored 2018; Lin et al. 2019). Key parameters are the phase
differences between the foils’ oscillations, and the spacings (in line and/or transverse)
between the foils. If one body interacts with a typical vortex wake of another (e.g. an
inverse von Kármán street), the spacings and phasings will largely determine the types
of vortex–body collisions that occur and the resulting forces. Vortices impinging on foils
alter the pressure distribution and vortex shedding at the leading and trailing edges (Akhtar
et al. 2007; Rival, Hass & Tropea 2011). The vortex wakes may be strengthened or
weakened through the interactions, with the possibility of increased thrust or efficiency in
some cases (Triantafyllou et al. 2004). Related lines of work have addressed interactions
between a single body and ambient vorticity (e.g. shed from a static obstacle) (Streitlien,
Triantafyllou & Triantafyllou 1996; Liao et al. 2003; Beal et al. 2006; Fish & Lauder
2006; Liao 2007; Alben 2009a,b), vortex–wall collisions (Doligalski, Smith & Walker
1994; Rockwell 1998; Alben 2011, 2012; Flammang et al. 2013; Quinn et al. 2014)
and interactions between multiple passive flapping flags and plates (Ristroph & Zhang
2008; Alben 2009d; Zhu 2009; Kim, Huang & Sung 2010; Uddin, Huang & Sung 2013).
Although much is known, the complicated physics of vortex shedding remains an obstacle
to a simple quantitative description of multiple-body/body–vortex interaction problems
(Lentink et al. 2010; Li et al. 2019). Even the apparently simpler case of collective
interactions in the zero-Reynolds-number limit (Dombrowski et al. 2004; Saintillan &
Shelley 2008; Lauga & Powers 2009; Koch & Subramanian 2011; Elgeti, Winkler &
Gompper 2015; Saintillan 2018), with linear flow equations but geometrical complexities,
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Collective locomotion of 2-D lattices of flapping plates

has many open issues, among them close interactions between bodies (Pålsson & Tornberg
2020; Wu et al. 2020).

When multiple bodies are considered, the number of degrees of freedom increases
enormously even with many simplifying assumptions. We now have to choose a particular
geometry and kinematics for each body (including relative phases for periodic motions).
We need to resolve the flow on a wide range of scales simultaneously, from the size of a
large group of bodies and their vortex wakes to the scale of thin, time-dependent boundary
layers and separation regions on each body surface. For prescribed spatial configurations
of the bodies, there are many possible choices. A potential way to simplify the problem
is to allow a group of bodies to evolve dynamically and look for configurations that are
attracting states of various initial conditions (Becker et al. 2015; Ramananarivo et al.
2016; Dai et al. 2018; Im et al. 2018; Mirazimi 2018; Peng, Huang & Lu 2018a,b; Li
et al. 2019; Newbolt, Zhang & Ristroph 2019; Oza, Ristroph & Shelley 2019). Many
of these involve quantized spacings that are related to the natural spacings of vortex
streets. If the spatial configuration evolves dynamically according to the forces on the
bodies, the nonlinear dynamics is generally sensitive to initial conditions as well as the
details of close interactions and/or collisions between bodies. It is very difficult to classify
the whole range of possibilities in such systems. Many studies have instead focused on
configurations seen in groups of biological organisms (Weihs 1975; Partridge & Pitcher
1979; Liao et al. 2003; Svendsen et al. 2003; Akhtar et al. 2007; Portugal et al. 2014;
Daghooghi & Borazjani 2015; Gravish et al. 2015; Hemelrijk et al. 2015; Marras et al.
2015; Khalid, Akhtar & Dong 2016; Li, Ostace & Ardekani 2016; Ashraf et al. 2017;
Park & Sung 2018). Other recent studies have used machine learning to determine optimal
motions of groups of swimmers (Gazzola et al. 2016; Novati et al. 2017). Another large
body of work concerns the use of simplified laws of interaction in place of detailed
fluid dynamics, to model schools and flocks of bodies (Katz et al. 2011; Filella et al.
2018).

Following previous models (Childress & Dudley 2004; Newbolt et al. 2019; Oza
et al. 2019), experiments (Vandenberghe, Childress & Zhang 2006; Becker et al.
2015; Ramananarivo et al. 2016) and simulations (Wang 2000; Alben & Shelley 2005;
Huang 2007; Alben 2008a; Deng & Caulfield 2016, 2018) inspired by biology (Borrell,
Goldbogen & Dudley 2005), we consider a particular version of the multiple flapping-foil
problem, with simple body geometries and kinematics, that is amenable to a wide
(though by no means exhaustive) exploration of parameter space: thin plates that are
oscillated vertically and moved horizontally together through a viscous fluid. The plates
and motions considered here are fore–aft symmetric for simplicity; adding a pitching
motion (Spagnolie et al. 2010), an asymmetric body thickness profile (Huang 2007)
and/or active or passive deformations (Novati et al. 2017; Dai et al. 2018) can enhance
the thrust generated and the propulsive efficiency. The main quantities of interest are
the time-averaged horizontal force (i.e. thrust or drag) and the input power needed to
oscillate the plates vertically in the fluid. In Part 2 (Alben 2021), we study perhaps
the most common measure of efficiency, the Froude (propeller) efficiency, a ratio of
average propulsive power to average input power required to oscillate the foils (Lighthill
1960; Anderson et al. 1998). We study other important propulsion measures as well:
the self-propelled speed(s) of the foils (Alben & Shelley 2005; Vandenberghe et al.
2006; Alben et al. 2012; Novati et al. 2017; Dai et al. 2018), the quasi-propulsive
efficiency (Maertens, Triantafyllou & Yue 2015) and the schooling number (Becker et al.
2015).
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Figure 1. (a) A rectangular lattice of plates. The computational domain is an Lx-by-Ly unit cell, shown with
a dashed blue outline. (b) A rhombic lattice of plates. The computational domain is an Lx-by-2Ly double unit
cell, shown with a dashed blue outline.

2. Model

We consider a lattice of plates (rectangular or rhombic, shown in figure 1), each
plate moving with the same velocity −U(t) = (−U,−V(t)), constant in the horizontal
direction, and sinusoidal in the vertical direction:

V(t)
f L

= 2π
A
L

sin(2πt)(1 − e−(t/t0)2), (2.1)

with A the amplitude and f the frequency of the vertical displacement corresponding
to V(t). The exponential term allows smooth start-up from rest with time constant t0 =
0.2 (the particular value is not important, as our focus is on the eventual steady state
behaviour). We non-dimensionalize quantities using the plate length L as the characteristic
length, the flapping period 1/f as the characteristic time and the fluid mass density ρf as
the characteristic mass density.

We solve the incompressible Navier–Stokes equations, non-dimensionalized, in the rest
frame of the lattice (Batchelor 1967)

∂tu + u · ∇u = −∇p + 1
Ref

∇2u + dU
dt
(t), (2.2)

∇ · u = 0. (2.3)

with u(t) = (u(t), v(t)) the velocity and p the pressure. The basic dimensionless
parameters are

A
L
, Ref = f L2

ν
, lx = Lx

L
, ly = Ly

L
, UL = U

f L
, (2.4a–e)

where ν is the kinematic viscosity of the fluid and Lx and Ly are the lattice spacings in the
x and y directions, respectively. Other important dimensionless parameters, combinations
of those above, are

Re = 4Af L
ν

, ReU = UL
ν
, UA = U

fA
, St = 2

UA
. (2.5a–d)

Here, Re is the Reynolds number based on the mean vertical velocity of the foil on each
half-stroke, and is therefore a better measure of the ratio of inertial to viscous forces than
Ref , which we think of as a dimensionless frequency. It is convenient for computations
to non-dimensionalize time by the flapping period, but the flapping frequency is one of
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Collective locomotion of 2-D lattices of flapping plates

the kinematic parameters we vary as we search for optimal flapping kinematics as well
as plate spacings. Therefore, for comparison across kinematic parameters, ReU gives a
more uniform measure of the horizontal speed of the foil than UL (since L and ν are
considered fixed in all cases, while f varies). To find the horizontal velocities that yield
efficient thrust-generating states and self-propelled states, previous work has shown that
we should search in certain ranges of St (or UA, twice its reciprocal) (Triantafyllou et al.
1993; Anderson et al. 1998; Jones et al. 1998; Taylor et al. 2003; Rohr & Fish 2004;
Triantafyllou et al. 2004; Dabiri 2009; Eloy 2012).

