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On the form in Polar co-ordinates of oertain expressions
occurring in Elastic Solids and in Hydrodynamics.

By CHARLES CHREE, M.A.

In this paper is considered the form taken in Polar co-ordinates
by the equivalents of certain well known expressions in Cartesian
co-ordinates which occur in Elastic Solids and in Hydrodynamics.

The accompanying figure (fig. 29) will enable us to transform from
Cartesians to Polars by simple geometry.

Let the co-ordinates of the point P referred to O, to a fixed plane,
and the axis ON be r, <f>> & Let PQSR be an element of surface of
a sphere centre O and radius r, while P'Q'S'R' lies on a sphere of
radius r + 8r; the several points being taken so that the space be-
tween these elements as shown in the figure represents the ordinary
polar element of volume. Thus co-ordinates of Q are r, 0 + 80, <f>

R a r e r, 0, <[> + 8<f>.
Let PN and RN be drawn perpendicular to the axis;

and let PT, RT be the tangents to the arcs PQ, RS respectively.
We are to regard as the fundamental directions at any point P the
radius vector PP', the tangent to the arc PQ and the perpendicular
to these two, i.e., the tangent to arc PR.

We wish to find the relations between the fundamental directions
at P and at the adjacent point S'.

From the figure we see at once that the angle PNR -— 8<t>

Thus the following scheme shows at once the direction cosines of
the one sot of fundamental directions referred to the other—
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at S'

1

sin<?8<£

-80

1

cos68<f>

- sinOScf)

- cosOScj)

1

at P-

neglecting the squares and products of small quantities of the order
86> or 8<f>.

Regard now the fundamental directions at P as forming a system
of fixed rectangular Cartesian co-ordinates to which is referred a given
elastic solid.
Let u, v, w denote the displacements at P along these axes, then the
displacements at S' along the fundamental directions at S' are respec-
tively

(1)

Now, let U', V , W denote the displacements at S' relative to the
axes at P, then using the above scheme for the direction cosines and
neglecting the squares and products of small quantities we get

T T , , dU o dUnn du o , *n • / i j .
U =u + — 8r+—80 + — 8<f>- v80 - wsmOStf)

dr dd d<f>
or as it may be written

TT, du s I 1 du v\ sa I du w\ . O!!,
U - u = — 8r +1 - — irSO + I - — IrsinpSA

dr \rdB r) \rsin0d<j> r) ^
Similarly we find
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1 du\
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dw

, I 1 dv w . a 1 dw\ . ns!,
i l —r-jj -77 - - cot0 + - —^ lrsm<9S</>.2Vsin0d</> r r dOf

r

w

dv
d<f>

v \
dr r r dd

(3)

«r/ ,ldw w 1 du
W - w = l[—-- + ^ —

\dr r rsinu d<t>

\dw w ,a
- - c o t 0 - t - : \

r UO r rsmt) d<f>/

dv\ ra

df/

\rsin<9 d<f> dr r f ' '\r dQ r r&hiB d<f>,

Let us now adopt, for shortness, the following notation
du_e- 1 dv ,u_f. 1 dw

" rdl ~dr r s in# d<f> r

dv v 1 du
dr r r dO

dw w 1 du
dr r rsmO d<j>

2b

a d<f> r do r

(5)

(6)

dv v _ 1 du_
~dr r~rd~6~

1 du
rsm.9 d<f>

dw w _ q
' dr ~ r ~ "^

1 dv

^ </</>

(7)

rdO

Then the displacements may be written
U' - u = eSr + cr86 + brsin68<j> - (r8d + -qr
V -v = c8r +fr86 + orsin^S^ - £rsin(9S</> + f8r (8)

The last two terms in each expression are obviously the displace-
ments due to the rotation of the body as a whole through the ele-
mentary angles £, rj, (, about the three fundamental directions
through P .

The first three terms in each expression indicate a relative dis-
placement of points surrounding P such that, taking the fundamental
directions at P as three Cartesian axes of x, y, z, every point on the
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quadric e:>2 +fy° + <J~" + 2a;p + 2bzx+ 2cxy = constant (9)
is displaced in the direction of the normal to the quadric.

Since i;he rotatory displacement first considered causes no relative
displacement of the particles of the solid, it introduces no elastic
forces or stresses. These stresses, depending as they do on relative
displacements, are thus functions only of the six coefficients e,f, g,
a, b, c, of the above quadric.

This quadric has been called the Elongation Quadric, and its
properties are well known.

