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Duality in topological algebra:

Addendum

B.J. Day

It has been observed by Banaschewski [/], Proposition 1, that, in the

notation of the author's paper [2], T = P' = VKOV if P c FU is

hereditary and finitely productive. This fact does not require the use of

injectives as in [2].

Thus, under the preceding hypotheses on P , we have the following:

PROPOSITION 1. The inclusion V c VKOV is codense [that is,

A '•* {U(A, P ) , P} for all A 6 P*oP ).
>P

Proof. We have P c ?fio? c U . Let E denote the subcategory of U

whose objects are those of U and whose morphisms are the regular

epimorphisms (equals coequalisers) in U . Let H = E n P . Then, because

A € VKOV , we have -4 '̂  {E(A, P), P} . The canonical map
'PM

rQZH
E(A, Q) x U(Q, P) •* U(A, P) is an epimorphism for all A € VKOV and

Pi?, since each map f : A -*• P factors as A -»->• Q >—* P , Q (. P , as

P is hereditary. Thus there is a monomorphism

j {U(A, P ) , P} >-* j IJ E U , tf) x u(fi, P ) , P j

- - f ( E ( X , 4), f {0(6, P ) , P}1
V€H ^ Jp J

^ ? ^ {E(A, Q), Q} by the ret>resentation theorem,
Jtieu

'^^ A .
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By considering the appropriate diagram (see [3], Theorem 2.3) one has that

this monomorphism is left inverse to the canonical morphism

A •* {U(A, P) , P) ; hence is an isomorphism. / /

PROPOSITION 2. There is a duality between p ^ o P and the

G-copresentable algebras from ? to En& where G -.?-*• Em, is the

forgetful functor.
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