Instead of prescribing the horizontal velocity UL, one can allow it to evolve dynamically
according to Newton’s second law, setting the plates’ rate of change of horizontal
momentum equal to the horizontal component of the net fluid forces on them (Alben &
Shelley 2005; Alben 2008a; Spagnolie et al. 2010; Alben et al. 2012; Dai et al. 2018).
In this case, we have the plates’ dimensionless masses M as a control parameter instead
of UL. We have simulated this case, with UL(t) ‘free’ and M fixed, and the case of fixed
UL, and in both cases, periodic and non-periodic flow dynamics can arise generically at
different parameters. The coupling of body and fluid motion seems to add some additional
complexity to the problem, so here we focus on the case with fixed UL, which is also
the focus of most previous flapping-foil studies, including those that investigated Froude
efficiency (Lighthill 1960; Triantafyllou et al. 1993; Anderson et al. 1998; Triantafyllou
et al. 2000). The case with fixed UL and zero time-averaged thrust corresponds to the
large-mass limit of cases with time-varying UL – those with initial conditions such that
the fixed value of UL is an attracting state.

The flow starts at rest, and evolves until it converges to a periodic steady state, or
remains non-periodic up to a chosen end time of a simulation (typically t = 15 or
30). Some of these non-periodic states may eventually converge to periodic in longer
simulations. However, most have irregular oscillatory behaviours and seem likely to
remain non-periodic. These cases seem to require much longer simulations to precisely
compute the long-time averages of fluid forces and input power. Thus we mostly focus on
the parameters that yield a periodic state, generally those at lower Reynolds numbers, but
give information about non-periodic results in some cases.

For a plate with zero thickness in a viscous flow, the pressure and viscous shear stress
diverge near the plate tips as the inverse square root of distance (Hasimoto 1958; Ingham,
Tang & Morton 1991). In the limit of zero plate thickness, the contribution of the pressure
on the plate edges to the net horizontal force is zero. The net horizontal force on the plate
is due only to the viscous shear stress on the two sides of the plate,

Fx = 1
Ref

∫ 1

0
[∂yu(x, 0, t)]+− dx. (2.6)

The bracket notation denotes the jump in ∂yu along the plate (the value at the top minus the
value at the bottom). The vertical force is due to the pressure difference across the plate

Fy =
∫ 1

0
−[p(x, 0, t)]+− dx. (2.7)

Important related quantities are the input power Pin(t) and the Froude efficiency ηFr

Pin(t) = V(t)
f L

Fy; P̃in(t) = Re3
f Pin(t); ηFr = U〈Fx(t)〉

〈Pin(t)〉 . (2.8a–c)

Here, P̃in(t) is the input power non-dimensionalized with ν/L2 in place of f ,
for comparison across cases with different f (since L and ν are assumed fixed).

915 A20-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.6


S. Alben

The numerator and denominator of ηFr both acquire factors of Re3
f with the same change

in non-dimensionalization, resulting in no change for ηFr.
Since ∇p in (2.2) is doubly periodic, it has a Fourier decomposition in which the mean

(or constant part) has components we denote Δpx/lx and Δpy/ly, and ∇p1 is the remainder
(the mean-zero part). Thus p is decomposed into mean-zero and linear terms

p = p1 + Δpx

lx
x + Δpy

ly
y. (2.9)

The value of p1 is determined (up to a constant) by the incompressibility condition,
∇ · u = 0. The constant is fixed by setting p1 to zero at an arbitrary point (e.g. the
lower left corner of the flow domain). To fix the unknowns Δpx and Δpy, we impose a
condition on the net fluid flow in the vertical and horizontal directions. We assume that the
lattice of flapping plates is situated in a larger flow domain that ends at solid boundaries,
where the flow is zero. We therefore assume that the spatially periodic flow approximates
the flow away from the boundaries, but take the spatial average of the flow in the lattice to
be zero at all times, to match that at the boundaries. The same assumption has been used in
theoretical and computational studies of sedimenting suspensions at zero (Hasimoto 1959;
Batchelor 1972; Brady et al. 1988; Hinch 1988; Phillips, Brady & Bossis 1988; Swan &
Brady 2010, 2011; Guazzelli & Hinch 2011; Af Klinteberg & Tornberg 2014) and non-zero
(Ladd 1994; Mucha et al. 2004; Yin & Koch 2008; Fornari, Ardekani & Brandt 2018)
Reynolds numbers, and with background turbulence (Fornari, Picano & Brandt 2016). In
these studies, the flow is typically solved in a periodic lattice or periodic cell domain, and
the velocity of the sedimenting particles relative to zero-volume-flux axes is interpreted as
the velocity in the physical or laboratory frame. In our case, the plates have zero volume,
so the volume flux is that of the fluid alone. For periodic domain models of sedimentation
and in the present work on flapping locomotion, there is assumed to be a transition region
near the boundary where the flow deviates from spatially periodic, to obtain zero flow at
the boundary. In a sedimentation simulation, Mucha et al. (2004) found that including the
boundary region in the simulation had a negligible effect on particle velocity statistics far
from the boundary.

3. Numerical method

We choose a flat plate geometry instead of a thin curved body (e.g. an ellipse) because it
fits a periodic rectilinear grid, at the expense of creating flow singularities at the plates’
edges. To study the effect of the singularity on a finite difference solution of (2.2) and
(2.3), we study a simpler model problem with the same type of singularity: potential flow
past a flat plate, shown in figure 2(a). The plate is the red line segment – extending along
(−1/2 ≤ x ≤ 1/2; y = 0) – and the complex potential is w(z) =

√
1/4 − z2, with branch

cut lying along the plate. We solve Laplace’s equation for the streamfunction ψ = Im{w}
in a rectangle R centred at the origin (the plate centre), with lengths 3 and 2 in the x and y
directions, respectively

∇2ψ = 0, (x, y) ∈ R : −3/2 ≤ x ≤ 3/2, −1 ≤ y ≤ 1; (3.1)

ψ = 0, −1/2 ≤ x ≤ 1/2, y = 0; (3.2)

ψ = Im{
√

1/4 − (x + iy)2}, (x, y) ∈ ∂R. (3.3)
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Figure 2. Test problem and numerical grids. (a) Streamlines for potential flow past a flat plate. (b) Example
of a grid with refinement near the plate (red). (c) A close-up of the grid near the left plate edge. The values
of the velocity components and pressure (u, v and p) are solved at the locations of the crosses, circles and
triangles, respectively. (d) The growth in the 2-norm condition number of the discrete Laplacian matrix. Each
coloured line plots the condition number versus m for a given η, ranging from 1 − 2−2 (darkest blue line) to
1 − 2−14 (lightest yellow line); 1 − η decreases by a factor of 2−0.2 from each line to the one above it, giving
an increased concentration of points near the plate edges. m is the number of grid points in each direction and
η is a grid stretching parameter, defined in equations (3.4) and (3.5).