The stresses must operate in obedience to the principles of Con-
servation of Energy, and so must be derivable from a potential which
is a quadiatic function of the relative displacements or strains, the
potential representing the work done by the stresses during the cor-
responding; strains. The potential, as representing physical properties,
must for an isotropic medium be independent of all systems of axes,
and so must consist of such quadratic expressions involving e,f, g,
a, b, c, as are independent of the axes chosen.

From the elongation quadric we see that such independent
quadratic expressions must be derivable from e+f+g and
a? -i ¥ + c" - («/"+ eg +fg) the two first invariants of the above quadric.
Thus for the potential we have an expression of the form
2W = A{e +/+ gf + B{a2 + 62 + c2 - (e/+ eg +fg)} where A and B are
constants.

This is at once seen to be the same as the form used by * Thomson

and Tait, writing B = in, A = k + -n, and noticing that their a, b, and
o

c are double of mine.

Adopting their usual constants m and n, and writing t for a etc.

in the above, we get the most convenient form
2W^im + n)(e+f+gy + n{a2 + b* + c?-4(ef+eg+fg)} (10)

and so W is completely known from (5) and (6) in terms of Polars,
noticing now to drop the 2 in the second side of (6).

From W we can at once deduce the elastic forces at each point
by regarding the fundamental directions at that point as forming
three rectangular axes. Thus using Thomson and Tait's notation
the stresses are P, Q, R, S, T, U,

* (7) of § 6'.)5, Part II.
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P being = — etc.,

'dW '' <»)
S-_eto,

The surface conditions are those given by * Thomson and Tait.
It will be found safer to use A, /*, v, however, for the direction

cosines of the normal. It should be noticed that here the normal is
referred to the fundamental directions at each point of the surface
which vary from point to point. If, however, the surface be spherical
ft = 0 = v and A = 1, and the conditions are much simplified.

The quantity A = e +/+ g occurs frequently; its value is from (5)

dr r r do r rsinp d</>

= 1 f d(ur>) 1 d(vrsm6) 1 </(wsin6>)\
~?\ dr mad dd s i n ' 0 d<f> I ( ">

it indicates the expansion of unit volume during the strain.
The values of £, if, ( in (7) can be written more concisely thus

\

(13)

dO
It will be found that the equations given by f Lame for the

equilibrium or motion of an Elastic Solid in Polars become, when the
change in notation is allowed for, the following

ur uo a<p \at" /

(14)(m + n ) s i n ^ -
do

§ + 2n P s i n ^ ( ^
d<j> dr Xdi

, N 1 dA o d(ryr) „ d£ 1 id?w
V ysin0 d<f dr dO sln^\ d?

where p is the density of the solid, and R, G, * are the components,
along the fundamental directions at the point considered, of the
external forces. Thus the expressions £, 77, f, are of great importance.

* § G02, (1); § 670, (10); and § 734 of Part II.
t Lecons sur l'Elasticiti.

8 Vol. 3
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In Hydrodynamics we are to regard u, v, w as the velocities at
any point in the fluid.

The equations (8) then give us the relative velocities of the fluid
at two adjacent points along the fundamental directions at the first
of the points. The two last terms in each indicate a motion of rota-
tion in adjacent points in virtue of which the element of fluid moves
as a solid body. Unless these terms vanish there is vortex motion,
and £, ??, £ are the components of the vorticity about the fundamental
directions at the point considered.

If £, >/, { all vanish, we get as before, the quadric (9).
Its hydrodynamical property is that at every point on its surface

the fluid is moving along the normal.
This corresponds exactly to the quadric given by * Lamb noticing

the difference of notation.
Thus the conditions for irrotational motion are

d(vr) du _ ^

1 du _ d(wr) _
0 dr
d(tosind) dv _ „

~db ~d$~

(15)

The quantity A, see (12), is termed the \ expansion of the fluid;
for an incompressible fluid it is zero.

From (13) it is easily found that
d(&) , J_ dtnrsinff) J _ d(£sin0)

dr sinfl dd sin26» d<j> K '
•'• £> 7> f might be the components along the fundamental direc-

tions of the velocities of an incompressible fluid.
The conditions (15) may be verified by transferring directly to

Polars the ordinary expressions for the components of vorticity, and
resolving them about the fundamental directions at the point con-
sidered. They indicate that udr + vrdd + torsinOd(f> is a complete
differential.

* See Lamb's " Motion of Fluids," Chap. III.
i Ibid., p. 6.
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