Here, ψ is continuous but its first derivatives diverge as inverse square roots
of distance from the plate edges. Based on Stokes-flow solutions and local asymptotics
of Navier–Stokes solutions (Hasimoto 1958; Ingham et al. 1991), ψ has the same type of
singularity as the velocity components in (2.2) and (2.3) (i.e. the viscous flows, not the
potential flow defined by ψ). Both ∇2ψ and the highest-order derivatives in (2.2) and
(2.3), i.e. ∇2u,∇2v, and ∇p, diverge as distance from the plate edges to the −3/2-power.
We will use second-order finite differences to discretize both the test problem (3.1) and the
viscous problem (2.2) and (2.3), even though the Taylor series expansions underlying the
finite difference approximations diverge at the plate edges. Our goal with the test problem
is to measure the error in a case with a simple analytical solution, given by (3.3) in all of R.

To mitigate the errors, we will employ non-uniform rectilinear (tensor-product) grids,
and concentrate grid points near the plate edges, and along the plate surfaces, as shown
in figure 2(b). For the viscous problem, we use the MAC (marker-and-cell) scheme for
incompressible flows (Harlow & Welch 1965) with the grid aligned with the plate as shown
in the sample grid in figure 2(c). The velocity components u and v are solved at the crosses
and circles, respectively, and the pressure p is solved at the triangles. The x and y locations
of the symbols are either on the grid lines, or at midpoints between grid lines. For the test
problem, we solve ψ on the u-grid in panel (c) (i.e. at the crosses).

The grid lines are defined from uniform grids using a grid-stretching parameter η. For
the x-grid on the plate in panels (b,c), we first define a uniform grid from −1/2 to 1/2
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in X, and then the x coordinates of the grid are defined by

x = X + η
1

2π
sin 2πX, −1/2 ≤ X ≤ 1/2. (3.4)

If the uniform grid spacing in X is ΔX, the spacing Δx on the stretched grid x increases
from approximately 1 − η at the plate edges to 1 + η at the plate centre. As η increases
from 0 to 1, the stretched grid transitions from uniform to highly concentrated at the plate
edges. We choose a number of grid points for the plate, and then for the x-grid to the left
and right of the plate in panel (b), we set the number of grid points to be approximately
that in the grid along the plate, scaled by the ratio of the outer region length to the plate
length (unity), raised to the 1/2 power. The functional form of the outer grids is the same
as that in (3.4), with a stretching factor chosen so that the grid density is approximately
continuous at the plate edges. The y grid is defined similarly to (3.4),

y = Y − η
ly

2π
sin

2πY
ly
, − ly

2
≤ Y ≤ ly

2
, (3.5)

given a uniform grid in Y . In the viscous computations that follow, the total numbers of
grid points in x and y are similar (within a factor of 2), and in the potential flow test problem
here they are equal (and denoted m). For the test problem, we solve (3.1) on the grid shown
by crosses in figure 2(b), for various values of m and η. Due to the discontinuity in flow
quantities (e.g. velocity derivatives and pressure) across the plate, we use one-sided finite
differences near the plate for all derivatives in both the test problem and the viscous solver,
to maintain their accuracy away from the plate edges. To describe when the accuracy
becomes hampered by ill conditioning, we present the 2-norm condition number of the
discrete Laplacian matrix for ψ , for various m and η in figure 2(d). Each coloured line
plots the condition number versus m for a given η, ranging from 1 − 2−2 (i.e. 0.75, darkest
blue line) to 1 − 2−14 (lightest yellow line), in order of increasing concentration of points
near the plate edges. For each η, the condition number initially grows faster than m2, then
asymptotes to this scaling for sufficiently large m. The m at which the transition occurs
depends on η. For η = 0.75 (darkest blue line), the line scales as m2 for all m ≥ 32, while
for η = 1 − 2−14 (lightest yellow line), the transition is only beginning to occur at m =
512. For a given η, when m is relatively small, increasing m increases the density of points
near the plate edges more than in the rest of the domain. When m is sufficiently large,
further increases in m increase the density of points by the same percentage everywhere. At
this point we obtain the usual m2 condition number scaling of the discrete Laplacian, albeit
with a non-uniform grid. For m ≤ 512 and η ≤ 1 − 2−14, the condition number indicates
a round-off error at least a few orders of magnitude below double precision (10−16). In the
viscous simulations, we set η = 0.95, corresponding to a line in the bottom fifth of those
in panel (d), and the round-off error is several orders of magnitude away from double
precision.

We now study the effects of m and η on errors for the test problem, where the analytical
solution is known. In figure 3(a–c), we plot a few different measures of error in ψ . Panel
(a) shows the infinity (sup) norm of the error in the computed ψ over the full grid relative
to the exact solution ψ̄ , given by (3.3) in all of R. Each coloured line again corresponds
to a particular η value, a few of which are labelled in the legend (the remaining values
lie between these values, and are of the form 1 − 2−k/5 for k = 10, 11, . . . , 69, 70). For
each line, the error initially decreases rapidly with increasing m, then much more slowly
(as m−1/2) for further increases in m. This transition again reflects the transition in where
the density of points is being increased most, near the tip at smaller m, and uniformly at
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Collective locomotion of 2-D lattices of flapping plates

large m. The singularity at the plate edges reduces the scaling from m−2 for a smooth
problem with second-order finite differences to m−1/2. However, by choosing the best η
for a given m, we obtain the lower envelope of the lines in panel (a), which has scaling
m−3/2, closer to the smooth case. In the viscous simulations, we need to compute the
forces on the plate, which require integrating the pressure and velocity gradient, each with
inverse-square-root singularities near the plate edges. For the test problem, ∂yψ is the
analogue of the velocity gradient, with the same singularity strength. In panel (b), we plot
the error in its integral over the top left half of the plate, computed with second-order finite
differences and then integrated using the trapezoidal rule

E1 ≡
∣∣∣∣∣∣

m1∑
j=1

(Dyψ)j + (Dyψ)j+1

2
(xj+1 − xj)−

∫ 0

−1/2
∂yψ̄ |y=0+ dx

∣∣∣∣∣∣ (3.6)

Here, (Dyψ)j is the computed value of ∂yψ at grid point xj, j ranging from 1 to m1 + 1
on the top half of the plate, where m1/m ≈ 0.2. The integral of ∂yψ̄ inside (3.6) is exactly
1/2. Each curve in panel (b) plots E1 at a given η, which we take to 1 − 2−16 now, closer
to 1, to see the asymptotic behaviour at large m better. Each curve eventually scales as
m−1/2, but by taking the minimum error over η at a given m, we can do much better. In
fact, for each m there is apparently an η for which the error passes through zero, as shown
by the downward spikes of the curves on this log scale. The typical error magnitude in the
vicinity of this η is shown by the upper envelope of the curves at somewhat larger m. The
black fit line shows that this envelope scales as m−3/2. Therefore, the error in the integral
of ∂yψ up to the plate edge behaves similarly to the maximum error in ψ over the domain.
The error according to a somewhat more stringent criterion is shown in panel (c). We again
consider the integrated error in ∂yψ , but now integrate the absolute value of the error over
each subinterval of the grid on the top left half of the plate

Esubint. ≡
m1∑
j=1

∣∣∣∣ (Dyψ)j + (Dyψ)j+1

2
− ∂yψ̄ |(x=xj+1/2,y=0+)

∣∣∣∣ (xj+1 − xj). (3.7)

This avoids the cancellation of errors over different portions of the plate in (3.6), which
led to the error passing through zero in panel (b). Therefore the measure of error in (3.7)
avoids the possibility of errors being hidden by cancellation. In (3.7) we use the trapezoidal
rule for Dyψ but not for ∂yψ̄ because it is infinite at the plate edge. Instead we use ∂yψ̄
at the midpoint (denoted xj+1/2 in (3.7)). The behaviour of Esubint. in panel (c) is similar
to that of the ∞-norm error in panel (a): for a fixed curve (fixed η), the error ∼ m−1/2

at large enough m. But the lower envelope of the curves ∼ m−3/2. Panels (d–f ) show, for
each m, the η values that minimize the error quantities plotted in panels (a)–(c)

ηopt.,∞ = arg min
η

‖ψ − ψ̄‖∞; ηopt.,1 = arg min
η

E1; ηopt.,subint. = arg min
η

Esubint.

(3.8a–c)

Their distance from 1 is seen to decay as m−2 in panels (d) and (f ), and slightly faster in
panel (e), approximately as m−5/2.

Figure 3 shows that even with the plate edge singularities, errors can be decreased below
1 % with m not very large (≈100) and η close to 1. For the viscous simulations, we have
the additional need to resolve vorticity throughout the flow domain, though it is strongest
near the plate edges. We set η to 0.95, close enough to 1 to greatly diminish errors at the
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Figure 3. Errors in the computed potential flow streamfunction relative to the exact solution. (a) Infinity (sup)
norm error over the 3-by-2 rectangular domain. (b) Error in integral of ∂yψ over the top left half of the plate.
(c) Sum of the absolute values of the errors in ∂yψ over grid subintervals (defined in (3.7)). (d–f ) For each m,
the values of η at which the minimum errors occur in panels (a), (b) and (c), respectively.

plate edges, but far enough to avoid the possibility of ill conditioning in the viscous system
of equations. We take m between 256 to 512, and find that these choices are sufficient to
resolve the flows and fluid forces on the plate to within a few per cent in relative error for
the ranges of parameters (e.g. domain size, Reynolds number, etc.) studied.

4. Single flapping plate

Before studying lattices of flapping plates, we examine a single flapping plate in flows of
various speeds to establish a baseline of performance to which the lattice configurations
can be compared. We solve the second-order finite difference discretization of (2.2)
and (2.3) on the MAC grid (e.g. figure 2b,c) as a fully coupled system for u, v and
p. To simulate an isolated flapping plate in an unbounded fluid, we employ upstream,
downstream and sidewall boundary conditions in the rectangular domain, and take the
boundaries sufficiently far from the body that they affect the results by less than a few per
cent in relative error. The upstream and downstream sides are 3 and 8 plate lengths from the
plate’s leading edge, and the sidewalls are 5 plate lengths from the plate. At the upstream
boundary, u = U and v = V(t) are imposed. On the sidewalls, free-slip conditions are
imposed (∂yu = 0, v = V(t)) to avoid vorticity generation. At the downstream boundary,
advective outflow conditions are used (∂tu + U(t) · ∇u = ∂tv + U(t) · ∇v = 0). Similar
boundary conditions have been used in other recent simulations of flows past bodies
(Tamaddon-Jahromi, Townsend & Webster 1994; Sen, Mittal & Biswas 2009; Peng et al.
2012; Yang et al. 2012; Cid Montoya et al. 2018).

For an isolated body we have lx, ly → ∞ in (2.4a–e), and we are left with three
parameters, A/L, Ref and St. Examples of flows with normalized flapping amplitude
A/L = 0.2 and various Ref and St are shown in figure 4. At zero oncoming flow speed, or
infinite St (not shown), the flow has a left–right symmetric equilibrium state (with equal
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Re
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 1
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Re
f =
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0
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f =

 4
0

St = 0.5

St = 0.667

St = 1.33

St = 0.333

St = 0.5

St = 0.8

St = 0.25

St = 0.333

St = 0.571

St = 0.167

St = 0.25

St = 0.4

Figure 4. Snapshots of vorticity fields with normalized flapping amplitude A/L = 0.2 and different flapping
frequencies (Ref , labelled at left) and Strouhal numbers St = 2Af /U, labelled in each box, corresponding to
increasing oncoming flow speed from left to right. In each row, states that are close to the maximizers of Froude
efficiency and self-propelled states are shown in green and purple boxes, respectively.

and opposite vorticity at the two plate edges). This state becomes unstable to asymmetric
motions above a critical value of Re = 4ARef /L (Vandenberghe et al. 2004; Alben 2008a).
For small but non-zero oncoming flow speed, and sufficiently large Ref , the vortices shed
from the plate edges collide with the body and may travel to the sidewall or upstream
boundaries (violating the boundary conditions there). In the upper left panel of figure 4
(Ref = 150, St = 0.5), however, the flow speed is sufficiently large that the vortex wake
is generally advected downstream, and is a somewhat disordered array of dipoles, one
shed per half-cycle. Moving one panel to the right (green box in the second column) is a
smaller St value, close to where the Froude efficiency is maximized for this Ref , and the
larger oncoming flow speed allows the vortex wake to organize into the familiar reverse
von Kármán street (Triantafyllou et al. 2004). One panel further to the right (purple box in
the third column of the top row) is St close to the self-propelled state, where 〈Fx〉 = 0. In
the last column, the flow speed is much larger and the body experiences drag although the
wake still resembles a reverse von Kármán street, but with more widely spaced vortices.
The second and third rows show the same sequences of flows as oncoming flow speed is
increased, but at successively smaller Ref . Viscous diffusion of vorticity is more apparent,
particularly in the bottom row. In the bottom two rows, the negative (blue) vortices move
upwards relative to the positive (red) vortices at larger oncoming flow speeds, indicating
the transition from reverse towards regular von Kármán streets (Godoy-Diana et al. 2008).
For fish and birds at Re = 103–105, the optimally efficient St are generally in the range
0.2–0.4 (Triantafyllou et al. 2004), while here Re = 10–102, and the most efficient St are
higher. The St that are close to optimal for Froude efficiency (green boxes) increase as
Re decreases (from top to bottom rows), which is also seen in organisms as Re decreases
(Eloy 2012).

Figure 5 shows the same transitions with increases in oncoming flow speed, but with
A/L increased to 0.4. At the upper left, no flow is shown, because at small flow speeds,
vortices collide with the sidewalls. Moving rightward to the green box in the top row, we
obtain an up–down asymmetric vortex street and vortex pairing, corresponding generally
to non-zero average vertical force on the plate. The approximate self-propelled state
(purple box) has an irregular vortex street with multiple vortices shed per half-stroke,
akin to the 2P wake (Schnipper et al. 2009). At Ref = 80 (second row), at the slowest
speed (St = 0.667), the vortex wake again has a complicated structure. At St near the
maximum efficiency state (0.5, green box), the wake is a reverse von Kármán street,
which is maintained but dilated downstream at higher oncoming flow speeds. In the third
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Figure 5. Snapshots of vorticity fields with normalized amplitude A/L = 0.4 and other quantities as
described in figure 4.

row (Ref = 20), the vortex street has the reverse von Kármán structure at all St shown.
In general, the effect of increasing A/L to 0.4 is to increase the lateral spacing of the
vortex street in the most efficient and self-propelled states (green and purple boxes). The
horizontal spacing is influenced most directly by the oncoming flow speed, but A/L also
plays a role in the timing of vortex formation and shedding.

For a zero-thickness plate, thrust and drag are produced by shear stress only; pressure
does not contribute. Figure 6 shows snapshots of shear stress distributions on the plate
during a downstroke. The purple line gives the shear stress on the top side and the orange
line gives the shear stress on the bottom side. For both lines, the vertical position of the
plate (black line) marks the value of zero shear stress. For each snapshot, the vorticity
fields are shown as light colour fields in the background. The top row of five snapshots
corresponds to the flow in the green box with Ref = 80 in figure 5, while the bottom row
corresponds to the purple box at Ref = 80. In the top row, a case of large time-averaged
thrust, thrust generally occurs on the upstream two thirds of the plate (except for the orange
curve at t = 14.5), and drag on the downstream one third. In this case, the thrust integrated
over the plate and over time outweighs the drag. On the upstroke, the flow is essentially the
mirror image of the downstroke, so the stress distribution on the top side becomes that on
the bottom and vice versa. In the bottom row, a case of nearly zero time-averaged thrust,
all parameters are the same as in the top row except the oncoming flow speed is increased
by 50 %. Compared to the top row, the orange curves are shifted upward, so the bottom
half of the plate experiences net drag in most cases, closer to the Blasius flow past a flat
plate. The purple curve does not change as much, so the top half of the plate gives most
of the net thrust, particularly near the large blue leading edge vortex that induces a locally
upstream flow on the plate, ‘sweeping’ it forward.

In figure 7(a), we plot the time-averaged horizontal force versus normalized oncoming
flow speed for the six cases shown in figures 4 and 5. Values are omitted where the
dynamics is non-periodic, which occurs over an interval of flow speeds extending from
zero; this interval becomes larger as Ref increases. The curves at the lowest Ref have
a U-shape to the right of zero velocity, indicating that zero velocity is an unstable
equilibrium and the self-propelled state is the single stable equilibrium.

To quantify the general features of the self-propelled state, and at smaller oncoming
flow speeds, the efficiency-maximizing state, we compute 〈Fx〉 and ηFr across a wide
range of dimensionless frequencies (Ref ) and amplitudes (A/L). Figure 7(b) shows StSPS,
the Strouhal numbers of the self-propelled states, where 〈Fx〉 = 0. The numbers grow
rapidly as Ref decreases to zero, and we expect divergence at the critical Ref value where
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t = 14.1

t = 14.1

t = 14.2
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t = 14.3

t = 14.3

t = 14.4

t = 14.4

t = 14.5

t = 14.5

Figure 6. Shear stress distributions on the plate at five instants during a downstroke at Ref = 80 and A/L =
0.4, with St = 0.5 (top row) and 0.333 (bottom row). The purple curve is the shear stress distribution on the
top side of the plate, and the orange is that on the bottom side, where the plate (black line) marks zero shear
stress. The vorticity near the plate is shown as a light colour field in the background.
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Figure 7. (a) Average horizontal force 〈Fx〉 versus normalized flow speed U/fA = 2/St. (b) Contour map of
Strouhal numbers corresponding to the self-propelled state (〈Fx〉 = 0) of a single flapping plate, in the space
of dimensionless frequency (Ref ) and amplitude (A/L).

the self-propelled velocity (twice the reciprocal of StSPS) tends to zero, as was found
in experiments with rectangular plates (Vandenberghe et al. 2004) and simulations of
thin ellipses (Alben & Shelley 2005). For a given Ref , the Strouhal number is fairly
uniform as A/L varies, indicating that, like steady flows past cylinders (Williamson 1996)
the self-propelled state corresponds approximately to a certain vortex street aspect ratio
(roughly St) that is only slightly modified by A/L. Also, StSPS varies smoothly in this
region of parameter space, reflecting fairly uniform properties of the reverse von Kármán
street and higher vortex street modes (i.e. the purple box in the top row of figure 5).

We have seen that the maximum Froude efficiency states (approximately the green boxes
in figures 4 and 5) occur at somewhat lower speeds (higher St) than the self-propelled states
(purple boxes). In figure 8(a) we plot contours of maximum-efficiency St and find that the
pattern of the contours is very similar to that in figure 7(b), but with St roughly 50 %
higher in most of the plot. Panel (b) shows the values of the Froude efficiency maxima.
Efficiency can only be positive above the critical Ref at which self-propelled locomotion
is possible. Not surprisingly, efficiency generally increases with Ref , as vortex shedding
becomes more significant. The efficiency reaches a maximum of 0.06 as Ref increases
to 200. Other experimental and computational studies have found the Froude efficiency
is nearly unity at much higher Reynolds numbers (Anderson et al. 1998; Floryan,
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Figure 8. (a) Strouhal numbers corresponding to maximum Froude efficiency state of a single flapping plate,
in the space of dimensionless frequency (Ref ) and amplitude (A/L). (b) Values of Froude efficiency maxima.

Van Buren & Smits 2019). Panel (b) also shows that at small Ref , the
efficiency-maximizing A/L > 0.6, and gradually decreases to 0.2 as Ref increases to 200.

The Froude efficiency is perhaps the most common measure of efficiency in
flapping-foil studies, but it is not the only way to study optimal motions. One can also
consider the state that maximizes a desired output (mean thrust, or self-propelled speed,
say) for various values of the input power (Wu 1971; Van Rees, Gazzola & Koumoutsakos
2015). In figure 9 we map the two-dimensional space of flapping states with frequencies
Ref ∈ [10, 200] and amplitudes A/L ∈ [0.1, 0.6] to the space of self-propelled speed
(ReU,SPS = LUSPS/ν) (horizontal axis) and average input power 〈P̃in〉 (vertical axis). The
net of lines in the central portion of the figure is the image of a rectangle in (Ref ,A/L)
space; each solid line is a set of points with constant Ref and each dashed line has constant
A/L. The lines follow a common trend from lower left to upper right, showing generally
that increased ReU,SPS correlates with increased 〈P̃in〉. There is a smaller spread in the
transverse direction. The Pareto frontier is the lower right boundary of the region: the
set of points that maximize ReU,SPS for a given 〈P̃in〉, or that minimize 〈P̃in〉 for a given
ReU,SPS (Van Rees et al. 2015). This set provides an alternative definition of maximum
efficiency, that provides different optima for a range of 〈P̃in〉, and moving in the direction
transverse to the Pareto frontier, we have increasing or decreasing optimality of states. One
could also replace the desired output ReU,SPS with Froude efficiency, ηFr, and allow U to
vary as a third input. We discuss this alternative later in the paper. The vertical lines at the
far right of the figure show the (Ref ,A/L) values along the Pareto frontier for the ranges of
〈P̃in〉 covered by these lines. The horizontal lines at the bottom show the (Ref ,A/L) values
along the Pareto frontier for the ranges of ReU,SPS covered by these lines. The vertical
and horizontal lines show that the preferred flapping amplitude remains in the vicinity of
0.2–0.3 along the frontier, while the preferred frequency varies monotonically. In other
words, to change speeds, it is most efficient to vary the frequency of the plate but keep
its amplitude roughly fixed. A similar trend has been observed for the tail beats of various
fish species as they vary their swimming speed (Saadat et al. 2017).

For an isolated flapping body, the average horizontal force is sensitive to the oncoming
flow speed (i.e. the negative of the swimming speed) as it increases from zero. The
average force is zero (or close to zero) at zero oncoming flow speed, then becomes thrust,
then decreases back to zero at the self-propelled state, then becomes drag as swimming
speed increases. These changes reflect changes in the vortex wake structure in the vicinity
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Figure 9. Flapping states in the space of self-propelled speed (ReU,SPS = LUSPS/ν) (horizontal axis) and
average input power 〈P̃in〉 (vertical axis). Solid lines denote states with a given flapping frequency (Ref ) and
dashed lines are states with a given flapping amplitude A/L.

of the reverse von Kármán street, and the horizontal force has a subtle dependence on Ref ,
A/L and St. The input power, by contrast, has a simpler dependence on the parameters, as
shown in figure 10. Panel (a) shows that 〈P̃in〉/Re3

f is roughly constant with respect to St,
with Ref varying over a factor of 20 (values listed at bottom right), but depends strongly on
A/L (values at right). The dependence on A/L is approximately scaled out by dividing by
(A/L)3, as shown by the collapse of lines in panel (b), particularly at larger Ref . Since the
vertical plate velocity scales as (A/L)Ref , 〈P̃in〉 scales as vertical velocity cubed, a typical
high-Reynolds-number scaling for a bluff body. Compared to the horizontal force, 〈P̃in〉 is
less sensitive to the oncoming flow speed (i.e. St) and the changes in vortex wake patterns
shown in figures 4 and 5.

5. Input power in flapping lattices

It is more complicated to classify the flows within flapping lattices of plates than the
flows around single flapping plates, because the lattice flows depend on both the flapping
kinematics and the spatial configuration of the lattice. Of the main quantities of interest –
the average input power, net horizontal force and self-propelled speed – the input power
is somewhat easier to address theoretically and less sensitive to changes in oncoming flow
speed and vortex shedding patterns. In this section, we discuss theoretical models for the
input power in flapping lattices and the scaling laws they predict. In Part 2 of the paper,
we discuss the unsteady flows in flapping lattices and quantities that relate to horizontal
forces – the Froude efficiency, and self-propelled speed.

We have seen in figure 10 for an isolated flapping plate that the mean input power
scales as flapping amplitude and frequency cubed, and has a weaker dependence on the
oncoming flow speed. This indicates perhaps that the dominant ingredient in the resistance
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Figure 10. For an isolated flapping body, the dependence of average input power 〈P̃in〉 on frequency Ref ,
amplitude A/L, and swimming speed St. Panels (a) and (b) each use a different scaling of input power, described
in the text.

of the fluid is the component of the plate’s motion perpendicular to itself. A simple model
problem is steady flow through a lattice of plates at a given Reynolds number, using the
two lattice types in figure 1. For steady vertical flows, we non-dimensionalize time by L/V ,
based on the (steady) spatial average of the vertical flow V (because there is no flapping
frequency), giving a new definition of Reynolds number

ReV = VL/ν. (5.1)

Figure 11 shows steady vertical flows at ReV = 0.001 through different lattices. The plates
are shown in red, and the flows repeat periodically in x and y with different periods,
given in the figure caption. For the rectangular lattice, panels (a,b) exemplify two limiting
regimes: ly/(lx − 1) � 1 (the ratio is 1/2 in panel (a)) and ly/(lx − 1) � 1 (the ratio is 20
in panel (b)). The rhombic lattice has three limiting regimes. One is the same as in panel
(b), ly/(lx − 1) � 1. Here the streamlines would be altered from those in panel (b) away
from the gap between the plates, but would become the same near the gap. The second is
ly/(lx/2 − 1) � 1 with lx > 2 (e.g. panel (c) with ly/(lx/2 − 1) = 1 and lx = 2.5) – here
the vertical rows of plates do not overlap. The third is ly/(1 − lx/2) � 1 with lx < 2 (e.g.
panel (d) with ly/(1 − lx/2) = 0.4 and lx = 1.5) – here the vertical rows of plates do
overlap. Only panel (b) is firmly in the asymptotic regime, while the other panels are
at moderate ratios. In all cases, the flows resemble the limiting flows, even at moderate
ratios.

The steady versions of (2.2) and (2.3) are

u · ∇u = −∇p + 1
ReV

∇2u, (5.2)

∇ · u = 0. (5.3)
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Figure 11. Steady flows through plate lattices at ReV = 0.001. Plates are red, streamlines are black and
isopressure lines are blue, green and yellow (values in colour bars at right). (a) Flow through rectangular lattice
with lx = 2 and ly = 0.5. (b) Flow through rectangular lattice with lx = 1.05 and ly = 1. (c) Flow through
rhombic lattice with lx = 2.5 and ly = 0.25. (d) Flow through rhombic lattice with lx = 1.5 and ly = 0.1.

Integrating the y-component of (5.2) over a periodic unit cell, the left side vanishes because
there is zero net vertical (or horizontal) outflow. So does the viscous term, because the
inverse square root singularity in the shear stress diverges too slowly to produce a vertical
resultant in the limit of zero plate thickness. Hence the integral of −∂yp over the unit cell
is zero. The integral has two contributions: one from the vertical change in p across the
unit cell, and the other from the jump in p across the plate, resulting in a force applied by
the plate to the fluid. Hence

0 = −
∫

plate
[p]+− dx − lxly

Δpy

ly
, (5.4)

where Δpy is the change in pressure across the unit cell in the y direction. For the rhombic
lattice, with two plates in a double unit cell (figure 1(b)), the integral in (5.4) includes both
plates and Δpy is the change in pressure across the double unit cell in the y direction. For
steady flow with dimensionless mean y-velocity 1,

〈Pin〉 = Pin =
∫

plate
[p]+− dx = −lxΔpy, (5.5)

which relates the input power to the pressure difference across a unit cell in the y-direction.
The latter can be determined analytically for the limiting cases of the flows in figure 11.

In the limit ly/(lx − 1) � 1, the flow in panel (a) becomes Poiseuille flow in the
x-interval between the plate edges (0 ≤ x ≤ 1 in panel (a)), and zero flow in the rest
of the flow field. Poiseuille flow is a good approximation to panel (a) even though
ly/(lx − 1) = 1/2, not very small. The lack of streamlines above and below the plates
indicates slow flow there (the local density of streamlines is proportional to flow speed). In
the interval 0 ≤ x ≤ 1 the flow is nearly unidirectional with a parabolic profile for v(x), and
the isopressure contours are nearly equally spaced, corresponding to the constant pressure
gradient of Poiseuille flow. Using Poiseuille flow to relate the pressure gradient Δpy/ly to
the net fluid flux through the unit cell, Q = 1 · lx,

Pin = −lxly
Δpy

ly
= lxly

12Q
(lx − 1)3ReV

= 12l2x
(lx − 1)2ReV

ly
lx − 1

. (5.6)

The last expression in (5.6) is written in terms of ly/(lx − 1), the parameter that sets the
validity of the approximation.
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The limit ly/(lx − 1) � 1 is exemplified by figure 11(b). This is the Stokes flow through
small gaps in a periodic array of plates. The black lines are again the streamlines.
They show flow converging toward the gap, and a small recirculation region centred
at the midpoints of the plates. To determine Δpy and therefore Pin in (5.5), we can
use the Stokes-flow solution for a single gap in an infinite wall, derived by Hasimoto
(1958). In the region that is much farther from the gap than its width, the pressure is
approximately constant, one constant above the wall and a different constant below the
wall. In figure 11(b) this is shown by the coloured lines, isopressure contours (values at
right). The solid line contours (dark blue and yellow) have pressures close to the values at
distance 0.5 above and below the gap (i.e. far from the gap). The dashed lines (dark blue
and yellow) have pressures 1 % above and below those of the solid lines. Hence, in panel
(b) above and below the ‘cloverleaf’ regions near the gap bounded by the dashed lines, the
pressure varies by less than 2 %. Therefore, the pressure field is essentially the same as
that far from a single gap in an infinite wall. We approximate Δpy in (5.5) as the difference
between the far-field pressure constants for the infinite-wall case with net flux Q through
the gap, from Hasimoto (1958): Δpy/Q = −32ReV/(lx − 1)2π . Then we have

Pin = −lxΔpy = 32l2x
π(lx − 1)2ReV

. (5.7)

In figure 12 we plot Pin for steady flows through rectangular lattices. Each row shows
data for a different value of ReV , up to 6.4, close to the threshold at which the steady flow
state becomes unstable for some choices of lx close to 1. The first column shows Pin versus
ly for different choices of lx (coloured lines, values listed at right), at U/V = 0. The second
column shows the same data in rescaled variables. Pin is divided by l2x/(lx − 1)2ReV , a
factor that appears in both (5.6) and (5.7). On the horizontal axis, ly/(lx − 1) is used as the
dependent variable. The black line shows the Poiseuille flow scaling (5.6), while the black
cross shows the value 32/π given by (5.7). The agreement is almost exact. The third and
fourth columns show the same data for U/V = 2 and 8, respectively. Here, the Poiseuille
flow result (5.6) can be modified by including a dimensionless cross-flow U/V in the flow
equations (Batchelor 1967), resulting in a v(x) that is linear plus exponential. In place of
(5.6) we obtain

Pin = U
V

l2xly

[
lx − 1
ReU

−
(

1
2

+ 1
eReU(lx−1) − 1

)
(lx − 1)2

]−1

, (5.8)

with ReU = UL/ν. The value of Pin in (5.8) tends to (5.6) as ReU → 0, i.e. if either
ReV or U/V → 0, so the cross-flow has no effect in Stokes flow (as can also be seen by
linearity). So only in the three panels near the lower right corner of figure 12 – i.e. the cases
(ReV ,U/V) = (0.8, 8), (6.4, 2) and (6.4, 8) – do the coloured lines deviate noticeably from
the black line; the deviation depends on lx. The upper portions of the coloured lines are
the data computed from steady Navier–Stokes solutions and the lower portions (separated
by a gap from the upper portions) are the Poiseuille-plus-cross-flow approximations (5.8),
different for each lx, and which are linear in ly. These line up almost exactly with the
computed data. In summary, at small ReV , Pin grows linearly with ly/(lx − 1) when the
ratio is small. The linear growth is because the rate of viscous energy dissipation per
plate in the channel flows is proportional to the y-spacing between the plates, ly. At large
ly/(lx − 1), Pin is independent of ly because the small-gap flow, and the corresponding rate
of viscous energy dissipation, becomes independent of ly.

We now consider analytical models for the rhombic lattice, with examples of flows
in figure 11(c,d). The flow in panel (c) tends to two Poiseuille flows, each in a channel
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Figure 12. For steady flow through a rectangular lattice, Pin versus ly (left column) and in rescaled variables
(second through fourth columns) for different values of ReV (labelled at left) and U/V (labelled at top).

of width lx/2 − 1, as ly/(lx/2 − 1) becomes small. The flow in panel (d) tends to four
Poiseuille flows, oriented horizontally, each in a channel of width ly and length 1 − lx/2
(the horizontal overlap between the plates), as ly/(1 − lx/2) becomes small. The pressure
drop between the ends of the channels is half the total pressure drop over the double unit
cell. The special case lx = 2 and ly → 0, at the boundary between these flows, is more
complicated and we do not address it here. Using these approximations, we obtain for the
limit ly/|lx/2 − 1| � 1,

Pin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6l2x
(lx/2 − 1)2ReV

ly
lx/2 − 1

, lx > 2

96l2x
(1 − lx/2)2ReV

(
1 − lx/2

ly

)3

, lx < 2

, (5.9)

using the appropriate expressions for Δpy. The case of large ly is essentially the same
as figure 11(b), so for the double unit cell of the rhombic lattice, we have twice the Pin
of (5.7). We compare these results with the computed steady Navier–Stokes results in
figure 13. We use only two values of U/V now, 0 and 8, and the same ReV as in figure 12.
The first column shows the unscaled data at U = 0. Unlike for the rectangular lattice, the
scaling of ly changes from ly/|lx/2 − 1| to ly/(lx − 1) at small and large ly respectively, so
additional columns are needed to show the data with these separate scalings. The second
and fourth columns show the small-ly scalings, with black lines showing the relationships
in (5.9). In the bottom panel of the fourth column ((ReV ,U/V) = (6.4, 8)), the coloured
lines with lx > 2 are shifted at non-zero ReU , due to the cross-flow effect discussed for
the rectangular lattice (not rederived here). There is no visible shift for the lx < 2 lines,
because the effect of the cross-flow cancels for the four horizontal channel flows, two in
each direction, in figure 11(d). The black crosses (third and fifth columns) again show the
large ly/(lx − 1) values of Pin. The main difference from the rectangular lattice is the large
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Figure 13. For steady flow through a rhombic lattice, Pin versus ly (left column) and in rescaled variables
(second through fifth columns) for different values of ReV (labelled at left) and U/V (labelled at top).

growth in Pin at small ly when lx < 2. Propulsion occurs in many of these cases, e.g. at
ly = 0.5 and 0.7 (top and middle rows of figure 14, Part 2). However, the peak Froude
efficiency decreases noticeably when lx drops below 2 and when ly decreases in most of
these cases.

5.1. Input power for flows through flapping lattices
Now we consider the input power in the unsteady, fully nonlinear flapping problem, at
Re = 10–70. This is the range of Re that we investigate for propulsion in Part 2, because
it corresponds to periodic lattice flows, for which we can compute long time averages
accurately. For the steady problem, the flows were plotted at much lower Reynolds number
(ReV = 0.001) in figure 11, mainly because an analytical solution is available in this limit
for panel (b), the small-gap case. However, the Poiseuille flows with a cross-flow or without
(as in panels (a,c) and (d) remain valid at larger ReV , until they become unstable (at ReV =
O(103) (Schmid, Henningson & Jankowski 2002), above the Reynolds numbers in the
present study). Non-dimensionalizing (5.6) using ν/L in place of V , consistent with the
unsteady 〈P̃in〉 results in this paper, we have

P̃in = 12l2x
(lx − 1)2

Re2
V

ly
lx − 1

. (5.10)

The small-gap flow in figure 11(b) changes to a jet flow (e.g. figure 3 of Part 2) as the
Reynolds number rises to 20. For Re = 10–70 the flow is intermediate between viscous
dominated (resulting in (5.7)) and inertia dominated. In the latter case, the momentum
theorem can be used to calculate P̃in in the case of steady inertia-dominated (high-Re) flow.
The calculation is the same as for the steady drag on an infinite, periodically perforated
plate, given in Batchelor (1967, § 5.15). In the small-gap limit ly/(lx − 1) � 1, the pressure
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drop through a unit cell of our periodic lattice becomes the same as that through
the periodically perforated plate, which in our notation (and non-dimensionalized by
ρf V2) is

Δpy = − 1
2(lx − 1)2

. (5.11)

The pressure is assumed to follow Bernoulli’s law on the upstream sides of the plates,
while on the downstream sides, where separated flow occurs, it is assumed constant
and equal to that in the gap (see Batchelor (1967) for details). The input power follows
from (5.5)

Pin = lx
2(lx − 1)2

; P̃in = lx
2(lx − 1)2

Re3
V . (5.12a,b)

where again, P̃in has been non-dimensionalized using ν/L in place of V , consistent with
the unsteady results in this paper. For both Stokes flow (5.7) and separated flow (5.12a,b)
with small lx − 1, Pin diverges like (lx − 1)−2, though with different prefactors.

Time-averaged input power for the rectangular lattice is plotted in figure 14 at two values
of Re and A/L (labelled at left) and U/fA (labelled at top) in the ranges already considered.
The unscaled 〈P̃in〉 data are shown in the first column. 〈P̃in〉 is rescaled according to the
small-ly Poiseuille flow scaling (5.10) in the second and fourth columns, and according to
the large-ly separated flow scaling (5.12a,b) in the third and fifth columns, with Re (from
(2.5a–d)) in place of ReV . The error bars show the range of values within one standard
deviation of 〈P̃in〉, computed using the last five period averages of P̃in(t). In many cases
(i.e. Re = 10, small ly), P̃in(t) is periodic, so the error bar has almost zero height, and
the upper and lower horizontal hash marks overlap, appearing as a single hash mark. At
Re = 70 and larger ly, the vertical extent of the error bar is noticeable, and gives a measure
of the non-periodicity of the data.

Although the data are more scattered in the unsteady case, they are qualitatively similar
to the steady case (figure 12), including the shift at increasing lx in the Poiseuille flow
(linear growth regime). The steady problem neglected the effects of unsteadiness (an
oscillating instead of steady vertical flow) and nonlinearity in the Navier–Stokes equations.
We extended the steady model to the case of an unsteady but linearized model,

∂tv + U∂xv = −Py e2πit + 1
Ref

∂xxv, (5.13)

for a harmonically oscillating channel flow v(x, t) = V0(x)e2πit with cross-flow. Analytical
solutions are again possible, but more complicated than the steady case because we are
back in the five-dimensional parameter space. We did not analyse the results in detail but
they seemed to agree qualitatively with the small ly-results in figures 12 and 14. Despite
the complications due to vortex shedding and non-periodicity, the steady models and the
fully nonlinear simulations agree qualitatively in the behaviour of 〈P̃in〉 – linear growth
at small ly/(lx − 1) in the second and fourth columns of figure 14, saturation at large
ly/(lx − 1) in the third and fifth columns. The main discrepancy is that the Re = 10 data
have a larger magnitude than the Re = 70 data. A better fit is provided by the relation
〈P̃in〉 ∼ Re3 (typical for pressure losses at high Re, as in the third and fifth columns), rather
than the ∼ Re2 scaling for steady Poiseuille flow used in the second and fourth columns
of figure 14.

The fully nonlinear 〈P̃in〉 data for the rhombic lattices are presented in figure 15.
As for the rectangular lattices, the data are presented with different scalings at small ly
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Figure 14. Time-averaged input power 〈P̃in〉 for flapping rectangular lattices at U/fA = 1 (first to third
columns) and 4 (fourth and fifth columns), at Re = 10 and 70 and A/L = 0.2 and 0.8 (values labelled at left),
for various lx (listed separately for each Re at right). The error bars show the range of values within one standard
deviation of 〈P̃in〉. The standard deviation is computed using the last five period averages of P̃in(t).

(second and fourth columns) and large ly (third and fifth columns). In spite of the effects
of non-periodicity, there is good qualitative agreement between the unsteady and steady
(figure 13) cases. In the second and fourth columns, there is a clear divergence at small
ly/|lx/2 − 1| between the lines with lx > 2 (red and orange) and the remaining lines. We
did not compute cases at ly/|lx/2 − 1| as small as in figure 13, however, because they are
not useful for locomotion, and in the unsteady case, the parameter space is larger and each
simulation requires much more computing time. Again, the Re = 10 data are generally
larger than the Re = 70 data in the second and fourth columns, perhaps indicating the
importance of pressure losses beyond those of Poiseuille flow at higher Re. In the third
and fifth columns, the lines at various lx seem to agree reasonably well at large ly/(lx − 1).

6. Summary and conclusions

We have introduced a computational model for the collective locomotion of lattices of
flapping plates. In our simulations, we used a rectilinear grid with grid points concentrated
near the singularities at the plates’ edges. The condition number of the discrete Laplacian
remains many orders of magnitude below 1016 for the grids used in this paper, so round-off
error is not a major obstacle. For a Laplace equation with similar singular behaviour, we
found that the method gives better than 1 % accuracy in the solution and the integral of its
gradient along the plate for modest mesh sizes, and converges as grid spacing to the 3/2
power.

We first used the method to determine the propulsive properties of an isolated flapping
plate in this specific context (a plate with zero thickness flapping in a flows with different
upstream velocities). The solutions show many properties that resemble those of previous
flapping-foil studies: a reversed von Kármán street at certain oncoming flow speeds,
more complicated vorticity fields at lower speeds and a single stable self-propelled speed.
The Strouhal numbers for maximal Froude efficiency increase from approximately 0.4 to
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Figure 15. Time-averaged input power 〈P̃in〉 for flapping rhombic lattices at U/fA = 1 (first to third columns)
and 4 (fourth and fifth columns), at Re = 10 and 70 and A/L = 0.2 and 0.8 (values labelled at left), for various
lx (listed separately for each Re at right). The error bars show the range of values within one standard deviation
of 〈P̃in〉. The standard deviation is computed using the last five period averages of P̃in(t).

�1 as Ref decreases from 200 to 10, while the Strouhal numbers corresponding to the
self-propelled speeds increase from 0.25 to �1 in the same range of Ref . The maximum
Froude efficiency for an isolated plate decreases from 0.06 at Ref = 200 to less than 0.003
at Ref = 10. These values are much lower than for higher-Re swimming fish and robots.
This is consistent with the fact that flapping locomotion is not possible when Re decreases
below a critical value of order unity, and there the maximum Froude efficiency becomes
zero. The Pareto-optimal flapping amplitudes for maximizing speed at a given mean input
power stay nearly fixed at 0.2–0.3. By contrast, the optimal flapping frequency increases
with increasing self-propelled speed and/or input power. The input power scales as flapping
amplitude and frequency, both raised to the third power, and depends only weakly on the
oncoming flow velocity.

We then studied the input power required for flapping lattices of plates, before studying
their propulsive efficiencies in Part 2 (Alben 2021). The input power was estimated
theoretically using steady flow models, which predict different scaling laws depending
on the values of lx and ly for each lattice type.

For rectangular lattices, when the transverse spacing ly is much smaller than the tandem
spacing (i.e. ly � lx − 1), the flow between the plates is approximately Poiseuille flow,
and is proportional to the transverse spacing and inversely proportional to the cube of the
tandem spacing. By contrast, if the tandem spacing is small relative to the plate length
and to the transverse spacing (lx − 1 � 1, ly), we have small gap flow with input power
inversely proportional to the square of the tandem spacing. Superposing a tangential flow
with the transverse flows, the input power increases in proportion to the product of the
tangential flow speed and the tandem spacing.

The input power for a rhombic lattice can also be approximated by Poiseuille flows
and small-gap flows in the same limits. The main difference with rectangular lattices is

915 A20-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.6


S. Alben

that input power is much larger when the transverse spacing is small (ly � lx − 1) and
neighbouring rows of plates overlap (lx < 2), so flow is forced through the small gaps
between the plates.

The lattice flows studied in Part 2 occur at intermediate Re, between 10 and 70. The
Poiseuille flow models remain valid in this regime, but the small-gap flows need to be
modified. In the steady case, they can be modelled as separated flows through periodically
perforated plates, with input power calculated by an integrated momentum balance. The
input power is again inversely proportional to the square of the tandem spacing, but with
a different prefactor than at small Re.

Compared to the steady flow models, the unsteady flows through lattices showed
qualitatively similar input power trends at Re = 10 and 70 and two different flapping
amplitudes, across ranges of lx and ly that we probe further in Part 2. The power
grows approximately linearly in ly when ly � lx − 1, and then saturates as ly becomes
comparable to or larger than lx − 1. There is increased irregularity in the Re = 70 data
due to non-periodicity of many of these flows for ly > 1.

In Part 2 we discuss various examples of lattice flows in the Re range 10–70, the
corresponding thrust and drag forces on the plates, measures of propulsive efficiency, and
self-propelled states.
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